
Detecting Capacity Limits and Performance 
Bottlenecks Using Live Traffic

​Jeff Weiner
​Chief Executive Officer

​Susie Xia

​2018 QCon Beijing

​Christopher Coleman



Agenda
1 Introduction

2 Meet Redliner

3 Use Cases

4 Future Plans



LinkedIn Engagement & Growth

• 20M Companies

• 14M+ Open Jobs

• 29K+ Schools

• 11B+ Endorsements

546M
Members

• 5th straight quarter of this growth

• Record levels of engagement

• 60% (YoY) growth in viral actions, 
such as likes, comments, shares, 
and messages sent

20%
Sessions Growth (YoY)

200+
Countries & Territories

• Available in 24 languages

• 70% members outside of US

• > 2+ new users join per second



Our Dilemma
WHY IS SERVER GROWTH OUTPACING PAGE VIEW GROWTH?



Over Provisioning

31%
Wasted in 2016

• Organic Growth

• Unexpected Events

• New Products & Features

• Emergency Uplifts



• Resource Efficiently

• Capacity Plan Effortlessly

• Increase Throughput Reliably
Motivations



• External Interferences

• Evolving Product Landscapes

• Complex Downstream Dynamics
Challenges



Load Testing Journey

Synthetic 
Load in Lab

Synthetic 
Load in Prod

Record & 
Replay

Anything 
Else?

Isolated 
Host

Learnings
• + Realistic Infrastructure

• - Requires Custom Test Scripts

• - High Overhead & Maintenance

• + Realistic Environment

• - Inconsistent Results

• - Hard to Scale (High Operational Cost)

• + No Impact on Production

• - Highly Customized Setup

• - Hard to Maintain Full Coverage

• + Controlled Environment

• - Infrastructure Not Representative

• - Inconsistent Traffic Profiles



• Use Live Production Traffic

• Minimize Impact to Users

• Require Low Operational Overhead
Goals



Hello, Redliner



Workflow

Load	Balancer

Live	
Production	
Traffic

App	 Instance

App	 Instance

App	 Instance

App	 Instance

Metric	Collection	
Framework

Redliner

Traffic	Shift	Request
Service	Health	
Evaluator

Health	Check	Request

PASS	/	FAIL

• Errors & Error Rates

• Latency Percentiles

• System Stats



Health Evaluations

• Variety of health checks measured every set interval

• Evaluations at the host, cluster, and data center levels

• Incorporates signal from operational alerting system

• Performance comparisons between target and the cluster



Health Checks



Dynamic Ramping

Slow, Steady Ramp Fast, Aggressive Ramp



Complete Automation

• Manipulation of traffic between nodes in the cluster

• Determination of the node’s and service’s health

• Identification of potential bottlenecks under stress

• Remediation of any issues encountered during test



Use Cases



1. Find Single Instance Max Throughput

• Gradually stresses the service 
until it cannot safely handle
any additional load

• Simplifies resource
provisioning

• Provides starting point for
tuning and optimizations



2. Improve Service Throughput

• Investigate health check failures
from increased traffic

• Discover APIs “A”, “B”, “C” error 
rates jumped

• Caused API “D” latency to double

• Resolve issues one by one

• Repeat the Redliner test



Before Investigation After Investigation



3. Detect and Diagnose Regressions

Test Id Date Version Redline Health Check Failures in Latency

Test 1 2017-11-19
09:01:11

v1.0.0 2536.33 • N/A

Test 2 2017-11-19
23:58:09

v1.0.1 534.19 • Endpoint A: Median latency exceeded 20% 
change in comparison to control target.

• Endpoint B: Median latency exceeded 20% 
change in comparison to control target.



The Smiley Curve



4. A/B Load Testing

• Run Redliner test side-by-side on 
canary and production versions

• Code comparisons

• Configuration comparisons

• OS comparisons

• Security updates

Proxy / Load
Balancer

Live Requests
from Service
Clients

Production v1.0.0

Service
Instance

Service
Instance

Service
Instance

Canary v1.0.1

Service
Instance



A/B Load Test Example

• Same load on both canary and
prod instances until one or both
failed health check

• Prod instance hits health check
failure before canary instance

• v1.0.1 on canary has better
throughput – new version is
encouraged to be deployed



5. Identify Surplus Capacity

When 𝑹𝒆𝒅𝒍𝒊𝒏𝒆	𝑸𝑷𝑺	 < 𝑻𝒐𝒕𝒂𝒍	𝑺𝒆𝒓𝒗𝒊𝒄𝒆	𝑸𝑷𝑺, 𝐼𝑑𝑒𝑎𝑙	#	𝑜𝑓	𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 = 	
	𝑇𝑜𝑡𝑎𝑙	𝑆𝑒𝑟𝑣𝑖𝑐𝑒	𝑄𝑃𝑆

𝑅𝑒𝑑𝑙𝑖𝑛𝑒	𝑄𝑃𝑆 +𝐻𝑒𝑎𝑑𝑟𝑜𝑜𝑚

When 𝑹𝒆𝒅𝒍𝒊𝒏𝒆	𝑸𝑷𝑺 ≥ 𝑻𝒐𝒕𝒂𝒍	𝑺𝒆𝒓𝒗𝒊𝒄𝒆	𝑸𝑷𝑺, 𝐼𝑑𝑒𝑎𝑙	#	𝑜𝑓	𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 = 1 +𝐹𝑎𝑖𝑙𝑜𝑣𝑒𝑟	𝐻𝑒𝑎𝑑𝑟𝑜𝑜𝑚

If 	𝑇𝑜𝑡𝑎𝑙	#	𝑜𝑓	𝐷𝑒𝑝𝑙𝑜𝑦𝑒𝑑	𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 > 𝐼𝑑𝑒𝑎𝑙	#	𝑜𝑓	𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠,	
the	service	is	over-provisioned.



Server Cap Ex Trend for Service



Future Work



1. Dynamic Provisioning

• Auto Scaling – Scale predictably to handle natural changes 
in traffic throughout the day

• Efficient Host Packing – Create models for throughput based 
on resource allocations and deploy most efficient container 
size



2. Simulating Downstream Behavior

• Latency – Test against response times during peak traffic 
hours at any time in the day

• Errors & Failures – Test service behavior when downstream 
results are acting unreliably

• Connectivity – Test resiliency and recovery when 
dependencies are unavailable



3. Stateful Redlining

0-19

Dark
Node

Source 
Node

• Source Node – Storage node to test

• Dark Node – Exact replica of source
node

• Tee Traffic – Copy the incoming live
traffic to source node to dark node

• Multiply Traffic – Generate extra load
on dark node based on incoming
traffic



Key Takeaways



• Don’t Be Afraid of Risk

• Prepare for the Surprises

• Build Performance Mindset
Reflection



Don’t count servers.
Make servers count.



Thank you

https://engineering.linkedin.com/blog

chinajobs@linkedin.com




