
Finding and 
exploiting 
novel flaws in 
Java software 



Introduction: David Jorm

● I am not a pen tester. High school dropout, no 
formal training or education in security.

● Software engineer for 16 years, climatology domain

● Last 5 years focusing on security, mainly Java

● Managed Red Hat's Java middleware security team

● Now a product security engineer for IIX, and a 
member of the ODL and ONOS security teams

● I love finding new 0day and popping shells!



Outline
● SSL issues

● Authentication bypasses

● XXE (general and parameter entities)

● Command parameter injection

● RCE: XSL extensions

● Path traversal

● RCE: EL interpolation

● RCE: binary deserialization

● RCE: XML deserialization

● RCE: new XML <-> binary mapping vector

● Future work: other InvocationHandlers



Introducing Lord Tuskington

● Chief Financial Pinniped for TuskCorp

● Presenter at Kiwicon 2012

● Used again in a panicked response to a request for 
media attribution after Ruxcon 2014

● Goal: get major vendor to credit a stuffed walrus 
for reporting a code exec flaw. No luck so far :(



SSL issues

● Lord T has the skinny if you're interested: 
http://lordtuskington.blogspot.com/2014/10/cyanog
enmod-mitm-flaw.html



SSL issues

● “The Most Dangerous Code in the World: Validating 
SSL Certificates in Non-Browser Software” 
(Georgiev, M. et. al., 2012)

● No server hostname verification in a number of 
clients: commons-httpclient, axis, many proprietary 
clients including Chase internet banking app

● Hostname verification added to commons-
httpclient, but flawed not once (CVE-2012-6153) 
but twice (CVE-2014-3577)



SSL issues: CVE-2014-3577

● Vulnerable CN extraction code:

● Use of comma as part of the subject attribute value 
could confuse the tokenizer and attempt to match 
a "CN=" string in the middle of some other 
attribute value. For example:

O="foo,CN=www.apache.org"



SSL issues: CVE-2014-3577

● Exploitation relies on tricking a CA into signing such 
a cert, but this has been proven by Facebook 
engineers who found CVE-2014-3577

● Patched CN extraction code:



SSL issues: Cyanogenmod
● android_external_apache-http/src/org/apache/http/conn/ssl/AbstractVerifier.java

● Challenge: find another instance of the vulnerable 
code, or a variant of it, in an open source project



Authentication bypasses

● Logic errors in security constraints

● Incorrect paths, path wildcards

● HTTP verb/method tampering: security constraints 
restricted to specific verbs/methods

● HEAD method used for tampering. RFC2616:

 “In particular, the convention has been established that the GET and HEAD 
methods SHOULD NOT have the significance of taking an action other 
than retrieval” 

“The HEAD method is identical to GET except that the server MUST NOT 
return a message-body in the response. The metainformation contained 
in the HTTP headers in response to a HEAD request SHOULD be identical 
to the information sent in response to a GET request.”



CVE-2014-0121

● Hawt.io project includes a web-based admin 
terminal: http://localhost:8181/hawtio/hawtio-karaf-
terminal/term 

● CVE-2014-0120: CSRF

● AuthenticationFilter.java



CVE-2014-0121

● Remote unauthenticated command execution

● Live demo

● Patch for AuthenticationFilter.java:

● Full patch commit:

https://github.com/hawtio/hawtio/commit/5289715
e4f2657562fdddcbad830a30969b96e1e



CVE-2010-0738

● JMX Console allows management of Java beans

● HtmlAdaptor servlet has a default security 
constraint:

● Tomcat/JbossWeb executes the doGet() servlet 
handler to handle HEAD requests (Content-Length)



CVE-2010-0738

● Many exploits in the wild, including the Jboss Worm. 
Metasploit example:  http://www.exploit-
db.com/exploits/16319/

● Also works when there is no security constraint at 
all, which is the case for Jboss AS 4.x/5.x upstream

● Lesson: always include default authn/authz



JMX Console: lesson learnt?

● CVE-2012-0874

The JMXInvokerHAServlet and EJBInvokerHAServlet invoker servlets allow 
unauthenticated access by default in some profiles. Due to the second 
layer of authentication provided by the security interceptor, there is no 
way to directly exploit this flaw. If a user misconfigured the security 
interceptor or inadvertently disabled it, this flaw would be exploitable. A 
remote attacker could exploit this flaw to invoke MBean methods and run 
arbitrary code in the context of the user running the JBoss server.

● CVE-2013-4810 (rgod, ZDI)

The HP ProCurve Manager (PCM) was found to expose unauthenticated 
JMXInvokerServlet and EJBInvokerServlet interfaces. A remote attacker 
could exploit this flaw to invoke MBean methods and run arbitrary code in 
the context of the user running the PCM server.



Unauthenticated auth

● RFC4513 (LDAP)

“An LDAP client may use the unauthenticated authentication 
mechanism of the simple Bind method to establish an 
anonymous authorization state by sending a Bind request 
with a name value (a distinguished name in LDAP string 
form [RFC4514] of non-zero length) and specifying the 
simple authentication choice containing a password value of 
zero length."

“Operational experience shows that clients can (and 
frequently do) misuse the unauthenticated authentication 
mechanism of the simple Bind method (see Section 5.1.2). 
For example, a client program might make a decision to 
grant access to non-directory information on the basis of 
successfully completing a Bind operation."

http://tools.ietf.org/html/rfc4514
http://tools.ietf.org/html/rfc4513%23section-5.1.2


Unauthenticated auth

● CVE-2012-5629: JBoss AS

● CVE-2014-0074: Apache Shiro

● CVE-2014-3612: Apache ActiveMQ

● Etc. etc.



XXE (everywhere!)

● General entity attacks

● Parameter entity attacks

● Most Java APIs do not disable entity expansion by 
default

● Relies on developers following best practices, e.g. 
from OWASP



OWASP XXE guidelines

 It wasn’t always this way:



XXE: CVE-2014-3490

● RESTEasy REST API framework:
It was found that the fix for CVE-2012-0818 was incomplete: external 
parameter entities were not disabled when the 
resteasy.document.expand.entity.references parameter was set to false. A 
remote attacker able to send XML requests to a RESTEasy endpoint could use 
this flaw to read files accessible to the user running the application server, 
and potentially perform other more advanced XXE attacks.

● Used by many apps, e.g. oVirt:

● test.dtd on the attacker server:



XXE: CVE-2014-3490

● Patch is simply to use the updated advice from the 
OWASP guide:



XXE: XXEBugFind

● https://github.com/ssexxe/XXEBugFind 

● Uses soot to parse compiled Java bytecode and 
then run it through an analysis and rules engine. 
Rules for anti-patterns that identify XXE are defined 
in XML.

● Existing rules have some flaws, but the architecture 
is rock-solid

● Example flaw I found using XXEBugFind, in a code 
base I never read, never understood, and never 
wrote a line of code for:

https://www.playframework.com/security/vulnerability
/CVE-2014-3630-XmlExternalEntity



Cmd parameter injection

● When a single command string is input to 
Runtime.getRuntime().exec(), the string is 
tokenized and split into the command and 
parameters

● Direct injection of commands is not possible

● The attacker still has complete control over the 
parameters, how can that be abused?

● Example: OpenSSL



Apache Ambari (no CVE)

● First reported Sep 2014, still not patched

● The certificate signing REST API does not require 
authentication. It passes user-supplied input to 
CertificateManager.signAgentCrt:

https://github.com/apache/ambari/blob/trunk/ambari-
server/src/main/java/org/apache/ambari/server/security/unsecur
ed/rest/CertificateSign.java#L63

● The agentHostname value is derived from user-
supplied input, and is then directly concatenated 
into shell commands calling openssl:

https://github.com/apache/ambari/blob/trunk/ambari-
server/src/main/java/org/apache/ambari/server/security/Certifica
teManager.java#L207-219



RCE – XSL extensions

● Various XSL libraries allow embedding code in 
stylesheets via extensions

● Xalan and Saxon allow embedding Java. Xalan allows 
this by default, unless explicitly disabled.

● Even then, there are workarounds:

● You can find many other instances of this issue



RCE – XSL extensions

● Example exploit using Java extensions:



RCE – XSL extensions

● How can an attacker supply XSL?

● Camel-xslt transforms: http://camel.apache.org/xslt

● Attackers can provide an XML document, but what 
about the XSL file?

● CamelXsltFileName message header (accepts 
URLs)

● Live demo: CVE-2014-0003 

http://camel.apache.org/xslt


RCE – XSL extensions

● Ektron CMS, user-supplied XSL without 
authentication (CVE-2012-5357)

● Liferay, XSL portlets (CVE-2011-1571)

● SpagoBI, report presentation view (CVE-2014-7296)

● Apache Solr, in combination with a directory 
traversal flaw (CVE-2013-6397)

● Many more to be found. Remember, the app only 
has to fail to configure Xalan correctly, OR use an 
outdated vulnerable Xalan JAR.



Path traversal

● Basic premise: path either consists of or ends in 
user-supplied input

● Input can include “../” to make a relative path 
absolute, and access any file accessible to the 
process running on the server:

● Poison null byte injection can terminate the path, 
allowing the latter case to be exploitable on older 
unpatched JDKs

● Encode or double encode, e.g. %2e%2e%2f



CVE-2014-7816
“It was discovered that Undertow, when running on 

Microsoft Windows, is vulnerable to a directory 
traversal flaw. A remote attacker could use this flaw 
to read arbitrary files that are accessible to the 
user running the Java process.”

 

Why only Windows?



CVE-2014-8114

● Uberfire: information disclosure and RCE via 
insecure file upload/download servlets

● RCE by uploading: cmd.jsp

● RCE by downloading?

● Credentials stored on disk

● username=HEX( MD5( username ':' realm ':' 
password))

● Do I need to bother demoing that this is easy to 
crack?



RCE – EL interpolation

● Various expression languages are commonly used 
in Java libraries

● MVEL is one example

● Generally speaking, if an attacker can supply EL, 
they can execute arbitrary code on the server

● How can an attacker supply EL?



RCE – EL interpolation

● Zanata is an open source translation memory 
platform built on Seam

● Seam evaluates EL in log messages. If code 
performs string concatenation with user-supplied 
input to create the log messages, an attacker can 
inject EL (Credit: Adrian Hayes)

● Zanata would log user-supplied strings using string 
concatenation



EL: CVE-2014-3120

● Elasticsearch enables MVEL embedded in search 
queries by default

● This is a feature, and the environment is meant to 
be protected

● In many cases, of course, it is not

● Example: JBoss Fuse: 
https://access.redhat.com/solutions/1191453 

● Live demo

● CVE-2015-1427: sandboxing attempted, blocking 
class, getClass(), etc. Pointless, this for example 
still works...



EL: Example exploit



Spring EL

● Can be used in a variety of settings, but is not 
designed to be user-supplied

● <spring:eval expression="${param.pwn}" />

(new 
java.util.Scanner((T(java.lang.Runtime).getRuntim
e().exec("cat 
/etc/passwd").getInputStream()),"UTF-
8")).useDelimiter("\\A").next() 



RCE – binary deserialization

● Java contains a native serialization mechanism, 
that converts objects to binary data

● When deserializing, the readObject() and 
readResolve() methods of the class will be called

● This can lead to vulnerabilities if a class on the 
classpath has something exploitable in 
readObject() or readResolve()

● How can an attacker provide binary serialized 
objects?



RCE – binary deserialization

● Serialization is used as a format for transferring 
objects over networks, e.g. via REST APIs

● Example #1: RichFaces state (CVE-2013-2165, 
Takeshi Terada, MBSD)

● Example #2: Restlet REST framework (CVE-2013-
4271)

● Live demo: CVE-2013-4271 PoC

● What kind of issue could exist in 
readResolve()/readObject() that would be 
exploitable?



commons-fileupload

● Component to simplify file uploads in Java apps

● DiskFileItem class implements readObject()

● The readObject method creates a tmp file on disk:
– tempFile = new File(tempDir, tempFileName);

● tempDir is read from the repository private attribute 
of the class, exposing a poison null byte flaw (file-
writing code is native, now patched)

● An attacker can provide a serialized instance of DFI 
with a null-terminated full path value for the 
repository attribute: /path/to/file.txt\0

● commons-fileupload code embedded in Tomcat



Restlet + DFI

● Upload a JSP shell to achieve RCE

● Solution #1: don't deserialize untrusted content

● Solution #2: don't introduce flaws in 
readObject()/readResolve()

● Solution #3: type checking with look-ahead 
deserialization (Pierre Ernst): 
http://www.ibm.com/developerworks/java/library/se
-lookahead/index.html 

● More information: 
https://securityblog.redhat.com/2013/11/20/java-
deserialization-flaws-part-1-binary-deserialization/ 



RCE – XML deserialization

● Alternative XML-based serialization formats

● JAXB is the standard (no known flaws)

● Other XML serialization libraries exist, and have 
exposed security issues leading to RCE

● We’ll look at two examples: XMLDecoder and 
XStream 



XMLDecoder

● XMLDecoder’s XML format can represent a series of 
methods that will be called to reconstruct an object

● If XMLDecoder is used to deserialize untrusted 
input, arbitrary code can be injected into the XML

● Example: Restlet CVE-2013-4221. Fixed by 
removing vulnerable functionality.



XStream

● Reflection-based deserialization

● Has a special handler for dynamic proxies 
(implementations of interfaces)

● Attackers can provide XML representing a dynamic 
proxy class, which implements the interface of a 
class the application might expect

● Dynamic proxy implements an EventHandler that 
calls arbitrary code when any members of the 
deserialized class are called

● Vulnerable components: Spring OXM, Sonatype 
Nexus, Jenkins



XStream in Jenkins

● Jenkins XML API uses XStream to deserialize input

● Access to XML API -> RCE (but not such a huge 
deal)

● Live demo: Jenkins

● Solution: blocked DynamicProxyConverter in 
XStream wrapper class 

● Upstream solution: whitelisting, with dynamic 
proxies excluded by default

● More information: 
https://securityblog.redhat.com/2014/01/23/java-
deserialization-flaws-part-2-xml-deserialization/ 



Dozer XML ↔ Binary Mapper

● Uses reflection-based approach to type conversion

● Used by e.g. Apache Camel to map types

● If used to map user-supplied objects, then an 
attacker can provide a dynamic proxy

● There must either be an object being mapped to with 
a getter/setter method that matches a method in an 
interface on the server classpath, or a manual XML 
mapping that allows an attacker to force the issue.

● Proxy must be serializable (implements Serializable)

● EventHandler is not



Dozer CVE-2014-9515

● Wouter Coekaerts reported a serializable 
InvocationHandler in older versions of Spring: CVE-
2011-2894

● Using Alvaro Munoz's CVE-2011-2894 exploit, I was 
able to develop a working Dozer exploit. It is only 
exploitable if all the aforementioned conditions are 
met, and vuln Spring JARs are on the classpath

● Live demo: Dozer RCE 
(https://github.com/pentestingforfunandprofit/resea
rch/tree/master/dozer-rce)

● Reported upstream since Dec 2014, no response: 
https://github.com/DozerMapper/dozer/issues/217



Other InvocationHandlers

● Any common component is useful, but in the JDK 
itself means universally exploitable

● Three other InvocationHandlers in Java 7/8:
● CompositeDataInvocationHandler

● MbeanServerInvocationHandler

● RemoteObjectInvocationHandler

● CompositeDataInvocationHandler: forwards getter 
methods to a CompositeData instance. No use.



MBeanServerInvocationHandler

● Proxy to an MBean on the server. Potentially useful, 
e.g. if MBeans used by JBoss Worm are present.

● Problem 1: attacker must specify correct JMX URL
● Solution 1: JMX is exposed locally on port 1099

● Solution 2: Brute force JMX URL via Java PID

● Problem 2: attacker cannot control code that is run 
for any method call, on specific method calls

● EventHandler exploits work no matter which 
method is invoked on the proxy object. 
MBeanServerInvocationHandler simply calls the 
method of the same name on the MBean. 



RemoteObjectInvocationHandler

● Proxy to a remote object exported via RMI

● Problem 1: attacker must know details of a remote 
object exported to the server

● Solution: JMX registry is exposed via RMI. If JMX 
is exposed locally on port 1099, the attacker 
could craft an object instance that points to the 
JMX RMI URL

● Problem 2: attacker cannot control code that is run 
for any method call, on specific method calls

● Future work: look for more potentially exploitable 
InvocationHandlers



How to find novel flaws

● Pick a language or platform and go deep

● Understand all the language or platform specific 
issues that have been found before

● Synthesize this knowledge with creative thinking

● Questions?


	Slide 1
	Introduction
	Modules
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	M8: CVE-2014-7816
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

