Detecting Capacity Limits and Performance
Bottlenecks Using Live Traffic

Susie Xia Christopher Coleman

m 2018 QCon Beijing

Introduction
Age n d a Meet Redliner

Use Cases

FuturePlans

LinkedIn Engagement & Growth

R
546w

Members

20M Companies
14M+ Open Jobs
29K+ Schools

11B+ Endorsements

=N
20%

Sessions Growth (YoY)

5t straight quarter of this growth
Record levels of engagement
60% (YoY) growth in viral actions,

such as likes, comments, shares,
and messages sent

®
200+

Countries & Territories

Availablein 24 languages
70% members outside of US

>2+ new usersjoin persecond

Our Dilemma
WHY IS SERVER GROWTH OUTPACING PAGE VIEW GROWTH?

m Server Growth Page View Growth

Over Provisioning

Organic Growth

Unexpected Events
3 1 O/O New Products & Features
Wasted in 2016 Emergency Uplifts

Resource Efficiently

Motivations Capacity Plan Effortlessly
Increase Throughput Reliably

External Interferences

Cha“eﬂgeg Fvolving Product Landscapes

Complex Downstream Dynamics

Load Testing Journey

o ® ° o © —
Synthetic Synthetic Isolated Record & Anything
Load in Lab Load in Prod Host Replay Else?

Learnings

Use Live Production Traffic

GOalS Minimize Impact to Users

Require Low Operational Overhead

[Redliner Analyses Settings

Redliner Capacity Tool

Previous Analyses ®
Owner Application

Susie Profile Page
Profile Page
Profile Page

Profile Pag

[B Documentation

Copyright ® LinkedIn 2018

Status

COMPLETED

COMPLETED

TERMINATED

COMPLETED

Start Time

04/06/18, 7:30:00 PST

04/05/18, 6:00:00 PST

04/04/18, 6:30:00 PST

04/03/18, 6:30:00 PST

23 FAQ& User Guides

Past 7 days v
End Time Redline QPS
04/06/18, 10:32:06 PST
04/05/18, 9:01:43 PST
45:14 PST

04/03/18, 9:31:15 PST

Newsletter

Hello, Redliner

Workflow

Traffic Shift Request Health Check Request

Redliner > Service Health
Evaluator
PASS / FAIL

° Errors & Error Rates

© Latency Percentiles

Live

App Instance © System Stats
Production

Traffic
md App Instance Metric Collection
Load Balancer Framework
‘ App Instance
' App Instance

Health Evaluations

Variety of health checks measured every set interval
Evaluations at the host, cluster, and data center levels
Incorporates signal from operational alerting system

Performance comparisons between target and the cluster

Analysis Overview m

Application Multiproduct Fabric Start Time End Time Status

<APPLICATION> <PRODUCT> <FABRIC> <TAG> 04/04/18, 12:17:09 PST 04/04/18, 12:22:09 PST FAIL

Experiment Control

Host App Slice ID Instance Version QPS Host App Slice ID Instance Version QPS

HOST_1 [} <SLICE_ID> [} <INSTANCE> 379.92 HOST 2 0} <SLICE_ID> [} <INSTANCE> 0. 381.48 H ea lth ‘ h e‘ kS

Rule Results

Clearall

There should be no FATAL-level exceptions during the analysis v/ Succeeded

There should be no new exceptions in the experiment target X Failed

All
ke The absolute rate of exceptions should not exceed 40.0 errors per hour v/ Succeeded
Succeeded

In Progress Average CPU usage should not exceed 90% of total cycles v/ Succeeded
Failed

Error CPU should not experience throttling for more than 10% of total cycles v/ Succeeded

Dynamic Ramping

Slow, Steady Ramp Fast, Aggressive Ramp

14:00 14:30 15:00 15:30 16:00 16:30 17:.00 2:40 2:46 2:52 2:58 3:04 3:10 3:16 3:22

——QPs

Complete Automation

Manipulation of traffic between nodesin the cluster
Determination of the node’s and service’s health
|[dentification of potential bottlenecks under stress

Remediation of any issues encountered during test

2:40

2:46

1. Find Single Instance Max Throughput

2:52 2:58

3:04 3:10

—e— Latency

3:22

Redline

3:28

3:34

Gradually stresses the service
untilit cannot safely handle
any additional load

Simplifies resource
provisioning

Provides starting pointfor
tuning and optimizations

16:19

16:34

2. Improve Service Throughput

17:36

Redline

16:24

16:39

Investigate health check failures
from increased traffic

Discover APIs “A”, “B”, “C” error
rates jumped

Caused API “D” latency to double
Resolve issues one by one

Repeat the Redlinertest

Before Investigation After Investigation

oo

3xincrease

e QPS40 eeee Prev Redline eeeeee New Redline

3. Detect and Diagnose Regressions

TestId Date

Test 1 2017-11-19
09:01:11

Test 2 2017-11-19
23:58:09

Version

v1.0.0

v1.0.1

Redline

2536.33

534.19

Health Check Failures in Latency

N/A

Endpoint A: Median latency exceeded 20%
change in comparison to control target.
Endpoint B: Median latency exceeded 20%
change in comparison to control target.

The Smiley Curve

U

4. A/B Load Testing

Production v1.0.0

* Run Redlinertest side-by-side on
canary and production versions

) Service
Live Requests Instance

from Service s

Clients Proxy / Load g Service

Balancer Instance + Code comparisons

Service

Instance + Configuration comparisons

Canaryv1.0.1 = OS comparisons

Service

Instance * Security updates

11:23

11:32 11:41

—e—Canary QPS (v1.0.1)

A/B Load Test Example

11:50 11:59

—e—Prod QPS (v1.0.0)

12:08

Same load on both canary and
prod instances until one or both

failed health check

Prod instance hits health check
failure before canary instance

v1.0.1 oncanary has better
throughput - new versionis
encouraged to be deployed

5. Identify Surplus Capacity

Total Service QPS

When Redline QPS < Total Service QPS, Ideal # of Instances = Redline OPS + Headroom

When Redline QPS = Total Service QPS, Ideal # of Instances = 1 + Failover Headroom

If Total # of Deployed Instances > Ideal # of Instances,
the service is over-provisioned.

Total Cost ($)

Server Cap Ex Trend for Service

/ Reclaimed unused resources

|
5. Dec

! | |
19. Dec 2.Jan 16. Jan

|
15. Aug 29. Aug 12. Sep 26. Sep 10. Oct 24. Oct 7. Nov 21. Nov
Date (UTC)

1. Dynamic Provisioning

Auto Scaling - Scale predictably to handle natural changes
in traffic throughout the day

Efficient Host Packing - Create models for throughput based

on resource allocations and deploy most efficientcontainer
size

2. Simulating Downstream Behavior

Latency - Test against response times during peak traffic
hours at any time in the day

Errors & Failures — Test service behaviorwhen downstream
results are acting unreliably

Connectivity - Test resiliency and recovery when
dependencies are unavailable

3. Stateful Redlining

Incoming Production Traffic

Stateless
Routers/

Brokers Traffic diverted config lookup
I or scattered / gathered

Stateful Partition/
Shard/Node

40-59 20-39 0-19

Source
Node

L

Source Node - Storage node to test

Dark Node - Exact replica of source
node

Tee Traffic - Copy the incoming live
traffic to source nodeto dark node

Multiply Traffic — Generate extra load
on dark node based on incoming
traffic

Don’t Be Afraid of Risk
Reflection Prepare for the Surprises

Build Performance Mindset

Don’t count servers.
Viake servers count.

Thank you

m https://engineering.linkedin.com/blog

chinajobs@linkedin.com

Geekbang>. [nfoQ

GMTC 2018

ERRAWMBERKRE

——— AN Bl W BN F — 8 ———

[m] %% [m]
.

<< AR TREZFE>>

