

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

and	Its	Ecosystem

Yudi	Zheng
Senior	Researcher
Oracle	Labs
April,	2018

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Safe	Harbor	Statement
The	following	is	intended	to	outline	our	general	product	direction.	It	is	intended	for	
information	purposes	only,	and	may	not	be	incorporated	into	any	contract.	It	is	not	a	
commitment	to	deliver	any	material,	code,	or	functionality,	and	should	not	be	relied	upon	
in	making	purchasing	decisions.	The	development,	release,	and	timing	of	any	features	or	
functionality	described	for	Oracle’s	products	remains	at	the	sole	discretion	of	Oracle.

5

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Java	in	a	Nutshell

6

Java	Source Java	Bytecode

Interpreter

Just-In-Time
Compilation

javac Slower

Collect	program	profile

Faster

Deoptimization

Tiered	compilation
C1	compiler
C2	compiler
Graal }

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

“Things	I	won’t	do	again:
write	a	VM	in	C/C++.”

– Cliff	Click,	CTO,	Neurensic; author	of	HotSpot C2	Compiler

7

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

“C2 is old and very complex;
Graal is easier to understand.”

– Chris	Thalinger,	Staff Software Engineer,	Twitter

8

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

More	Than	A	JIT	Compiler

9

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		| 10

Java	Virtual	Machine

JVM	Languages

Truffle	Languages

and	Its	Ecosystem

Truffle	Framework

Graal Compiler

Polyglot	API

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		| 11

Java	Virtual	Machine

JVM	Languages

and	Its	Ecosystem

Graal Compiler

Polyglot	API

Substrate	VM

Graal Compiler

Truffle	Languages

Truffle	Framework

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Performance:	GraalVM

1.02 1.2

4.1
4.5

0.85 0.9

0

1

2

3

4

5

Java Scala Ruby R C/C++ JavaScript

Performance	relative	to:
HotSpot/C2,	HotSpot/C2 running	JRuby,	GNU	R,	LLVM	AOT	compiled,	V8

Best	Specialized	Competition
Graal

12

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Part	1:	The	Graal Compiler

13

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Key	Features	of	Graal Compiler
• Designed	for	aggressive speculative	optimizations
– Specialization	based	on	program	profile
–Metadata	for	deoptimization is	propagated	through	all	optimization	phases
• Target	method	&	bytecode	index
• State	of	local	variables	and	expression	stack

14

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Deoptimization
• Switch	to	interpreter	in	the	middle	of	compiled	machine	code
– Example:

– Less	compilation	time;	more	compact	emitted	code
– Expensive,	better	put	in	slow	path
– Java-level	assumption

15

int negate(int n) {
if (n == Integer.MIN_VALUE)

throw new ArithmeticException();
return -n;

}

int negate(int n) {
if (n == Integer.MIN_VALUE)

deoptimize();
return -n;

}

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Key	Features	of	Graal Compiler
• Designed	for	aggressive speculative	optimizations
– Specialization	based	on	program	profile
–Metadata	for	deoptimization is	propagated	through	all	optimization	phases
• Target	method	&	bytecode	index
• State	of	local	variables	and	expression	stack

• Graph-based	intermediate	representation

16

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Ideal	Graph	Visualizer	

17

Visualizing	compilation	on-the-fly

Optimization	phases
Filters	to	make	graph	
more	readable

Properties	 for	the	
selected	node

Colored	and	filtered	graph	

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Ideal	Graph	Visualizer	

18

Visualizing	compilation	on-the-fly

• Control	flow	(in	red)	v.s.	data	flow
• Fixed	node	v.s.	floating	node
• Schedule
• Global	value	numbering
• FrameState

int negate(int n) {
if (n == Integer.MIN_VALUE)

deoptimize();
return -n;

}

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Speculative	Optimization:	Inlining of	Virtual	Methods
• What is inlining?

• Assumption:	the	receiver	type	of this	callsite will always be Add/Sub

19

<<interface>>
ArithmeticBinaryOp

+ apply(int, int): int

Add MulSub

int apply(ArithmeticBinaryOp op,
int x, int y) {

 return op.apply(x, y); // Add: 50%
// Sub: 50%

}

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Speculative	Optimization:	Inlining of	Virtual	Methods

20

case	Add: case	Sub: case	_:

int apply(ArithmeticBinaryOp op,
int x, int y) {

 return op.apply(x, y); // Add: 50%
// Sub: 50%

}

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Aggressive	Optimization:	Partial	Escape	Analysis
• Escape	analysis	determines	the	dynamic	scope	of	an	Object
– Synchronization	elision
– Heap	allocation	->	stack	allocation
• Breaking	up	objects	&	scalar	replacement

• Partial	escape	analysis
– Control	flow	sensitive
– Defer	allocation	into	sub-branches	where	needed

21

int add(int x, int y) {
return new Add().apply(x, y);

}

int add(int x, int y) {
 return x + y;
}

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Aggressive	Optimization:	Partial	Escape	Analysis

22

int add(int x, int y, boolean cond) {
Add op = new Add();

 if (cond)
return submitFuture(op, x, y);

return op.apply(x, y);
}

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Key	Features	of	Graal
• Designed	for	aggressive speculative	optimizations
– Specialization	based	on	program	profile
–Metadata	for	deoptimization is	propagated	through	all	optimization	phases
• Target	method	&	bytecode	index
• State	of	local	variables	and	expression	stack

• Graph-based	intermediate	representation
• Modular	architecture	
– Compiler-VM	separation	

23

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JEP	243:	Java-Level	JVM	Compiler	Interface	(JVMCI)

24

Dispatch	request Metadata	Access	 Code	installation

Java	Virtual	Machine

Graal Compiler

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Mixed-Mode	Execution
• Default	configuration	of	Java	HotSpot VM	in	production:	

• Graal replaces	the	C2	compiler:

• Graal used	only	for	custom	compilations:

25

Bytecode	Interpreter Optimized	Machine	Code
Aggressively	Optimized	

Machine	Code

Deoptimization

C1 C2

Graal Custom	Optimized	Machine	Code Compiler	Unit	Test
Truffle

Graal

{

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Part	2:	GraalVM’s Ecosystem

26

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

“Write	Your	Own	Language”	

27

How	it	should	beCurrent	Situation

Prototype	a	new	language

Parser	and	language	work	to	build	 syntax	tree	(AST),	
AST	Interpreter	

Write	a	“real”	VM

In	C/C++,	 still	using	AST	interpreter,	spend	a	lot	of	time	
implementing	 runtime	system,	GC,	...	

People	start	using	it

People	complain	about	the	performance

Define	a	bytecode	format	and	write	bytecode	interpreter	

Performance is	still	bad

Write	a	JIT	compiler,	improve	the	garbage	collector

Prototype	a	new	language

Parser	and	language	work	to	build	 syntax	tree	(AST)	
Execute	using	AST	interpreter	

People	start	using	it
And	it	is	already	fast.
And	it	integrates	with	other	languages.
And	it	has	tool	support,	 e.g.,	debugger

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Partial Evaluation

28

abstract class Node {
abstract int execute(int[] args);

}

class Arg extends Node {
final int index;

 Arg(int i) { this.index = i; }

int execute(int[] args) {
return args[index];

 }
}

class Add extends Node {
final Node left, right;

Add(Node left, Node right) {
this.left = left;
this.right = right;

 }

int execute(int[] args) {
return left.execute(args) +

 right.execute(args);
 }
}

// Sample program (arg[0] + arg[1]) + arg[2]
sample = new Add(new Add(new Arg(0), new Arg(1)), new Arg(2));
sample.execute(new int[]{0, 1, 2});

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

int interpret(Node node, int[] args) {
return node .execute(args);

}

int interpret(Node node, int[] args) {
return node.execute(args);

}

Partial Evaluation

29

// Sample program (arg[0] + arg[1]) + arg[2]
sample = new Add(new Add(new Arg(0), new Arg(1)), new Arg(2));

sample()

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

sample
int interpret(int[] args) {

return sample .execute(args);
}

Partial Evaluation

30

// Sample program (arg[0] + arg[1]) + arg[2]
sample = new Add(new Add(new Arg(0), new Arg(1)), new Arg(2));

(
int execute(int[] args) {

return left.execute(args) +
 right.execute(args);
}

class Add

int interpret(int[] args) {
return sample .execute(args);

})

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

int interpret(int[] args) {
return sample .left.execute(args) +

sample .right.execute(args);
}

int interpret(int[] args) {
return sample.left .execute(args) +

sample.right .execute(args);
}

Partial Evaluation

31

// Sample program (arg[0] + arg[1]) + arg[2]
sample = new Add(new Add(new Arg(0), new Arg(1)), new Arg(2));

(

int execute(int[] args) {
return args[index];

}

int execute(int[] args) {
return left.execute(args) +

 right.execute(args);
}

class Add

class Arg

sample.left ,

)

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

int interpret(int[] args) {
return sample.left .left.execute(args) +

sample.left .right.execute(args) +
args[sample.right .index];

}

Partial Evaluation

32

// Sample program (arg[0] + arg[1]) + arg[2]
sample = new Add(new Add(new Arg(0), new Arg(1)), new Arg(2));

int interpret(int[] args) {
return sample.left.left .execute(args) +

sample.left.right .execute(args) +
args[sample.right.index];

}

int execute(int[] args) {
return args[index];

}

class Arg

return args[index];()

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Partial Evaluation

33

// Sample program (arg[0] + arg[1]) + arg[2]
sample = new Add(new Add(new Arg(0), new Arg(1)), new Arg(2));

int interpret(int[] args) {
return args[sample.left.left .index] +

args[sample.left.right .index] +
args[2];

}

int interpret(int[] args) {
return args[sample.left.left.index] +

args[sample.left.right.index] +
args[2];

}

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Partial Evaluation

34

// Sample program (arg[0] + arg[1]) + arg[2]
sample = new Add(new Add(new Arg(0), new Arg(1)), new Arg(2));

int interpret(int[] args) {
return args[0] + args[1] + args[2];

}

int interpret(int[] args) {
return args[0] + args[1] + args[2];

}

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

G

I G

I I

Truffle

35

- A	Language	Implementation	Framework	that	uses	Graal for	Custom	Compilation

U

U U

U U

Node	rewriting	for	profiling	 feedback

Node	
Transitions U

S D

G

I

// Sample program (arg[0] + arg[1]) + arg[2]

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

G

I G

I I

Truffle

36

- A	Language	Implementation	Framework	that	uses	Graal for	Custom	Compilation

Optimize	using	partial	evaluation	
assuming	stable	profiling	 feedback	

// Sample program (arg[0] + arg[1]) + arg[2]

I I

I G

G

Deoptimize if	profiling	 feedback	is	
invalid	and	reprofile

D
Node	
Transitions U

S D

G

I

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

G

D G

I D

Truffle

37

- A	Language	Implementation	Framework	that	uses	Graal for	Custom	Compilation

Optimize	using	partial	evaluation	
assuming	stable	profiling	 feedback	

// Sample program (arg[0] + arg[1]) + arg[2]

I D

D G

G

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Stability

38

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

15
-1

9

20
-2

9

30
-5

9Fu
nc
tio

n	
w
ith

	s
ta
bl
e	
sp
ec
ia
liz
at
io
ns

Number	of	function	invocations

JavaScript

Ruby

R

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Substrate	VM

39

Static	Analysis	and	Ahead-of-Time	Compilation	using	Graal

Java	Application

JDK

Substrate	VM

Application	 running	
without	dependency	on	JDK	
and	without	Java	class	loading	

Reachable	methods,	
fields,	and	classes	

All	Java	classes	from
application,	 JDK,	
and	Substrate	VM	

Static	Analysis
Ahead-of-Time	
Compilation

ELF	/	MachO Binary

Machine	Code

Initial	Heap

DWARF	Info

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

"Hello	World"	in	C,	Java

40

C

101
011

RAM

<10 ms

450 KB

100 K

GNU

101
011

RAM

<10 ms

800 KB

300 K

Java/JVM

101
011

RAM

40 ms

24 MB

140 M

Java/SVM

101
011

RAM

<10 ms

850 KB

220 K

*	Operating	system:	Linux;	Time,	Memory:	/usr/bin/time	...	;	Instructions:	valgrind --tool=callgrind ...;	

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

"Hello	World"	in	JavaScript

41

V8

101
011

RAM

<10 ms

18 MB

10 M

Spider
Monkey

101
011

RAM

30 ms

10 MB

77 M

Nashorn

101
011

RAM

450 ms

56 MB

N/A

SVM

101
011

RAM

<10 ms

4 MB

520 K

*	Operating	system:	Linux;	Time,	Memory:	/usr/bin/time	...	;	Instructions:	valgrind --tool=callgrind ...;	

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Embeddability

42

Polyglot	API

Substrate	VM

Graal Compiler

Truffle	Languages

Truffle	Framework

*	http://www.oracle.com/technetwork/database/multilingual-engine/downloads/index.html

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Summary

43

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

GraalVM Timeline

44

2014

2015

2016

2017

2018

5	Feb	“GraalVM 0.1	release”

9	Apr	“JEP	243:	Java-Level	JVM	Compiler	Interface”

15	Sep	“JEP	295:	Ahead-of-Time	Compilation”

17	Nov	“JEP	317:	Experimental	Java-Based	JIT	Compiler”
3	Oct	“Multilingual	Engine	in	Oracle	DB”

13	Dec	“SubstrateVMopen	source	release”

17 Apr “GraalVM 1.0 release”

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Get	Started

Documentation

https://www.graalvm.org/

Enterprise	Release

Search	for	“OTN	Graal”

Open	source	on	GitHub

https://github.com/oracle/graal

Confidential	– Oracle	Internal/Restricted/Highly	Restricted 45

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

