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RDF and Semantic Web

I RDF is a language for the conceptual modeling of information
about web resources

I A building block of semantic web
I Facilitates exchange of information
I Search engines can retrieve more relevant information
I Facilitates data integration (mashes)

I Machine understandable
I Understand the information on the web and the

interrelationships among them



What’s Sematic Web: A Simple Example (RDFa)

The traditional Web (HTML) only considers the display of the
content.
How is the page displayed, such as which font and the format of the

pictures ?

<html>
<font size="3" color="red"> Lei Zou </font>
</br>
Email:<a href= "mailto: zoulei@pku.edu.cn">

zoulei@pku.edu.cn  </a>
<p>

<font size="3" color="black">Publications: </font>
</p>
<div>

 Lei Zou, Jinhui Mo, Lei Chen, M. Tamer Ozsu, 
Dongyan Zhao, gStore: Answering SPARQL Queries Via 
Subgraph Matching, VLDB, 2011

</div>
</html>



What’s Sematic Web: A Simple Example (RDFa)

Sematic Web considers the sematics of the content.
What does the content in the page mean? e.g., What are the mean of

“zoulei@pku.edu.cn” and “VLDB” ?

<html>
<div resource="#me" typeof="Person" >
<font size="3" color="red"> <span property= http://xmlns.com/foaf/0.1/name> Lei 
Zou </span> </font>
<br/>
<a property=" http://xmlns.com/foaf/0.1/mbox" href= "mailto: zoulei@pku.edu.cn "
> zoulei@pku.edu.cn </a>
<p>
<font size="3" color="black">Publications: </font>
</p>
<div resource="www.vldb.org/pvldb/vol4/p482-zou.pdf">

<span property=" http://purl.org/dc/terms/contributor"> Lei Zou </span>, 
<span property="http://purl.org/dc/terms/contributor"> Jinghui Mo </span>, 
<span property=" http://purl.org/dc/terms/contributor"> Lei Chen </span>,
<span property=" http://purl.org/dc/terms/contributor"> M. Tamer Özsu</span>,
<span property=" http://purl.org/dc/terms/contributor"> Dongyan Zhao</span>,
<span property=" http://purl.org/dc/terms/title"> gStore: Answering SPARQL 

Queries Via Subgraph Matching </span>,
<span property=" http://purl.org/dc/terms/Publisher"> VLDB </span>
<span property=" http://purl.org/dc/terms/Date">2011</span>

</div>
</html>



What’s Sematic Web: Google Snippet
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What’s Sematic Web: Facebook Social Graph



What’s Sematic Web: From Two Perspectives
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More Interesting 
Applications 

Broadcasting: BBC
Publishing: Thomson Reuters
Life:  Eli Lilly and Company

……

More Areas 



Some Interesting Products

IBM Watson



Some Interesting Products
EVI— acquired by Amazon on October 2012.

William Tunstall-Pedoe: True Knowledge: Open-Domain Question Answering Using
Structured Knowledge and Inference. AI Magazine 31(3): 80-92 (2010)



Some Interesting Products

Google Knowledge Graph



RDF Uses

I Yago and DBPedia extract facts from Wikipedia & represent
as RDF → structural queries

I Communities build RDF data
I E.g., biologists: Bio2RDF and Uniprot RDF

I Web data integration
I Linked Data Cloud

I . . .



RDF Data Volumes . . .

I . . . are growing – and fast
I Linked data cloud currently consists of 325 datasets with

>25B triples
I Size almost doubling every year



RDF Data Volumes . . .

I . . . are growing – and fast
I Linked data cloud currently consists of 325 datasets with

>25B triples
I Size almost doubling every year

As of March 2009
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March ’09:
89 datasets

Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch.
http://lod-cloud.net/



RDF Data Volumes . . .

I . . . are growing – and fast
I Linked data cloud currently consists of 325 datasets with

>25B triples
I Size almost doubling every year

As of September 2010
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Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch.
http://lod-cloud.net/



RDF Data Volumes . . .

I . . . are growing – and fast
I Linked data cloud currently consists of 325 datasets with

>25B triples
I Size almost doubling every year

As of September 2011
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September ’11:
295 datasets

Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch.
http://lod-cloud.net/



RDF Data Volumes . . .

I . . . are growing – and fast
I Linked data cloud currently consists of 325 datasets with

>25B triples
I Size almost doubling every year

April ’14:
1091 datasets, ???

triples

Max Schmachtenberg, Christian Bizer, and Heiko Paulheim: Adoption of Linked
Data Best Practices in Different Topical Domains. In Proc. ISWC, 2014.



Outline

RDF Introduction

gStore: a graph-based SPARQL query engine
Answering SPARQL queries using graph pattern matching [Zou
et al., PVLDB 2011, VLDB J 2014]

gAnswer: Natural Language Question Answering over RDF
A Data Driven Approach [Zou et al., SIGMOD 2014; Zheng et
al., SIGMOD 2015]
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RDF Introduction

I Everything is an uniquely named
resource

I Namespaces can be used to scope
the names

I Properties of resources can be
defined

I Relationships with other resources
can be defined

I Resources can be contributed by
different people/groups and can be
located anywhere in the web

I Integrated web “database”

http://en.wikipedia.org/wiki/Abraham Lincoln

xmlns:y=http://en.wikipedia.org/wiki
y:Abraham Lincoln

Abraham Lincoln:hasName “Abraham Lincoln”
Abraham Lincoln:BornOnDate: “1809-02-12”
Abraham Lincoln:DiedOnDate: “1865-04-15”

y:Washington DC

Abraham Lincoln:DiedIn
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RDF Data Model
I Triple: Subject, Predicate (Property),

Object (s, p, o)

Subject: the entity that is described
(URI or blank node)

Predicate: a feature of the entity (URI)
Object: value of the feature (URI,

blank node or literal)

I (s, p, o) ∈ (U ∪ B)× U × (U ∪ B ∪ L)

I Set of RDF triples is called an RDF graph

U

Subject Object

U B U B L

U: set of URIs
B: set of blank nodes
L: set of literals

Predicate

Subject Predicate Object
Abraham Lincoln hasName “Abraham Lincoln”
Abraham Lincoln BornOnDate “1809-02-12”
Abraham Lincoln DiedOnDate “1865-04-15”



RDF Example Instance
Prefix: y=http://en.wikipedia.org/wiki

Subject Predicate Object

y: Abraham Lincoln hasName “Abraham Lincoln”
y: Abraham Lincoln BornOnDate “1809-02-12”’
y: Abraham Lincoln DiedOnDate “1865-04-15”
y:Abraham Lincoln bornIn y:Hodgenville KY
y: Abraham Lincoln DiedIn y: Washington DC
y:Abraham Lincoln title “President”
y:Abraham Lincoln gender “Male”
y: Washington DC hasName “Washington D.C.”
y:Washington DC foundingYear “1790”
y:Hodgenville KY hasName “Hodgenville”
y:United States hasName “United States”
y:United States hasCapital y:Washington DC
y:United States foundingYear “1776”
y:Reese Witherspoon bornOnDate “1976-03-22”
y:Reese Witherspoon bornIn y:New Orleans LA
y:Reese Witherspoon hasName “Reese Witherspoon”
y:Reese Witherspoon gender “Female”
y:Reese Witherspoon title “Actress”
y:New Orleans LA foundingYear “1718”
y:New Orleans LA locatedIn y:United States
y:Franklin Roosevelt hasName “Franklin D. Roosevelt”
y:Franklin Roosevelt bornIn y:Hyde Park NY
y:Franklin Roosevelt title “President”
y:Franklin Roosevelt gender “Male”
y:Hyde Park NY foundingYear “1810”
y:Hyde Park NY locatedIn y:United States
y:Marilyn Monroe gender “Female”
y:Marilyn Monroe hasName “Marilyn Monroe”
y:Marilyn Monroe bornOnDate “1926-07-01”
y:Marilyn Monroe diedOnDate “1962-08-05”

URI

Literal

URI



RDF Graph

y:Abraham Lincoln

“Abraham Lincoln”

hasName

“1809-02-12”
bornOnDate

“1865-04-15”

diedOnDate

“President”

title

“Male”

gender

y:Washington D.C.

“1790”

foundYear

“Washington D.C.”

hasName

y:Hodgenville KY “Hodgenville”
hasName

y:United States

“United States”

hasName

“1776”

foundingYear

y:Reese Witherspoon

“1976-03-22”

bornOnDate

“Female”

gender

“Actress”

title

“Reese Witherspoon”

hasName

y:New Orleans LA

“1718”

foundingYear

y:Franklin Roosevelt

“Franklin D. Roosevelt”

hasName

“Male”

gender

“President”

title

y:Hyde Park NY

“1810”

foundingYear

y:Marilyn Monroe“1962-08-05”
diedOnDate

“1926-07-01”

bornOnDate

“Female”

gender

“Marilyn Monroe”
hasName

diedIn

bornIn

hasCapital

bornIn
locatedIn locatedIn

bornIn



RDF Query Model
I Query Model - SPARQL Protocol and RDF Query Language
I Given U (set of URIs), L (set of literals), and V (set of

variables), a SPARQL expression is defined recursively:
I an atomic triple pattern, which is an element of

(U ∪ V )× (U ∪ V )× (U ∪ V ∪ L)

I ?x hasName “Abraham Lincoln”

I P FILTER R, where P is a graph pattern expression and R is a
built-in SPARQL condition (i.e., analogous to a SQL predicate)

I ?x price ?p FILTER(?p < 30)

I P1 AND/OPT/UNION P2, where P1 and P2 are graph
pattern expressions

I Example:
SELECT ?name
WHERE {

?m <born In> ? c i t y . ?m <hasName> ?name .
?m<bornOnDate> ?bd . ? c i t y <found ingYear> ‘ ‘1718 ’ ’ .
FILTER( regex ( s t r (? bd ) , ‘ ‘ 1 9 7 6 ’ ’ ) )

}



SPARQL Queries

SELECT ?name
WHERE {

?m <born In> ? c i t y . ?m <hasName> ?name .
?m<bornOnDate> ?bd . ? c i t y <found ingYear> ‘ ‘1718 ’ ’ .
FILTER( regex ( s t r (? bd ) , ‘ ‘ 1 9 7 6 ’ ’ ) )

}

?m ?city
bornIn

?name

hasName

?bd

bornOnDate

“1718”

foundingYear

FILTER(regex(str(?bd),“1976”))



Näıve Triple Store Design

SELECT ?name
WHERE {

?m <born In> ? c i t y . ?m <hasName> ?name .
?m<bornOnDate> ?bd . ? c i t y <found ingYear> ‘ ‘1718 ’ ’ .
FILTER( regex ( s t r (? bd ) , ‘ ‘ 1 9 7 6 ’ ’ ) )

}
Subject Property Object
y:Abraham Lincoln hasName “Abraham Lincoln”
y:Abraham Lincoln bornOnDate “1809-02-12”
y:Abraham Lincoln diedOnDate “1865-04-15”
y:Abraham Lincoln bornIn y:Hodgenville KY
y:Abraham Lincoln diedIn y:Washington DC
y:Abraham Lincoln title “President”
y:Abraham Lincoln gender “Male”
y:Washington DC hasName “Washington D.C.”
y:Washington DC foundingYear “1790”
y:Hodgenville KY hasName “Hodgenville”
y:United States hasName “United States”
y:United States hasCapital y:Washington DC
y:United States foundingYear “1776”
y:Reese Witherspoon bornOnDate “1976-03-22”
y:Reese Witherspoon bornIn y:New Orleans LA
y:Reese Witherspoon hasName “Reese Witherspoon”
y:Reese Witherspoon gender “Female”
y:Reese Witherspoon title “Actress”
y:New Orleans LA foundingYear “1718”
y:New Orleans LA locatedIn y:United States
y:Franklin Roosevelt hasName “Franklin D. Roo-

sevelt”
y:Franklin Roosevelt bornIn y:Hyde Park NY
y:Franklin Roosevelt title “President”
y:Franklin Roosevelt gender “Male”
y:Hyde Park NY foundingYear “1810”
y:Hyde Park NY locatedIn y:United States
y:Marilyn Monroe gender “Female”
y:Marilyn Monroe hasName “Marilyn Monroe”
y:Marilyn Monroe bornOnDate “1926-07-01”
y:Marilyn Monroe diedOnDate “1962-08-05”

Too many self-joins!



Näıve Triple Store Design

SELECT ?name
WHERE {

?m <born In> ? c i t y . ?m <hasName> ?name .
?m<bornOnDate> ?bd . ? c i t y <found ingYear> ‘ ‘1718 ’ ’ .
FILTER( regex ( s t r (? bd ) , ‘ ‘ 1 9 7 6 ’ ’ ) )

}
Subject Property Object
y:Abraham Lincoln hasName “Abraham Lincoln”
y:Abraham Lincoln bornOnDate “1809-02-12”
y:Abraham Lincoln diedOnDate “1865-04-15”
y:Abraham Lincoln bornIn y:Hodgenville KY
y:Abraham Lincoln diedIn y:Washington DC
y:Abraham Lincoln title “President”
y:Abraham Lincoln gender “Male”
y:Washington DC hasName “Washington D.C.”
y:Washington DC foundingYear “1790”
y:Hodgenville KY hasName “Hodgenville”
y:United States hasName “United States”
y:United States hasCapital y:Washington DC
y:United States foundingYear “1776”
y:Reese Witherspoon bornOnDate “1976-03-22”
y:Reese Witherspoon bornIn y:New Orleans LA
y:Reese Witherspoon hasName “Reese Witherspoon”
y:Reese Witherspoon gender “Female”
y:Reese Witherspoon title “Actress”
y:New Orleans LA foundingYear “1718”
y:New Orleans LA locatedIn y:United States
y:Franklin Roosevelt hasName “Franklin D. Roo-

sevelt”
y:Franklin Roosevelt bornIn y:Hyde Park NY
y:Franklin Roosevelt title “President”
y:Franklin Roosevelt gender “Male”
y:Hyde Park NY foundingYear “1810”
y:Hyde Park NY locatedIn y:United States
y:Marilyn Monroe gender “Female”
y:Marilyn Monroe hasName “Marilyn Monroe”
y:Marilyn Monroe bornOnDate “1926-07-01”
y:Marilyn Monroe diedOnDate “1962-08-05”

SELECT T2 . o b j e c t
FROM T as T1 , T as T2 , T as T3 ,

T as T4
WHERE T1 . p r o p e r t y=” b o r n I n ”
AND T2 . p r o p e r t y=”hasName”
AND T3 . p r o p e r t y=” bornOnDate ”
AND T1 . s u b j e c t=T2 . s u b j e c t
AND T2 . s u b j e c t=T3 . s u b j e c t
AND T4 . p r o p e t y=” f o u n d i n g Y e a r ”
AND T1 . o b j e c t=T4 . s u b j e c t
AND T4 . o b j e c t=” 1718 ”
AND T3 . o b j e c t LIKE ’%1976% ’

Too many self-joins!



Näıve Triple Store Design

SELECT ?name
WHERE {

?m <born In> ? c i t y . ?m <hasName> ?name .
?m<bornOnDate> ?bd . ? c i t y <found ingYear> ‘ ‘1718 ’ ’ .
FILTER( regex ( s t r (? bd ) , ‘ ‘ 1 9 7 6 ’ ’ ) )

}
Subject Property Object
y:Abraham Lincoln hasName “Abraham Lincoln”
y:Abraham Lincoln bornOnDate “1809-02-12”
y:Abraham Lincoln diedOnDate “1865-04-15”
y:Abraham Lincoln bornIn y:Hodgenville KY
y:Abraham Lincoln diedIn y:Washington DC
y:Abraham Lincoln title “President”
y:Abraham Lincoln gender “Male”
y:Washington DC hasName “Washington D.C.”
y:Washington DC foundingYear “1790”
y:Hodgenville KY hasName “Hodgenville”
y:United States hasName “United States”
y:United States hasCapital y:Washington DC
y:United States foundingYear “1776”
y:Reese Witherspoon bornOnDate “1976-03-22”
y:Reese Witherspoon bornIn y:New Orleans LA
y:Reese Witherspoon hasName “Reese Witherspoon”
y:Reese Witherspoon gender “Female”
y:Reese Witherspoon title “Actress”
y:New Orleans LA foundingYear “1718”
y:New Orleans LA locatedIn y:United States
y:Franklin Roosevelt hasName “Franklin D. Roo-

sevelt”
y:Franklin Roosevelt bornIn y:Hyde Park NY
y:Franklin Roosevelt title “President”
y:Franklin Roosevelt gender “Male”
y:Hyde Park NY foundingYear “1810”
y:Hyde Park NY locatedIn y:United States
y:Marilyn Monroe gender “Female”
y:Marilyn Monroe hasName “Marilyn Monroe”
y:Marilyn Monroe bornOnDate “1926-07-01”
y:Marilyn Monroe diedOnDate “1962-08-05”

SELECT T2 . o b j e c t
FROM T as T1 , T as T2 , T as T3 ,

T as T4
WHERE T1 . p r o p e r t y=” b o r n I n ”
AND T2 . p r o p e r t y=”hasName”
AND T3 . p r o p e r t y=” bornOnDate ”
AND T1 . s u b j e c t=T2 . s u b j e c t
AND T2 . s u b j e c t=T3 . s u b j e c t
AND T4 . p r o p e t y=” f o u n d i n g Y e a r ”
AND T1 . o b j e c t=T4 . s u b j e c t
AND T4 . o b j e c t=” 1718 ”
AND T3 . o b j e c t LIKE ’%1976% ’

Too many self-joins!



Existing Solutions

1. Property table
I Each class of objects go to a different table ⇒ similar to

normalized relations
I Eliminates some of the joins

2. Vertically partitioned tables
I For each property, build a two-column table, containing both

subject and object, ordered by subjects
I Can use merge join (faster)
I Good for subject-subject joins but does not help with

subject-object joins

3. Exhaustive indexing
I Create indexes for each permutation of the three columns
I Query components become range queries over individual

relations with merge-join to combine
I Excessive space usage



Property Tables

I Grouping by entities; Jena [Wilkinson et al., SWDB 03]

,FlexTable [Wang et al., DASFAA 10] , DB2-RDF [Bornea et al.,

SIGMOD 13]

I Clustered property table: group together the properties that
tend to occur in the same (or similar) subjects

I Property-class table: cluster the subjects with the same type
of property into one property table

Subject Property Object
y:Abraham Lincoln hasName “Abraham Lincoln”
y:Abraham Lincoln bornOnDate “1809-02-12”
y:Abraham Lincoln diedOnDate “1865-04-15”
y:Washington DC hasName “Washington D.C.”
y:Washington DC foundingYear “1790”
. . . . . . . . .

Subject hasName bornOnDate diedOnDate
y:Abraham Lincoln “Abraham Lincoln” 1809-02-12 1865-04-15

y:Reese Witherspoon “Reese Witherspoon” 1976-03-22

Subject hasName foundingYear
y:Washington DC “Washington D.C.” 1790
y:Hyde Park NY “Hyde Park” 1810’



Property Tables

I Grouping by entities; Jena [Wilkinson et al., SWDB 03]

,FlexTable [Wang et al., DASFAA 10] , DB2-RDF [Bornea et al.,

SIGMOD 13]

I Clustered property table: group together the properties that
tend to occur in the same (or similar) subjects

I Property-class table: cluster the subjects with the same type
of property into one property table

Subject Property Object
y:Abraham Lincoln hasName “Abraham Lincoln”
y:Abraham Lincoln bornOnDate “1809-02-12”
y:Abraham Lincoln diedOnDate “1865-04-15”
y:Washington DC hasName “Washington D.C.”
y:Washington DC foundingYear “1790”
. . . . . . . . .

Subject hasName bornOnDate diedOnDate
y:Abraham Lincoln “Abraham Lincoln” 1809-02-12 1865-04-15

y:Reese Witherspoon “Reese Witherspoon” 1976-03-22

Subject hasName foundingYear
y:Washington DC “Washington D.C.” 1790
y:Hyde Park NY “Hyde Park” 1810’

Advantages

I Fewer joins

I If the data is structured, we have a relational system – similar
to normalized relations



Property Tables

I Grouping by entities; Jena [Wilkinson et al., SWDB 03]

,FlexTable [Wang et al., DASFAA 10] , DB2-RDF [Bornea et al.,

SIGMOD 13]

I Clustered property table: group together the properties that
tend to occur in the same (or similar) subjects

I Property-class table: cluster the subjects with the same type
of property into one property table

Subject Property Object
y:Abraham Lincoln hasName “Abraham Lincoln”
y:Abraham Lincoln bornOnDate “1809-02-12”
y:Abraham Lincoln diedOnDate “1865-04-15”
y:Washington DC hasName “Washington D.C.”
y:Washington DC foundingYear “1790”
. . . . . . . . .

Subject hasName bornOnDate diedOnDate
y:Abraham Lincoln “Abraham Lincoln” 1809-02-12 1865-04-15

y:Reese Witherspoon “Reese Witherspoon” 1976-03-22

Subject hasName foundingYear
y:Washington DC “Washington D.C.” 1790
y:Hyde Park NY “Hyde Park” 1810’

Advantages

I Fewer joins

I If the data is structured, we have a relational system – similar
to normalized relations

Disadvantages

I Potentially a lot of NULLs

I Clustering is not trivial

I Multi-valued properties are complicated



Binary Tables

I Grouping by properties: For each property, build a two-column
table, containing both subject and object, ordered by subjects
[Abadi et al., VLDB 07]

I Also called vertical partitioned tables

I n two column tables (n is the number of unique properties in
the data)

Subject Property Object
y:Abraham Lincoln hasName “Abraham Lincoln”
y:Abraham Lincoln bornOnDate “1809-02-12”
y:Abraham Lincoln diedOnDate “1865-04-15”
y:Washington DC hasName “Washington D.C.”
y:Washington DC foundingYear “1790”
. . . . . . . . .

Subject Object
y:Abraham Lincoln 1809-02-12
y:Reese Witherspoon 1976-03-22

bornOnDate

Subject Object
y:Abraham Lincoln “Abraham Lincoln”
y:Washington DC “Washington D.C.”

hasName
Subject Object
y:Washington DC 1790
y:Hyde Park NY 1810

foundingYear



Binary Tables

I Grouping by properties: For each property, build a two-column
table, containing both subject and object, ordered by subjects
[Abadi et al., VLDB 07]

I Also called vertical partitioned tables

I n two column tables (n is the number of unique properties in
the data)

Subject Property Object
y:Abraham Lincoln hasName “Abraham Lincoln”
y:Abraham Lincoln bornOnDate “1809-02-12”
y:Abraham Lincoln diedOnDate “1865-04-15”
y:Washington DC hasName “Washington D.C.”
y:Washington DC foundingYear “1790”
. . . . . . . . .

Subject Object
y:Abraham Lincoln 1809-02-12
y:Reese Witherspoon 1976-03-22

bornOnDate

Subject Object
y:Abraham Lincoln “Abraham Lincoln”
y:Washington DC “Washington D.C.”

hasName
Subject Object
y:Washington DC 1790
y:Hyde Park NY 1810

foundingYear

Advantages

I Supports multi-valued properties

I No NULLs

I No clustering

I Read only needed attributes (i.e. less I/O)

I Good performance for subject-subject joins



Binary Tables

I Grouping by properties: For each property, build a two-column
table, containing both subject and object, ordered by subjects
[Abadi et al., VLDB 07]

I Also called vertical partitioned tables

I n two column tables (n is the number of unique properties in
the data)

Subject Property Object
y:Abraham Lincoln hasName “Abraham Lincoln”
y:Abraham Lincoln bornOnDate “1809-02-12”
y:Abraham Lincoln diedOnDate “1865-04-15”
y:Washington DC hasName “Washington D.C.”
y:Washington DC foundingYear “1790”
. . . . . . . . .

Subject Object
y:Abraham Lincoln 1809-02-12
y:Reese Witherspoon 1976-03-22

bornOnDate

Subject Object
y:Abraham Lincoln “Abraham Lincoln”
y:Washington DC “Washington D.C.”

hasName
Subject Object
y:Washington DC 1790
y:Hyde Park NY 1810

foundingYear

Advantages

I Supports multi-valued properties

I No NULLs

I No clustering

I Read only needed attributes (i.e. less I/O)

I Good performance for subject-subject joins

Disadvantages

I Not useful for subject-object joins

I Expensive inserts



Exhaustive Indexing

I RDF-3X [Neumann and Weikum, PVLDB 08] , Hexastore [Weiss

et al., PVLDB 08]
I Strings are mapped to ids using a mapping table

I Triples are indexed in a clustered B+ tree in lexicographic
order

I Create indexes for permutations of the three columns: SPO,
SOP, PSO, POS, OPS, OSP

Original triple table
Subject Property Object
y:Abraham Lincoln hasName “Abraham Lincoln”
y:Abraham Lincoln bornOnDate “1809-02-12”
y:Abraham Lincoln diedOnDate “1865-04-15”
y:Washington DC hasName “Washington D.C.”
y:Washington DC foundingYear “1790”

Encoded triple table
Subject Property Object

0 1 2
0 3 4
0 5 6
7 1 8
7 9 10

Mapping table
ID Value
0 y:Abraham Lincoln
1 hasName
2 “Abraham Lincoln”
3 bornOnDate
4 “1809-02-12”
5 diedOnDate
6 “1865-04-15”
7 y:Washington DC
8 “Washington D.C.”
9 foundingYear
10 “1790”



Exhaustive Indexing

I RDF-3X [Neumann and Weikum, PVLDB 08] , Hexastore [Weiss

et al., PVLDB 08]

I Strings are mapped to ids using a mapping table

I Triples are indexed in a clustered B+ tree in lexicographic
order

I Create indexes for permutations of the three columns: SPO,
SOP, PSO, POS, OPS, OSP

Subject Property Object
0 1 2

0 3 4

0 5 6

7 1 8

7 9 10

B+ tree
Easy querying
through mapping
table



Exhaustive Indexing

I RDF-3X [Neumann and Weikum, PVLDB 08] , Hexastore [Weiss

et al., PVLDB 08]

I Strings are mapped to ids using a mapping table

I Triples are indexed in a clustered B+ tree in lexicographic
order

I Create indexes for permutations of the three columns: SPO,
SOP, PSO, POS, OPS, OSP

Subject Property Object
0 1 2

0 3 4

0 5 6

7 1 8

7 9 10

B+ tree
Easy querying
through mapping
table



Exhaustive Indexing–Query Execution

I Each triple pattern can be answered by a range query

I Joins between triple patterns computed using merge join

I Join order is easy due to extensive indexing

Subject Property Object
0 1 2

0 3 4

0 5 6

7 1 8

7 9 10
...

...
...

ID Value
0 y:Abraham Lincoln

1 hasName

2 “Abraham Lincoln”

3 bornOnDate

4 “1809-02-12”

5 diedOnDate

6 “1865-04-15”

7 y:Washington DC

8 “Washington D.C.”

9 foundingYear

10 “1790”



Exhaustive Indexing–Query Execution

I Each triple pattern can be answered by a range query

I Joins between triple patterns computed using merge join

I Join order is easy due to extensive indexing

Subject Property Object
0 1 2

0 3 4

0 5 6

7 1 8

7 9 10
...

...
...

ID Value
0 y:Abraham Lincoln

1 hasName

2 “Abraham Lincoln”

3 bornOnDate

4 “1809-02-12”

5 diedOnDate

6 “1865-04-15”

7 y:Washington DC

8 “Washington D.C.”

9 foundingYear

10 “1790”

Advantages

I Eliminates some of the joins – they become range queries

I Merge join is easy and fast



Exhaustive Indexing–Query Execution

I Each triple pattern can be answered by a range query

I Joins between triple patterns computed using merge join

I Join order is easy due to extensive indexing

Subject Property Object
0 1 2

0 3 4

0 5 6

7 1 8

7 9 10
...

...
...

ID Value
0 y:Abraham Lincoln

1 hasName

2 “Abraham Lincoln”

3 bornOnDate

4 “1809-02-12”

5 diedOnDate

6 “1865-04-15”

7 y:Washington DC

8 “Washington D.C.”

9 foundingYear

10 “1790”

Advantages

I Eliminates some of the joins – they become range queries

I Merge join is easy and fast

Disadvantages

I Space usage



Outline

RDF Introduction

gStore: a graph-based SPARQL query engine
Answering SPARQL queries using graph pattern matching [Zou
et al., PVLDB 2011, VLDB J 2014]

gAnswer: Natural Language Question Answering over RDF
A Data Driven Approach [Zou et al., SIGMOD 2014; Zheng et
al., SIGMOD 2015]



gStore – General Idea

I We work directly on the RDF graph and the SPARQL query
graph

I Answering SPARQL query ≡ subgraph matching
I Subgraph matching is computationally expensive

I Use a signature-based encoding of each entity and class vertex
to speed up matching

I Filter-and-evaluate
I Use a false positive algorithm to prune nodes and obtain a set

of candidates; then do more detailed evaluation on those

I We develop an index (VS∗-tree) over the data signature graph
(has light maintenance load) for efficient pruning



0. Start with RDF Graph G

?m ?city
bornIn

?name

hasName

?bd

bornOnDate

“1718”

foundingYear

FILTER(regex(str(?bd),“1976”))

y:Abraham Lincoln

“Abraham Lincoln”

hasName

“1809-02-12”
bornOnDate

“1865-04-15”

diedOnDate

“President”

title

“Male”

gender

y:Washington D.C.

“1790”

foundYear

“Washington D.C.”

hasName

y:Hodgenville KY “Hodgenville”
hasName

y:United States

“United States”

hasName

“1776”

foundingYear

y:Reese Witherspoon

“1976-03-22”

bornOnDate

“Female”

gender

“Actress”

title

“Reese Witherspoon”

hasName

y:New Orleans LA

“1718”

foundingYear

y:Franklin Roosevelt

“Franklin D. Roosevelt”

hasName

“Male”

gender

“President”

title

y:Hyde Park NY

“1810”

foundingYear

y:Marilyn Monroe“1962-08-05”
diedOnDate

“1926-07-01”

bornOnDate

“Female”

gender

“Marilyn Monroe”
hasName

diedIn

bornIn

hasCapital

bornIn
locatedIn locatedIn

bornIn



0. Start with RDF Graph G

?m ?city
bornIn

?name

hasName

?bd

bornOnDate

“1718”

foundingYear

FILTER(regex(str(?bd),“1976”))

y:Abraham Lincoln

“Abraham Lincoln”

hasName

“1809-02-12”
bornOnDate

“1865-04-15”

diedOnDate

“President”

title

“Male”

gender

y:Washington D.C.

“1790”

foundYear

“Washington D.C.”

hasName

y:Hodgenville KY “Hodgenville”
hasName

y:United States

“United States”

hasName

“1776”

foundingYear

y:Reese Witherspoon

“1976-03-22”

bornOnDate

“Female”

gender

“Actress”

title

“Reese Witherspoon”

hasName

y:New Orleans LA

“1718”

foundingYear

y:Franklin Roosevelt

“Franklin D. Roosevelt”

hasName

“Male”

gender

“President”

title

y:Hyde Park NY

“1810”

foundingYear

y:Marilyn Monroe“1962-08-05”
diedOnDate

“1926-07-01”

bornOnDate

“Female”

gender

“Marilyn Monroe”
hasName

diedIn

bornIn

hasCapital

bornIn
locatedIn locatedIn

bornIn

Finding matches over a large
graph is not a trivial task!



gStore

System Architecture

Offline Online

  Storage

Input Input

RDF Parser

RDF Graph 
Builder

Encoding 
Module

VS*-tree 
builder

RDF data

RDF Triples

RDF Graph

Signature Graph

Key-Value 
Store

VS*-tree
Store

SPARQL 
Parser

SPARQL Query

Encoding 
Module

VS*-tree

Query Graph

Filter 
Module

Join 
Module

Signature Graph

Node Candidate

Results



gStore



gStore



Peer Review Comments

Charu Aggarwal, ACM Fellow, IBM T. J.
Watson Researcher

——NeMa: Fast Graph Search with Label Similarity, Proc. of
VLDB: 181-192 (2013)



Outline

RDF Introduction

gStore: a graph-based SPARQL query engine
Answering SPARQL queries using graph pattern matching [Zou
et al., PVLDB 2011, VLDB J 2014]

gAnswer: Natural Language Question Answering over RDF
A Data Driven Approach [Zou et al., SIGMOD 2014; Zheng et
al., SIGMOD 2015]



gAnswer: Natural Language Question Answering Over
Knowledge Graph–A Graph Data Driven Approach

I An Easy-to-Use Interface to Access Knowledge Graph
I It is interesting to both academia and industry.
I Interdisciplinary research between database and NLP (natural

language processing) communities.



gAnswer: Natural Language Question Answering Over
Knowledge Graph–A Graph Data Driven Approach

I An Easy-to-Use Interface to Access Knowledge Graph
I It is interesting to both academia and industry.
I Interdisciplinary research between database and NLP (natural

language processing) communities.

gAnswer



Running Example

Question: Who was married to an actor that play in Philadelphia ?

Subject Property Object
Antonio Banderas type actor
Antonio Banderas spouse Melanie Griffith
Antonio Banderas starring Philadelphia (film)
Philadelphia (film) type film
Jonathan Demme director film
Philadelphia type city
Aaron McKie bornIn Philadelphia
James Anderson playForTeam Philadelphia 76ers
Constantin Stanislavski create An Actor Prepares
Philadelphia 76ers type Basketball team
An Actor Prepares type Book

Melanie Griffith
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Question: Who was married to an actor that play in Philadelphia ?

Subject Property Object
Antonio Banderas type actor

Antonio Banderas spouse Melanie Griffith

Antonio Banderas starring Philadelphia (film)
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Philadelphia type city
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Existing Solutions

Who was married to an actor that play in Philadelphia ?

Translate NL Question to structured queriesSELECT ? y
WHERE {
? x s t a r r i n g P h i l a d e l p h i a ( f i l m ) .
? x t y p e a c t o r .
? x s p o u s e ? y . }

Query Processing

Melanie Griffith

Ambiguity
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Experiments: Datasets

I RDF repository: DBPedia

Table : Statistics of RDF Graph
DBpedia

Number of Entities 5.2 million

Number of Triples 60 million

Number of Predicates 1643

Size of RDF Graphs (in GB) 6.1

I Relation Phrase Dictionary: Patty

Table : Statistics of Relation Phrase Dataset

wordnet-wikipedia freebase-wikipedia
Number of Textual Patterns 350,568 1,631,530

Number of Entity Pairs 3,862,304 15,802,947

Average Entity Pair 11 9
Number For Each Pattern



Experiments: Online

Benchmark: QALD-3, 99 Natural Language Questions

Table : Evaluating QALD-3 Testing Questions (on DBpedia)

Processed Right Partially Recall Precision F-1
Our
Method

76 32 11 0.40 0.40 0.40

squall2sparql 96 77 13 0.85 0.89 0.87
CASIA 52 29 8 0.36 0.35 0.36
Scalewelis 70 1 38 0.33 0.33 0.33
RTV 55 30 4 0.34 0.32 0.33
Intui2 99 28 4 0.32 0.32 0.32
SWIP 21 14 2 0.15 0.16 0.16
DEANNA 27 21 0 0.21 0.21 0.21



Experiments: Online
ID Questions Response Time (in ms)

Q2 Who was the successor of John F. Kennedy? 1699
Q3 Who is the mayor of Berlin? 677
Q14 Give me all members of Prodigy? 811
Q17 Give me all cars that are produced in Germany ? 297
Q19 Give me all people that were born in Vienna and died in Berlin ? 2557
Q20 How tall is Michael Jordan ? 942
Q21 What is the capital of Canada ? 1342
Q22 Who is the governor of Wyoming ? 796
Q24 Who was the father of Queen Elizabeth II? 538
Q27 Sean Parnell is the governor of which U.S. state ? 1210
Q28 Give me all movies directed by Francis Ford Coppola. 577
Q30 What is the birth name of Angela Merkel ? 250
Q35 Who developed Minecraft ?. 2565
Q39 Give me all companies in Munich. 1312
Q41 Who founded Intel? 1105
Q42 Who is the husband of Amanda Palmer ? 1418
Q44 Which cities does the Weser flow through ? 1139
Q45 Which countries are connected by the Rhine ? 736
Q54 What are the nicknames of San Francisco ? 321
Q58 What is the time zone of Salt Lake City ? 316
Q63 Give me all Argentine films. 427
Q70 Is Michelle Obama the wife of Barack Obama ? 316
Q74 When did Michael Jackson die ? 258
Q76 List the children of Margaret Thatcher. 1139
Q77 Who was called Scarface? 719
Q81 Which books by Kerouac were published by Viking Press ? 796
Q83 How high is the Mount Everest ? 635
Q84 Who created the comic Captain America ? 589
Q86 What is the largest city in Australia ? 1419
Q89 In which city was the former Dutch queen Juliana buried ? 1700
Q98 Which country does the creator of Miffy come from ? 2121
Q100 Who produces Orangina ? 367



Experiments: Online
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Figure : Online Running Time Comparison



Experiments: Online

Figure : QALD-4 Results
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Thank you!

gStore gAnswer
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