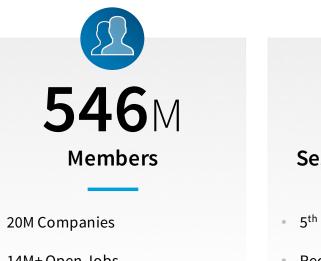
Detecting Capacity Limits and Performance Bottlenecks Using Live Traffic

Susie Xia


Christopher Coleman

Agenda

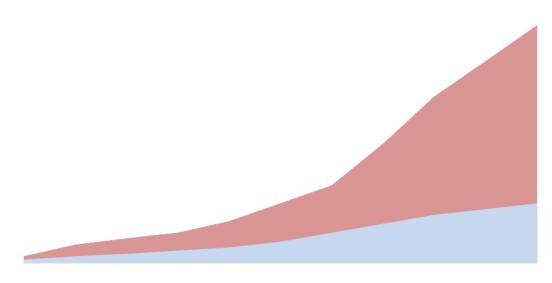
1	Introduction					
2	Meet Redliner					
3	Use Cases					
4	Future Plans					

LinkedIn Engagement & Growth

- 14M+Open Jobs
- 29K+ Schools
- 11B+ Endorsements

Sessions Growth (YoY)

- 5th straight quarter of this growth
- Record levels of engagement
- 60% (YoY) growth in viral actions, such as likes, comments, shares, and messages sent



Countries & Territories

- Available in 24 languages
- 70% members outside of US
- >2+ new users join per second

Our Dilemma

WHY IS SERVER GROWTH OUTPACING PAGE VIEW GROWTH?

Server Growth Page View Growth

Over Provisioning

- Organic Growth
- Unexpected Events
- New Products & Features
- Emergency Uplifts

Motivations

- Resource Efficiently
- Capacity Plan Effortlessly
- Increase Throughput Reliably

Challenges

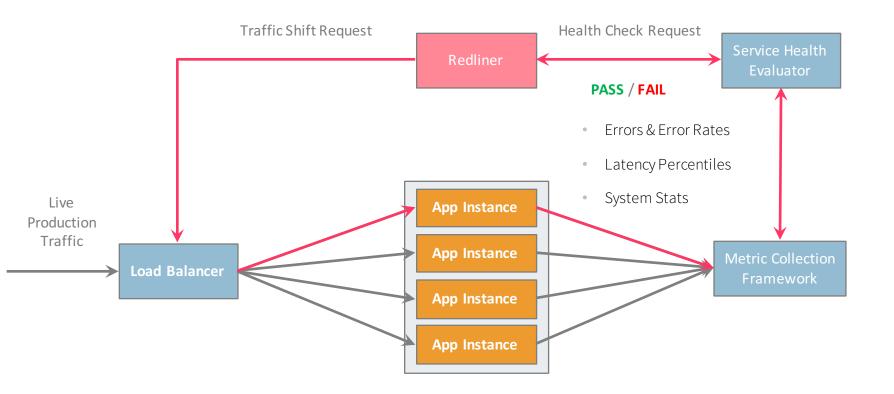
- External Interferences
- Evolving Product Landscapes
- Complex Downstream Dynamics

Load Testing Journey

Learnings

- + RealtispileethExisterondernetistn
 - Rigganis Esterna Resolutions and the settle stative
- Hieror Bizertaiter (Histighter Appendices and Cost)

Goals


- Use Live Production Traffic
- Minimize Impact to Users
- Require Low Operational Overhead

Redliner Capacity Tool

wner Application Status		Start Time	End Time	Redline QPS	
usie	Profile Page	COMPLETED	04/06/18, 7:30:00 PST	04/06/18, 10:32:06 PST	475.98
Susie Profile Page COMP		COMPLETED	04/05/18, 6:00:00 PST	04/05/18, 9:01:43 PST	514.93
usie	Profile Page	TERMINATED	04/04/18, 6:30:00 PST	04/04/18, 7:45:14 PST	493.37
usie	Profile Page	COMPLETED	04/03/18, 6:30:00 PST	04/03/18, 9:31:15 PST	571.94
Doc	cumentation	201	FAQ & User Guides	🔚 Newslet	ter

Hello, Redliner

Workflow

Health Evaluations

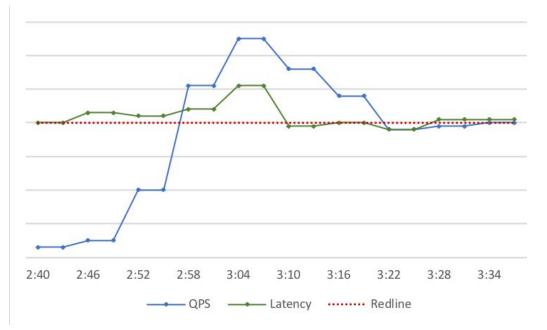
- Variety of health checks measured every set interval
- Evaluations at the host, cluster, and data center levels
- Incorporates signal from operational alerting system
- Performance comparisons between target and the cluster

	erview								n Analysis
Application	Multiproc	luct	Fabric	Tag	Start Time		End Time		Status
<application> <product></product></application>		T>	> <fabric></fabric>		04/04/18, 12:17:09 PST		04/04/18, 12:22:09 PST	FAIL	
xperiment					Control				
Host	App Slice ID	Instance	Version	QPS	Host	App Slice ID	Instance	Version	QPS
HOST_1 📮	<slice_id></slice_id>	<instanc< td=""><td>E> 1.0.1</td><td>379.92</td><td>HOST_2</td><td><slice_id></slice_id></td><td><instance></instance></td><td>1.0.1</td><td>381.48</td></instanc<>	E> 1.0.1	379.92	HOST_2	<slice_id></slice_id>	<instance></instance>	1.0.1	381.48
Keyword Q		i I.	1						
Dava		~			L-level exceptions during	B			/ Succeeded
		×	> There shoul	ld be no new	exceptions in the experir	ment target			× Failed
Status		~	> The absolut	te rate of exce	ptions should not excee	ed 40.0 errors per	hour		/ Succeeded
Status All									
					ld not exceed 90% of tot	al cycles		,	/ Succeeded
All Succeeded In Progress		4	> Average CP	U usage shou					
All Succeeded		ý (ce throttling for more th				

Health Checks

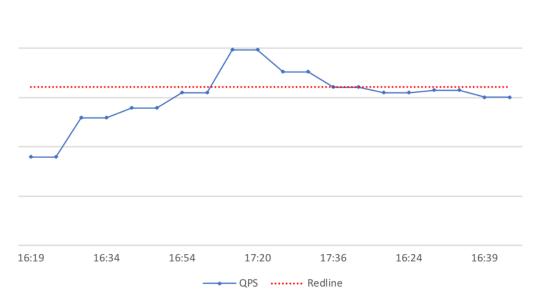
Dynamic Ramping

3:28


Slow, Steady Ramp Fast, Aggressive Ramp 16:30 17:00 2:40 2:46 3:22 14:00 14:30 15:00 15:30 16:00 2:52 2:58 3:04 3:10 3:16 ----- QPS ------ Prev Redline - QPS

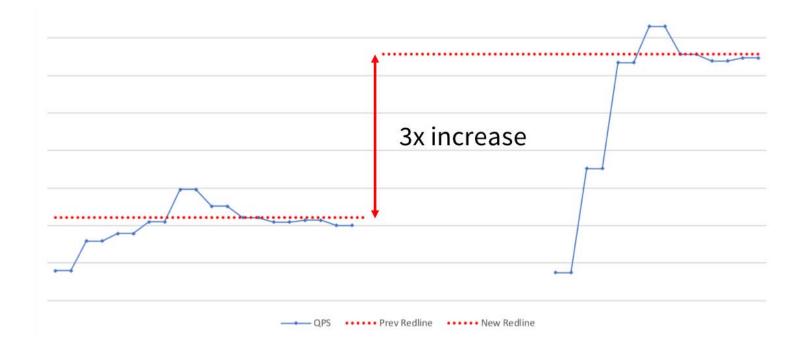
Complete Automation

- Manipulation of traffic between nodes in the cluster
- Determination of the node's and service's health
- Identification of potential bottlenecks under stress
- Remediation of any issues encountered during test



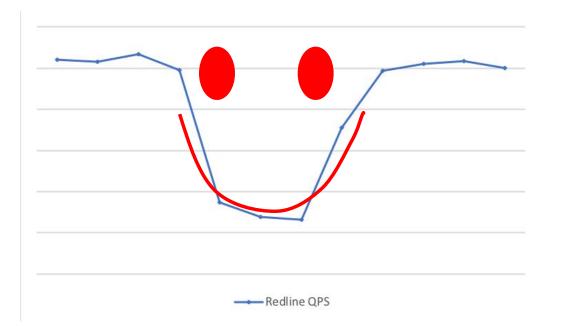
1. Find Single Instance Max Throughput

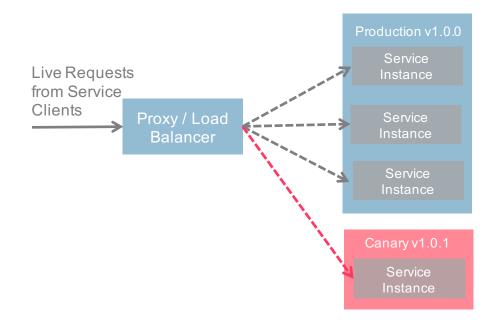
- Gradually stresses the service until it cannot safely handle any additional load
- Simplifies resource provisioning
- Provides starting point for tuning and optimizations


2. Improve Service Throughput

- Investigate health check failures from increased traffic
- Discover APIs "A", "B", "C" error rates jumped
- Caused API "D" latency to double
- Resolve issues one by one
- Repeat the Redlinertest

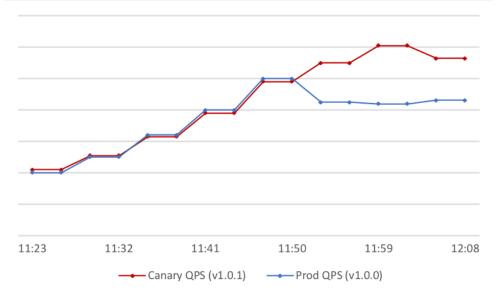
Before Investigation


After Investigation


3. Detect and Diagnose Regressions

Test Id	Date	Version	Redline	Health Check Failures in Latency
Test 1	2017-11-19 09:01:11	v1.0.0	2536.33	• N/A
Test 2	2017-11-19 23:58:09	v1.0.1	534.19	 Endpoint A: Median latency exceeded 20% change in comparison to control target. Endpoint B: Median latency exceeded 20% change in comparison to control target.

The Smiley Curve



4. A/B Load Testing

- Run Redliner test side-by-side on canary and production versions
- Code comparisons
- Configuration comparisons
- OS comparisons
- Security updates

A/B Load Test Example

- Same load on both canary and prod instances until one or both failed health check
- Prod instance hits health check failure *before* canary instance
- v1.0.1 on canary has better throughput – new version is encouraged to be deployed

5. Identify Surplus Capacity

When **Redline QPS** < **Total Service QPS**,

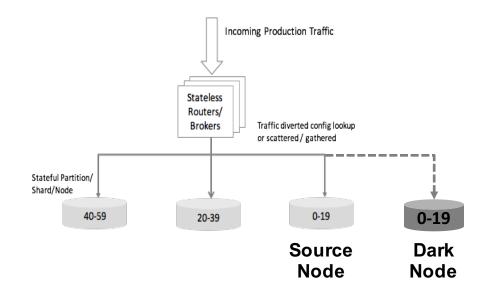
 $Ideal \ \# \ of \ Instances = \frac{Total \ Service \ QPS}{Redline \ QPS} + Headroom$

When **Redline** $QPS \ge Total Service QPS$, Ideal # of Instances = 1 + Failover Headroom

If Total # of Deployed Instances > Ideal # of Instances, the service is **over-provisioned**.

Server Cap Ex Trend for Service

Future Work


1. Dynamic Provisioning

- Auto Scaling Scale predictably to handle natural changes in traffic throughout the day
- Efficient Host Packing Create models for throughput based on resource allocations and deploy most efficient container size

2. Simulating Downstream Behavior

- Latency Test against response times during peak traffic hours at any time in the day
- Errors & Failures Test service behavior when downstream results are acting unreliably
- **Connectivity** Test resiliency and recovery when dependencies are unavailable

3. Stateful Redlining

- Source Node Storage node to test
- Dark Node Exact replica of source node
- Tee Traffic Copy the incoming live traffic to source node to dark node
- Multiply Traffic Generate extra load on dark node based on incoming traffic

Key Takeaways

Reflection

- Don't Be Afraid of Risk
- Prepare for the Surprises
- Build Performance Mindset

Don't count servers. Make servers count.

Thank you

in https://engineering.linkedin.com/blog

chinajobs@linkedin.com

GP1TC2018 全球大前端技术大会

<<扫码了解更多详情>>