
Graph-based RDF Data Managment

Lei Zou

Peking University
Institute of Computer Science and Technology

RDF and Semantic Web

I RDF is a language for the conceptual modeling of information
about web resources

I A building block of semantic web
I Facilitates exchange of information
I Search engines can retrieve more relevant information
I Facilitates data integration (mashes)

I Machine understandable
I Understand the information on the web and the

interrelationships among them

What’s Sematic Web: A Simple Example (RDFa)

The traditional Web (HTML) only considers the display of the
content.
How is the page displayed, such as which font and the format of the

pictures ?

<html>
 Lei Zou
</br>
Email:

zoulei@pku.edu.cn
<p>

Publications:
</p>
<div>

 Lei Zou, Jinhui Mo, Lei Chen, M. Tamer Ozsu,
Dongyan Zhao, gStore: Answering SPARQL Queries Via
Subgraph Matching, VLDB, 2011

</div>
</html>

What’s Sematic Web: A Simple Example (RDFa)

Sematic Web considers the sematics of the content.
What does the content in the page mean? e.g., What are the mean of

“zoulei@pku.edu.cn” and “VLDB” ?

<html>
<div resource="#me" typeof="Person" >
 Lei
Zou

<a property=" http://xmlns.com/foaf/0.1/mbox" href= "mailto: zoulei@pku.edu.cn "
> zoulei@pku.edu.cn
<p>
Publications:
</p>
<div resource="www.vldb.org/pvldb/vol4/p482-zou.pdf">

 Lei Zou ,
 Jinghui Mo ,
 Lei Chen ,
 M. Tamer Özsu,
 Dongyan Zhao,
 gStore: Answering SPARQL

Queries Via Subgraph Matching ,
 VLDB
2011

</div>
</html>

What’s Sematic Web: Google Snippet

What’s Sematic Web: Google Snippet

What’s Sematic Web: Google Snippet

What’s Sematic Web: Google Snippet

What’s Sematic Web: Facebook Social Graph

What’s Sematic Web: From Two Perspectives

Expressiveness

Scalability

M
or

e
S

em
an

ti
c;

M

or
e

P
ow

er
fu

l R
ea

so
ni

ng

How to get more data ?
How to manage the Web-scale Semantic Data ?

R
D

F
, R

D
F

S
,O

W
L

,O
W

L
 F

ul
l,

O
W

L
 2

…
…

Open Linked Data,
Web-scale Triple Store,

Semantic Wiki
… …

What’s Sematic Web: From Two Perspectives

Expressiveness

Scalability

M
or

e
S

em
an

ti
c;

M

or
e

P
ow

er
fu

l R
ea

so
ni

ng

How to get more data ?
How to manage the Web-scale Semantic Data ?

R
D

F
, R

D
F

S
,O

W
L

,O
W

L
 F

ul
l,

O
W

L
 2

…
…

Open Linked Data,
Web-scale Triple Store,

Semantic Wiki
… …

Apple Siri,
Google Knowledge Graph;

IBM Watson;
……

More Interesting
Applications

Broadcasting: BBC
Publishing: Thomson Reuters
Life: Eli Lilly and Company

……

More Areas

Some Interesting Products

IBM Watson

Some Interesting Products
EVI— acquired by Amazon on October 2012.

William Tunstall-Pedoe: True Knowledge: Open-Domain Question Answering Using
Structured Knowledge and Inference. AI Magazine 31(3): 80-92 (2010)

Some Interesting Products

Google Knowledge Graph

RDF Uses

I Yago and DBPedia extract facts from Wikipedia & represent
as RDF → structural queries

I Communities build RDF data
I E.g., biologists: Bio2RDF and Uniprot RDF

I Web data integration
I Linked Data Cloud

I . . .

RDF Data Volumes . . .

I . . . are growing – and fast
I Linked data cloud currently consists of 325 datasets with

>25B triples
I Size almost doubling every year

RDF Data Volumes . . .

I . . . are growing – and fast
I Linked data cloud currently consists of 325 datasets with

>25B triples
I Size almost doubling every year

As of March 2009

LinkedCT
Reactome

Taxonomy

KEGG

PubMed

GeneID

Pfam

UniProt

OMIM

PDB

Symbol
ChEBI

Daily
Med

Disea-
some

CAS

HGNC

Inter
Pro

Drug
Bank

UniParc

UniRef

ProDom

PROSITE

Gene
Ontology

Homolo
Gene

Pub
Chem

MGI

UniSTS

GEO
Species

Jamendo

BBC
Programm

es

Music-
brainz

Magna-
tune

BBC
Later +
TOTP

Surge
Radio

MySpace
Wrapper

Audio-
Scrobbler

Linked
MDB

BBC
John
Peel

BBC
Playcount

Data

Gov-
Track

US
Census
Data

riese

Geo-
names

lingvoj

World
Fact-
book

Euro-
stat

IRIT
Toulouse

SW
Conference

Corpus

RDF Book
Mashup

Project
Guten-
berg

DBLP
Hannover

DBLP
Berlin

LAAS-
CNRS

Buda-
pest
BME

IEEE

IBM

Resex

Pisa

New-
castle

RAE
2001

CiteSeer

ACM

DBLP
RKB

Explorer

eprints

LIBRIS

Semantic
Web.org Eurécom

ECS
South-
ampton

RevyuSIOC
Sites

Doap-
space

Flickr
exporter

FOAF
profiles

flickr
wrappr

Crunch
Base

Sem-
Web-

Central

Open-
Guides

Wiki-
company

QDOS

Pub
Guide

Open
Calais

RDF
ohloh

W3C
WordNet

Open
Cyc

UMBEL

Yago

DBpedia
Freebase

Virtuoso
Sponger

March ’09:
89 datasets

Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch.
http://lod-cloud.net/

RDF Data Volumes . . .

I . . . are growing – and fast
I Linked data cloud currently consists of 325 datasets with

>25B triples
I Size almost doubling every year

As of September 2010

Music
Brainz

(zitgist)

P20

YAGO

World
Fact-
book
(FUB)

WordNet
(W3C)

WordNet
(VUA)

VIVO UF
VIVO

Indiana

VIVO
Cornell

VIAF

URI
Burner

Sussex
Reading

Lists

Plymouth
Reading

Lists

UMBEL

UK Post-
codes

legislation
.gov.uk

Uberblic

UB
Mann-
heim

TWC LOGD

Twarql

transport
data.gov

.uk

totl.net

Tele-
graphis

TCM
Gene
DIT

Taxon
Concept

The Open
Library
(Talis)

t4gm

Surge
Radio

STW

RAMEAU
SH

statistics
data.gov

.uk

St.
Andrews
Resource

Lists

ECS
South-
ampton
EPrints

Semantic
Crunch
Base

semantic
web.org

Semantic
XBRL

SW
Dog
Food

rdfabout
US SEC

Wiki

UN/
LOCODE

Ulm

ECS
(RKB

Explorer)

Roma

RISKS

RESEX

RAE2001

Pisa

OS

OAI

NSF

New-
castle

LAAS

KISTI
JISC

IRIT

IEEE

IBM

Eurécom

ERA

ePrints

dotAC

DEPLOY

DBLP
(RKB

Explorer)

Course-
ware

CORDIS

CiteSeer

Budapest

ACM

riese

Revyu

research
data.gov

.uk

reference
data.gov

.uk

Recht-
spraak.

nl

RDF
ohloh

Last.FM
(rdfize)

RDF
Book

Mashup

PSH

Product
DB

PBAC

Poké-
pédia

Ord-
nance
Survey

Openly
Local

The Open
Library

Open
Cyc

Open
Calais

OpenEI

New
York

Times

NTU
Resource

Lists

NDL
subjects

MARC
Codes
List

Man-
chester
Reading

Lists

Lotico

The
London
Gazette

LOIUS

lobid
Resources

lobid
Organi-
sations

Linked
MDB

Linked
LCCN

Linked
GeoData

Linked
CT

Linked
Open

Numbers

lingvoj

LIBRIS

Lexvo

LCSH

DBLP
(L3S)

Linked
Sensor Data
(Kno.e.sis)

Good-
win

Family

Jamendo

iServe

NSZL
Catalog

GovTrack

GESIS

Geo
Species

Geo
Names

Geo
Linked
Data
(es)

GTAA

STITCH
SIDER

Project
Guten-
berg
(FUB)

Medi
Care

Euro-
stat

(FUB)

Drug
Bank

Disea-
some

DBLP
(FU

Berlin)

Daily
Med

Freebase

flickr
wrappr

Fishes
of Texas

FanHubz

Event-
Media

EUTC
Produc-

tions

Eurostat

EUNIS

ESD
stan-
dards

Popula-
tion (En-
AKTing)

NHS
(EnAKTing)

Mortality
(En-

AKTing)
Energy

(En-
AKTing)

CO2
(En-

AKTing)

education
data.gov

.uk

ECS
South-
ampton

Gem.
Norm-
datei

data
dcs

MySpace
(DBTune)

Music
Brainz

(DBTune)

Magna-
tune

John
Peel
(DB

Tune)

classical
(DB

Tune)

Audio-
scrobbler
(DBTune)

Last.fm
Artists

(DBTune)

DB
Tropes

dbpedia
lite

DBpedia

Pokedex

Airports

NASA
(Data
Incu-
bator)

Music
Brainz
(Data

Incubator)

Moseley
Folk

Discogs
(Data In-
cubator)

Climbing

Linked Data
for Intervals

Cornetto

Chronic-
ling

America

Chem2
Bio2RDF

biz.
data.

gov.uk

UniSTS

UniRef

Uni
Path-
way

UniParc

Taxo-
nomy

UniProt

SGD

Reactome

PubMed

Pub
Chem

PRO-
SITE

ProDom

Pfam PDB

OMIM

OBO

MGI

KEGG
Reaction

KEGG
Pathway

KEGG
Glycan

KEGG
Enzyme

KEGG
Drug

KEGG
Cpd

InterPro

Homolo
Gene

HGNC

Gene
Ontology

GeneID

Gen
Bank

ChEBI

CAS

Affy-
metrix

BibBase
BBC

Wildlife
Finder

BBC
Program

mes
BBC

Music

rdfabout
US Census

Media

Geographic

Publications

Government

Cross-domain

Life sciences

User-generated content

September ’10:
203 datasets

Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch.
http://lod-cloud.net/

RDF Data Volumes . . .

I . . . are growing – and fast
I Linked data cloud currently consists of 325 datasets with

>25B triples
I Size almost doubling every year

As of September 2011

Music
Brainz

(zitgist)

P20

Turismo
de

Zaragoza

yovisto

Yahoo!
Geo

Planet

YAGO

World
Fact-
book

El
Viajero
Tourism

WordNet
(W3C)

WordNet
(VUA)

VIVO UF

VIVO
Indiana

VIVO
Cornell

VIAF

URI
Burner

Sussex
Reading

Lists

Plymouth
Reading

Lists

UniRef

UniProt

UMBEL

UK Post-
codes

legislation
data.gov.uk

Uberblic

UB
Mann-
heim

TWC LOGD

Twarql

transport
data.gov.

uk

Traffic
Scotland

theses.
fr

Thesau-
rus W

totl.net

Tele-
graphis

TCM
Gene
DIT

Taxon
Concept

Open
Library
(Talis)

tags2con
delicious

t4gm
info

Swedish
Open

Cultural
Heritage

Surge
Radio

Sudoc

STW

RAMEAU
SH

statistics
data.gov.

uk

St.
Andrews
Resource

Lists

ECS
South-
ampton
EPrints

SSW
Thesaur

us

Smart
Link

Slideshare
2RDF

semantic
web.org

Semantic
Tweet

Semantic
XBRL

SW
Dog
Food

Source Code
Ecosystem
Linked Data

US SEC
(rdfabout)

Sears

Scotland
Geo-

graphy

Scotland
Pupils &
Exams

Scholaro-
meter

WordNet
(RKB

Explorer)

Wiki

UN/
LOCODE

Ulm

ECS
(RKB

Explorer)

Roma

RISKS

RESEX

RAE2001

Pisa

OS

OAI

NSF

New-
castle

LAAS
KISTI

JISC

IRIT

IEEE

IBM

Eurécom

ERA

ePrints dotAC

DEPLOY

DBLP
(RKB

Explorer)

Crime
Reports

UK

Course-
ware

CORDIS
(RKB

Explorer)
CiteSeer

Budapest

ACM

riese

Revyu

research
data.gov.

ukRen.
Energy
Genera-

tors

reference
data.gov.

uk

Recht-
spraak.

nl

RDF
ohloh

Last.FM
(rdfize)

RDF
Book

Mashup

Rådata
nå!

PSH

Product
Types

Ontology

Product
DB

PBAC

Poké-
pédia

patents
data.go

v.uk

Ox
Points

Ord-
nance
Survey

Openly
Local

Open
Library

Open
Cyc

Open
Corpo-
rates

Open
Calais

OpenEI

Open
Election

Data
Project

Open
Data

Thesau-
rus

Ontos
News
Portal

OGOLOD

Janus
AMP

Ocean
Drilling
Codices

New
York

Times

NVD

ntnusc

NTU
Resource

Lists

Norwe-
gian

MeSH

NDL
subjects

ndlna

my
Experi-
ment

Italian
Museums

medu-
cator

MARC
Codes
List

Man-
chester
Reading

Lists

Lotico

Weather
Stations

London
Gazette

LOIUS

Linked
Open
Colors

lobid
Resources

lobid
Organi-
sations

LEM

Linked
MDB

LinkedL
CCN

Linked
GeoData

LinkedCT

Linked
User

Feedback
LOV

Linked
Open

Numbers

LODE

Eurostat
(Ontology
Central)

Linked
EDGAR

(Ontology
Central)

Linked
Crunch-

base

lingvoj

Lichfield
Spen-
ding

LIBRIS

Lexvo

LCSH

DBLP
(L3S)

Linked
Sensor Data
(Kno.e.sis)

Klapp-
stuhl-
club

Good-
win

Family

National
Radio-
activity

JP

Jamendo
(DBtune)

Italian
public

schools

ISTAT
Immi-
gration

iServe

IdRef
Sudoc

NSZL
Catalog

Hellenic
PD

Hellenic
FBD

Piedmont
Accomo-
dations

GovTrack

GovWILD

Google
Art

wrapper

gnoss

GESIS

GeoWord
Net

Geo
Species

Geo
Names

Geo
Linked
Data

GEMET

GTAA

STITCH

SIDER

Project
Guten-
berg

Medi
Care

Euro-
stat

(FUB)

EURES

Drug
Bank

Disea-
some

DBLP
(FU

Berlin)

Daily
Med

CORDIS
(FUB)

Freebase

flickr
wrappr

Fishes
of Texas

Finnish
Munici-
palities

ChEMBL

FanHubz

Event
Media

EUTC
Produc-

tions

Eurostat

Europeana

EUNIS

EU
Insti-

tutions

ESD
stan-
dards

EARTh

Enipedia

Popula-
tion (En-
AKTing)

NHS
(En-

AKTing) Mortality
(En-

AKTing)

Energy
(En-

AKTing)

Crime
(En-

AKTing)

CO2
Emission

(En-
AKTing)

EEA

SISVU

educatio
n.data.g

ov.uk

ECS
South-
ampton

ECCO-
TCP

GND

Didactal
ia

DDC Deutsche
Bio-

graphie

data
dcs

Music
Brainz

(DBTune)

Magna-
tune

John
Peel

(DBTune)

Classical
(DB

Tune)

Audio
Scrobbler
(DBTune)

Last.FM
artists

(DBTune)

DB
Tropes

Portu-
guese

DBpedia

dbpedia
lite

Greek
DBpedia

DBpedia

data-
open-
ac-uk

SMC
Journals

Pokedex

Airports

NASA
(Data
Incu-
bator)

Music
Brainz
(Data

Incubator)

Moseley
Folk

Metoffice
Weather
Forecasts

Discogs
(Data

Incubator)

Climbing

data.gov.uk
intervals

Data
Gov.ie

data
bnf.fr

Cornetto

reegle

Chronic-
ling

America

Chem2
Bio2RDF

Calames

business
data.gov.

uk

Bricklink

Brazilian
Poli-

ticians

BNB

UniSTS

UniPath
way

UniParc

Taxono
my

UniProt
(Bio2RDF)

SGD

Reactome

PubMed
Pub

Chem

PRO-
SITE

ProDom

Pfam

PDB

OMIM
MGI

KEGG
Reaction

KEGG
Pathway

KEGG
Glycan

KEGG
Enzyme

KEGG
Drug

KEGG
Com-
pound

InterPro

Homolo
Gene

HGNC

Gene
Ontology

GeneID

Affy-
metrix

bible
ontology

BibBase

FTS

BBC
Wildlife
Finder

BBC
Program

mes BBC
Music

Alpine
Ski

Austria

LOCAH

Amster-
dam

Museum

AGROV
OC

AEMET

US Census
(rdfabout)

Media

Geographic

Publications

Government

Cross-domain

Life sciences

User-generated content

September ’11:
295 datasets

Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch.
http://lod-cloud.net/

RDF Data Volumes . . .

I . . . are growing – and fast
I Linked data cloud currently consists of 325 datasets with

>25B triples
I Size almost doubling every year

April ’14:
1091 datasets, ???

triples

Max Schmachtenberg, Christian Bizer, and Heiko Paulheim: Adoption of Linked
Data Best Practices in Different Topical Domains. In Proc. ISWC, 2014.

Outline

RDF Introduction

gStore: a graph-based SPARQL query engine
Answering SPARQL queries using graph pattern matching [Zou
et al., PVLDB 2011, VLDB J 2014]

gAnswer: Natural Language Question Answering over RDF
A Data Driven Approach [Zou et al., SIGMOD 2014; Zheng et
al., SIGMOD 2015]

Outline

RDF Introduction

gStore: a graph-based SPARQL query engine
Answering SPARQL queries using graph pattern matching [Zou
et al., PVLDB 2011, VLDB J 2014]

gAnswer: Natural Language Question Answering over RDF
A Data Driven Approach [Zou et al., SIGMOD 2014; Zheng et
al., SIGMOD 2015]

RDF Introduction

I Everything is an uniquely named
resource

I Namespaces can be used to scope
the names

I Properties of resources can be
defined

I Relationships with other resources
can be defined

I Resources can be contributed by
different people/groups and can be
located anywhere in the web

I Integrated web “database”

http://en.wikipedia.org/wiki/Abraham Lincoln

xmlns:y=http://en.wikipedia.org/wiki
y:Abraham Lincoln

Abraham Lincoln:hasName “Abraham Lincoln”
Abraham Lincoln:BornOnDate: “1809-02-12”
Abraham Lincoln:DiedOnDate: “1865-04-15”

y:Washington DC

Abraham Lincoln:DiedIn

RDF Introduction

I Everything is an uniquely named
resource

I Namespaces can be used to scope
the names

I Properties of resources can be
defined

I Relationships with other resources
can be defined

I Resources can be contributed by
different people/groups and can be
located anywhere in the web

I Integrated web “database”

http://en.wikipedia.org/wiki/Abraham Lincoln

xmlns:y=http://en.wikipedia.org/wiki
y:Abraham Lincoln

Abraham Lincoln:hasName “Abraham Lincoln”
Abraham Lincoln:BornOnDate: “1809-02-12”
Abraham Lincoln:DiedOnDate: “1865-04-15”

y:Washington DC

Abraham Lincoln:DiedIn

RDF Introduction

I Everything is an uniquely named
resource

I Namespaces can be used to scope
the names

I Properties of resources can be
defined

I Relationships with other resources
can be defined

I Resources can be contributed by
different people/groups and can be
located anywhere in the web

I Integrated web “database”

http://en.wikipedia.org/wiki/Abraham Lincoln

xmlns:y=http://en.wikipedia.org/wiki
y:Abraham Lincoln

Abraham Lincoln:hasName “Abraham Lincoln”
Abraham Lincoln:BornOnDate: “1809-02-12”
Abraham Lincoln:DiedOnDate: “1865-04-15”

y:Washington DC

Abraham Lincoln:DiedIn

RDF Introduction

I Everything is an uniquely named
resource

I Namespaces can be used to scope
the names

I Properties of resources can be
defined

I Relationships with other resources
can be defined

I Resources can be contributed by
different people/groups and can be
located anywhere in the web

I Integrated web “database”

http://en.wikipedia.org/wiki/Abraham Lincoln

xmlns:y=http://en.wikipedia.org/wiki
y:Abraham Lincoln

Abraham Lincoln:hasName “Abraham Lincoln”
Abraham Lincoln:BornOnDate: “1809-02-12”
Abraham Lincoln:DiedOnDate: “1865-04-15”

y:Washington DC

Abraham Lincoln:DiedIn

RDF Introduction

I Everything is an uniquely named
resource

I Namespaces can be used to scope
the names

I Properties of resources can be
defined

I Relationships with other resources
can be defined

I Resources can be contributed by
different people/groups and can be
located anywhere in the web

I Integrated web “database”

http://en.wikipedia.org/wiki/Abraham Lincoln

xmlns:y=http://en.wikipedia.org/wiki
y:Abraham Lincoln

Abraham Lincoln:hasName “Abraham Lincoln”
Abraham Lincoln:BornOnDate: “1809-02-12”
Abraham Lincoln:DiedOnDate: “1865-04-15”

y:Washington DC

Abraham Lincoln:DiedIn

RDF Data Model
I Triple: Subject, Predicate (Property),

Object (s, p, o)

Subject: the entity that is described
(URI or blank node)

Predicate: a feature of the entity (URI)
Object: value of the feature (URI,

blank node or literal)

I (s, p, o) ∈ (U ∪ B)× U × (U ∪ B ∪ L)

I Set of RDF triples is called an RDF graph

U

Subject Object

U B U B L

U: set of URIs
B: set of blank nodes
L: set of literals

Predicate

Subject Predicate Object
Abraham Lincoln hasName “Abraham Lincoln”
Abraham Lincoln BornOnDate “1809-02-12”
Abraham Lincoln DiedOnDate “1865-04-15”

RDF Example Instance
Prefix: y=http://en.wikipedia.org/wiki

Subject Predicate Object

y: Abraham Lincoln hasName “Abraham Lincoln”
y: Abraham Lincoln BornOnDate “1809-02-12”’
y: Abraham Lincoln DiedOnDate “1865-04-15”
y:Abraham Lincoln bornIn y:Hodgenville KY
y: Abraham Lincoln DiedIn y: Washington DC
y:Abraham Lincoln title “President”
y:Abraham Lincoln gender “Male”
y: Washington DC hasName “Washington D.C.”
y:Washington DC foundingYear “1790”
y:Hodgenville KY hasName “Hodgenville”
y:United States hasName “United States”
y:United States hasCapital y:Washington DC
y:United States foundingYear “1776”
y:Reese Witherspoon bornOnDate “1976-03-22”
y:Reese Witherspoon bornIn y:New Orleans LA
y:Reese Witherspoon hasName “Reese Witherspoon”
y:Reese Witherspoon gender “Female”
y:Reese Witherspoon title “Actress”
y:New Orleans LA foundingYear “1718”
y:New Orleans LA locatedIn y:United States
y:Franklin Roosevelt hasName “Franklin D. Roosevelt”
y:Franklin Roosevelt bornIn y:Hyde Park NY
y:Franklin Roosevelt title “President”
y:Franklin Roosevelt gender “Male”
y:Hyde Park NY foundingYear “1810”
y:Hyde Park NY locatedIn y:United States
y:Marilyn Monroe gender “Female”
y:Marilyn Monroe hasName “Marilyn Monroe”
y:Marilyn Monroe bornOnDate “1926-07-01”
y:Marilyn Monroe diedOnDate “1962-08-05”

URI

Literal

URI

RDF Graph

y:Abraham Lincoln

“Abraham Lincoln”

hasName

“1809-02-12”
bornOnDate

“1865-04-15”

diedOnDate

“President”

title

“Male”

gender

y:Washington D.C.

“1790”

foundYear

“Washington D.C.”

hasName

y:Hodgenville KY “Hodgenville”
hasName

y:United States

“United States”

hasName

“1776”

foundingYear

y:Reese Witherspoon

“1976-03-22”

bornOnDate

“Female”

gender

“Actress”

title

“Reese Witherspoon”

hasName

y:New Orleans LA

“1718”

foundingYear

y:Franklin Roosevelt

“Franklin D. Roosevelt”

hasName

“Male”

gender

“President”

title

y:Hyde Park NY

“1810”

foundingYear

y:Marilyn Monroe“1962-08-05”
diedOnDate

“1926-07-01”

bornOnDate

“Female”

gender

“Marilyn Monroe”
hasName

diedIn

bornIn

hasCapital

bornIn
locatedIn locatedIn

bornIn

RDF Query Model
I Query Model - SPARQL Protocol and RDF Query Language
I Given U (set of URIs), L (set of literals), and V (set of

variables), a SPARQL expression is defined recursively:
I an atomic triple pattern, which is an element of

(U ∪ V)× (U ∪ V)× (U ∪ V ∪ L)

I ?x hasName “Abraham Lincoln”

I P FILTER R, where P is a graph pattern expression and R is a
built-in SPARQL condition (i.e., analogous to a SQL predicate)

I ?x price ?p FILTER(?p < 30)

I P1 AND/OPT/UNION P2, where P1 and P2 are graph
pattern expressions

I Example:
SELECT ?name
WHERE {

?m <born In> ? c i t y . ?m <hasName> ?name .
?m<bornOnDate> ?bd . ? c i t y <found ingYear> ‘ ‘1718 ’ ’ .
FILTER(regex (s t r (? bd) , ‘ ‘ 1 9 7 6 ’ ’))

}

SPARQL Queries

SELECT ?name
WHERE {

?m <born In> ? c i t y . ?m <hasName> ?name .
?m<bornOnDate> ?bd . ? c i t y <found ingYear> ‘ ‘1718 ’ ’ .
FILTER(regex (s t r (? bd) , ‘ ‘ 1 9 7 6 ’ ’))

}

?m ?city
bornIn

?name

hasName

?bd

bornOnDate

“1718”

foundingYear

FILTER(regex(str(?bd),“1976”))

Näıve Triple Store Design

SELECT ?name
WHERE {

?m <born In> ? c i t y . ?m <hasName> ?name .
?m<bornOnDate> ?bd . ? c i t y <found ingYear> ‘ ‘1718 ’ ’ .
FILTER(regex (s t r (? bd) , ‘ ‘ 1 9 7 6 ’ ’))

}
Subject Property Object
y:Abraham Lincoln hasName “Abraham Lincoln”
y:Abraham Lincoln bornOnDate “1809-02-12”
y:Abraham Lincoln diedOnDate “1865-04-15”
y:Abraham Lincoln bornIn y:Hodgenville KY
y:Abraham Lincoln diedIn y:Washington DC
y:Abraham Lincoln title “President”
y:Abraham Lincoln gender “Male”
y:Washington DC hasName “Washington D.C.”
y:Washington DC foundingYear “1790”
y:Hodgenville KY hasName “Hodgenville”
y:United States hasName “United States”
y:United States hasCapital y:Washington DC
y:United States foundingYear “1776”
y:Reese Witherspoon bornOnDate “1976-03-22”
y:Reese Witherspoon bornIn y:New Orleans LA
y:Reese Witherspoon hasName “Reese Witherspoon”
y:Reese Witherspoon gender “Female”
y:Reese Witherspoon title “Actress”
y:New Orleans LA foundingYear “1718”
y:New Orleans LA locatedIn y:United States
y:Franklin Roosevelt hasName “Franklin D. Roo-

sevelt”
y:Franklin Roosevelt bornIn y:Hyde Park NY
y:Franklin Roosevelt title “President”
y:Franklin Roosevelt gender “Male”
y:Hyde Park NY foundingYear “1810”
y:Hyde Park NY locatedIn y:United States
y:Marilyn Monroe gender “Female”
y:Marilyn Monroe hasName “Marilyn Monroe”
y:Marilyn Monroe bornOnDate “1926-07-01”
y:Marilyn Monroe diedOnDate “1962-08-05”

Too many self-joins!

Näıve Triple Store Design

SELECT ?name
WHERE {

?m <born In> ? c i t y . ?m <hasName> ?name .
?m<bornOnDate> ?bd . ? c i t y <found ingYear> ‘ ‘1718 ’ ’ .
FILTER(regex (s t r (? bd) , ‘ ‘ 1 9 7 6 ’ ’))

}
Subject Property Object
y:Abraham Lincoln hasName “Abraham Lincoln”
y:Abraham Lincoln bornOnDate “1809-02-12”
y:Abraham Lincoln diedOnDate “1865-04-15”
y:Abraham Lincoln bornIn y:Hodgenville KY
y:Abraham Lincoln diedIn y:Washington DC
y:Abraham Lincoln title “President”
y:Abraham Lincoln gender “Male”
y:Washington DC hasName “Washington D.C.”
y:Washington DC foundingYear “1790”
y:Hodgenville KY hasName “Hodgenville”
y:United States hasName “United States”
y:United States hasCapital y:Washington DC
y:United States foundingYear “1776”
y:Reese Witherspoon bornOnDate “1976-03-22”
y:Reese Witherspoon bornIn y:New Orleans LA
y:Reese Witherspoon hasName “Reese Witherspoon”
y:Reese Witherspoon gender “Female”
y:Reese Witherspoon title “Actress”
y:New Orleans LA foundingYear “1718”
y:New Orleans LA locatedIn y:United States
y:Franklin Roosevelt hasName “Franklin D. Roo-

sevelt”
y:Franklin Roosevelt bornIn y:Hyde Park NY
y:Franklin Roosevelt title “President”
y:Franklin Roosevelt gender “Male”
y:Hyde Park NY foundingYear “1810”
y:Hyde Park NY locatedIn y:United States
y:Marilyn Monroe gender “Female”
y:Marilyn Monroe hasName “Marilyn Monroe”
y:Marilyn Monroe bornOnDate “1926-07-01”
y:Marilyn Monroe diedOnDate “1962-08-05”

SELECT T2 . o b j e c t
FROM T as T1 , T as T2 , T as T3 ,

T as T4
WHERE T1 . p r o p e r t y=” b o r n I n ”
AND T2 . p r o p e r t y=”hasName”
AND T3 . p r o p e r t y=” bornOnDate ”
AND T1 . s u b j e c t=T2 . s u b j e c t
AND T2 . s u b j e c t=T3 . s u b j e c t
AND T4 . p r o p e t y=” f o u n d i n g Y e a r ”
AND T1 . o b j e c t=T4 . s u b j e c t
AND T4 . o b j e c t=” 1718 ”
AND T3 . o b j e c t LIKE ’%1976% ’

Too many self-joins!

Näıve Triple Store Design

SELECT ?name
WHERE {

?m <born In> ? c i t y . ?m <hasName> ?name .
?m<bornOnDate> ?bd . ? c i t y <found ingYear> ‘ ‘1718 ’ ’ .
FILTER(regex (s t r (? bd) , ‘ ‘ 1 9 7 6 ’ ’))

}
Subject Property Object
y:Abraham Lincoln hasName “Abraham Lincoln”
y:Abraham Lincoln bornOnDate “1809-02-12”
y:Abraham Lincoln diedOnDate “1865-04-15”
y:Abraham Lincoln bornIn y:Hodgenville KY
y:Abraham Lincoln diedIn y:Washington DC
y:Abraham Lincoln title “President”
y:Abraham Lincoln gender “Male”
y:Washington DC hasName “Washington D.C.”
y:Washington DC foundingYear “1790”
y:Hodgenville KY hasName “Hodgenville”
y:United States hasName “United States”
y:United States hasCapital y:Washington DC
y:United States foundingYear “1776”
y:Reese Witherspoon bornOnDate “1976-03-22”
y:Reese Witherspoon bornIn y:New Orleans LA
y:Reese Witherspoon hasName “Reese Witherspoon”
y:Reese Witherspoon gender “Female”
y:Reese Witherspoon title “Actress”
y:New Orleans LA foundingYear “1718”
y:New Orleans LA locatedIn y:United States
y:Franklin Roosevelt hasName “Franklin D. Roo-

sevelt”
y:Franklin Roosevelt bornIn y:Hyde Park NY
y:Franklin Roosevelt title “President”
y:Franklin Roosevelt gender “Male”
y:Hyde Park NY foundingYear “1810”
y:Hyde Park NY locatedIn y:United States
y:Marilyn Monroe gender “Female”
y:Marilyn Monroe hasName “Marilyn Monroe”
y:Marilyn Monroe bornOnDate “1926-07-01”
y:Marilyn Monroe diedOnDate “1962-08-05”

SELECT T2 . o b j e c t
FROM T as T1 , T as T2 , T as T3 ,

T as T4
WHERE T1 . p r o p e r t y=” b o r n I n ”
AND T2 . p r o p e r t y=”hasName”
AND T3 . p r o p e r t y=” bornOnDate ”
AND T1 . s u b j e c t=T2 . s u b j e c t
AND T2 . s u b j e c t=T3 . s u b j e c t
AND T4 . p r o p e t y=” f o u n d i n g Y e a r ”
AND T1 . o b j e c t=T4 . s u b j e c t
AND T4 . o b j e c t=” 1718 ”
AND T3 . o b j e c t LIKE ’%1976% ’

Too many self-joins!

Existing Solutions

1. Property table
I Each class of objects go to a different table ⇒ similar to

normalized relations
I Eliminates some of the joins

2. Vertically partitioned tables
I For each property, build a two-column table, containing both

subject and object, ordered by subjects
I Can use merge join (faster)
I Good for subject-subject joins but does not help with

subject-object joins

3. Exhaustive indexing
I Create indexes for each permutation of the three columns
I Query components become range queries over individual

relations with merge-join to combine
I Excessive space usage

Property Tables

I Grouping by entities; Jena [Wilkinson et al., SWDB 03]

,FlexTable [Wang et al., DASFAA 10] , DB2-RDF [Bornea et al.,

SIGMOD 13]

I Clustered property table: group together the properties that
tend to occur in the same (or similar) subjects

I Property-class table: cluster the subjects with the same type
of property into one property table

Subject Property Object
y:Abraham Lincoln hasName “Abraham Lincoln”
y:Abraham Lincoln bornOnDate “1809-02-12”
y:Abraham Lincoln diedOnDate “1865-04-15”
y:Washington DC hasName “Washington D.C.”
y:Washington DC foundingYear “1790”
.

Subject hasName bornOnDate diedOnDate
y:Abraham Lincoln “Abraham Lincoln” 1809-02-12 1865-04-15

y:Reese Witherspoon “Reese Witherspoon” 1976-03-22

Subject hasName foundingYear
y:Washington DC “Washington D.C.” 1790
y:Hyde Park NY “Hyde Park” 1810’

Property Tables

I Grouping by entities; Jena [Wilkinson et al., SWDB 03]

,FlexTable [Wang et al., DASFAA 10] , DB2-RDF [Bornea et al.,

SIGMOD 13]

I Clustered property table: group together the properties that
tend to occur in the same (or similar) subjects

I Property-class table: cluster the subjects with the same type
of property into one property table

Subject Property Object
y:Abraham Lincoln hasName “Abraham Lincoln”
y:Abraham Lincoln bornOnDate “1809-02-12”
y:Abraham Lincoln diedOnDate “1865-04-15”
y:Washington DC hasName “Washington D.C.”
y:Washington DC foundingYear “1790”
.

Subject hasName bornOnDate diedOnDate
y:Abraham Lincoln “Abraham Lincoln” 1809-02-12 1865-04-15

y:Reese Witherspoon “Reese Witherspoon” 1976-03-22

Subject hasName foundingYear
y:Washington DC “Washington D.C.” 1790
y:Hyde Park NY “Hyde Park” 1810’

Advantages

I Fewer joins

I If the data is structured, we have a relational system – similar
to normalized relations

Property Tables

I Grouping by entities; Jena [Wilkinson et al., SWDB 03]

,FlexTable [Wang et al., DASFAA 10] , DB2-RDF [Bornea et al.,

SIGMOD 13]

I Clustered property table: group together the properties that
tend to occur in the same (or similar) subjects

I Property-class table: cluster the subjects with the same type
of property into one property table

Subject Property Object
y:Abraham Lincoln hasName “Abraham Lincoln”
y:Abraham Lincoln bornOnDate “1809-02-12”
y:Abraham Lincoln diedOnDate “1865-04-15”
y:Washington DC hasName “Washington D.C.”
y:Washington DC foundingYear “1790”
.

Subject hasName bornOnDate diedOnDate
y:Abraham Lincoln “Abraham Lincoln” 1809-02-12 1865-04-15

y:Reese Witherspoon “Reese Witherspoon” 1976-03-22

Subject hasName foundingYear
y:Washington DC “Washington D.C.” 1790
y:Hyde Park NY “Hyde Park” 1810’

Advantages

I Fewer joins

I If the data is structured, we have a relational system – similar
to normalized relations

Disadvantages

I Potentially a lot of NULLs

I Clustering is not trivial

I Multi-valued properties are complicated

Binary Tables

I Grouping by properties: For each property, build a two-column
table, containing both subject and object, ordered by subjects
[Abadi et al., VLDB 07]

I Also called vertical partitioned tables

I n two column tables (n is the number of unique properties in
the data)

Subject Property Object
y:Abraham Lincoln hasName “Abraham Lincoln”
y:Abraham Lincoln bornOnDate “1809-02-12”
y:Abraham Lincoln diedOnDate “1865-04-15”
y:Washington DC hasName “Washington D.C.”
y:Washington DC foundingYear “1790”
.

Subject Object
y:Abraham Lincoln 1809-02-12
y:Reese Witherspoon 1976-03-22

bornOnDate

Subject Object
y:Abraham Lincoln “Abraham Lincoln”
y:Washington DC “Washington D.C.”

hasName
Subject Object
y:Washington DC 1790
y:Hyde Park NY 1810

foundingYear

Binary Tables

I Grouping by properties: For each property, build a two-column
table, containing both subject and object, ordered by subjects
[Abadi et al., VLDB 07]

I Also called vertical partitioned tables

I n two column tables (n is the number of unique properties in
the data)

Subject Property Object
y:Abraham Lincoln hasName “Abraham Lincoln”
y:Abraham Lincoln bornOnDate “1809-02-12”
y:Abraham Lincoln diedOnDate “1865-04-15”
y:Washington DC hasName “Washington D.C.”
y:Washington DC foundingYear “1790”
.

Subject Object
y:Abraham Lincoln 1809-02-12
y:Reese Witherspoon 1976-03-22

bornOnDate

Subject Object
y:Abraham Lincoln “Abraham Lincoln”
y:Washington DC “Washington D.C.”

hasName
Subject Object
y:Washington DC 1790
y:Hyde Park NY 1810

foundingYear

Advantages

I Supports multi-valued properties

I No NULLs

I No clustering

I Read only needed attributes (i.e. less I/O)

I Good performance for subject-subject joins

Binary Tables

I Grouping by properties: For each property, build a two-column
table, containing both subject and object, ordered by subjects
[Abadi et al., VLDB 07]

I Also called vertical partitioned tables

I n two column tables (n is the number of unique properties in
the data)

Subject Property Object
y:Abraham Lincoln hasName “Abraham Lincoln”
y:Abraham Lincoln bornOnDate “1809-02-12”
y:Abraham Lincoln diedOnDate “1865-04-15”
y:Washington DC hasName “Washington D.C.”
y:Washington DC foundingYear “1790”
.

Subject Object
y:Abraham Lincoln 1809-02-12
y:Reese Witherspoon 1976-03-22

bornOnDate

Subject Object
y:Abraham Lincoln “Abraham Lincoln”
y:Washington DC “Washington D.C.”

hasName
Subject Object
y:Washington DC 1790
y:Hyde Park NY 1810

foundingYear

Advantages

I Supports multi-valued properties

I No NULLs

I No clustering

I Read only needed attributes (i.e. less I/O)

I Good performance for subject-subject joins

Disadvantages

I Not useful for subject-object joins

I Expensive inserts

Exhaustive Indexing

I RDF-3X [Neumann and Weikum, PVLDB 08] , Hexastore [Weiss

et al., PVLDB 08]
I Strings are mapped to ids using a mapping table

I Triples are indexed in a clustered B+ tree in lexicographic
order

I Create indexes for permutations of the three columns: SPO,
SOP, PSO, POS, OPS, OSP

Original triple table
Subject Property Object
y:Abraham Lincoln hasName “Abraham Lincoln”
y:Abraham Lincoln bornOnDate “1809-02-12”
y:Abraham Lincoln diedOnDate “1865-04-15”
y:Washington DC hasName “Washington D.C.”
y:Washington DC foundingYear “1790”

Encoded triple table
Subject Property Object

0 1 2
0 3 4
0 5 6
7 1 8
7 9 10

Mapping table
ID Value
0 y:Abraham Lincoln
1 hasName
2 “Abraham Lincoln”
3 bornOnDate
4 “1809-02-12”
5 diedOnDate
6 “1865-04-15”
7 y:Washington DC
8 “Washington D.C.”
9 foundingYear
10 “1790”

Exhaustive Indexing

I RDF-3X [Neumann and Weikum, PVLDB 08] , Hexastore [Weiss

et al., PVLDB 08]

I Strings are mapped to ids using a mapping table

I Triples are indexed in a clustered B+ tree in lexicographic
order

I Create indexes for permutations of the three columns: SPO,
SOP, PSO, POS, OPS, OSP

Subject Property Object
0 1 2

0 3 4

0 5 6

7 1 8

7 9 10

B+ tree
Easy querying
through mapping
table

Exhaustive Indexing

I RDF-3X [Neumann and Weikum, PVLDB 08] , Hexastore [Weiss

et al., PVLDB 08]

I Strings are mapped to ids using a mapping table

I Triples are indexed in a clustered B+ tree in lexicographic
order

I Create indexes for permutations of the three columns: SPO,
SOP, PSO, POS, OPS, OSP

Subject Property Object
0 1 2

0 3 4

0 5 6

7 1 8

7 9 10

B+ tree
Easy querying
through mapping
table

Exhaustive Indexing–Query Execution

I Each triple pattern can be answered by a range query

I Joins between triple patterns computed using merge join

I Join order is easy due to extensive indexing

Subject Property Object
0 1 2

0 3 4

0 5 6

7 1 8

7 9 10
...

...
...

ID Value
0 y:Abraham Lincoln

1 hasName

2 “Abraham Lincoln”

3 bornOnDate

4 “1809-02-12”

5 diedOnDate

6 “1865-04-15”

7 y:Washington DC

8 “Washington D.C.”

9 foundingYear

10 “1790”

Exhaustive Indexing–Query Execution

I Each triple pattern can be answered by a range query

I Joins between triple patterns computed using merge join

I Join order is easy due to extensive indexing

Subject Property Object
0 1 2

0 3 4

0 5 6

7 1 8

7 9 10
...

...
...

ID Value
0 y:Abraham Lincoln

1 hasName

2 “Abraham Lincoln”

3 bornOnDate

4 “1809-02-12”

5 diedOnDate

6 “1865-04-15”

7 y:Washington DC

8 “Washington D.C.”

9 foundingYear

10 “1790”

Advantages

I Eliminates some of the joins – they become range queries

I Merge join is easy and fast

Exhaustive Indexing–Query Execution

I Each triple pattern can be answered by a range query

I Joins between triple patterns computed using merge join

I Join order is easy due to extensive indexing

Subject Property Object
0 1 2

0 3 4

0 5 6

7 1 8

7 9 10
...

...
...

ID Value
0 y:Abraham Lincoln

1 hasName

2 “Abraham Lincoln”

3 bornOnDate

4 “1809-02-12”

5 diedOnDate

6 “1865-04-15”

7 y:Washington DC

8 “Washington D.C.”

9 foundingYear

10 “1790”

Advantages

I Eliminates some of the joins – they become range queries

I Merge join is easy and fast

Disadvantages

I Space usage

Outline

RDF Introduction

gStore: a graph-based SPARQL query engine
Answering SPARQL queries using graph pattern matching [Zou
et al., PVLDB 2011, VLDB J 2014]

gAnswer: Natural Language Question Answering over RDF
A Data Driven Approach [Zou et al., SIGMOD 2014; Zheng et
al., SIGMOD 2015]

gStore – General Idea

I We work directly on the RDF graph and the SPARQL query
graph

I Answering SPARQL query ≡ subgraph matching
I Subgraph matching is computationally expensive

I Use a signature-based encoding of each entity and class vertex
to speed up matching

I Filter-and-evaluate
I Use a false positive algorithm to prune nodes and obtain a set

of candidates; then do more detailed evaluation on those

I We develop an index (VS∗-tree) over the data signature graph
(has light maintenance load) for efficient pruning

0. Start with RDF Graph G

?m ?city
bornIn

?name

hasName

?bd

bornOnDate

“1718”

foundingYear

FILTER(regex(str(?bd),“1976”))

y:Abraham Lincoln

“Abraham Lincoln”

hasName

“1809-02-12”
bornOnDate

“1865-04-15”

diedOnDate

“President”

title

“Male”

gender

y:Washington D.C.

“1790”

foundYear

“Washington D.C.”

hasName

y:Hodgenville KY “Hodgenville”
hasName

y:United States

“United States”

hasName

“1776”

foundingYear

y:Reese Witherspoon

“1976-03-22”

bornOnDate

“Female”

gender

“Actress”

title

“Reese Witherspoon”

hasName

y:New Orleans LA

“1718”

foundingYear

y:Franklin Roosevelt

“Franklin D. Roosevelt”

hasName

“Male”

gender

“President”

title

y:Hyde Park NY

“1810”

foundingYear

y:Marilyn Monroe“1962-08-05”
diedOnDate

“1926-07-01”

bornOnDate

“Female”

gender

“Marilyn Monroe”
hasName

diedIn

bornIn

hasCapital

bornIn
locatedIn locatedIn

bornIn

0. Start with RDF Graph G

?m ?city
bornIn

?name

hasName

?bd

bornOnDate

“1718”

foundingYear

FILTER(regex(str(?bd),“1976”))

y:Abraham Lincoln

“Abraham Lincoln”

hasName

“1809-02-12”
bornOnDate

“1865-04-15”

diedOnDate

“President”

title

“Male”

gender

y:Washington D.C.

“1790”

foundYear

“Washington D.C.”

hasName

y:Hodgenville KY “Hodgenville”
hasName

y:United States

“United States”

hasName

“1776”

foundingYear

y:Reese Witherspoon

“1976-03-22”

bornOnDate

“Female”

gender

“Actress”

title

“Reese Witherspoon”

hasName

y:New Orleans LA

“1718”

foundingYear

y:Franklin Roosevelt

“Franklin D. Roosevelt”

hasName

“Male”

gender

“President”

title

y:Hyde Park NY

“1810”

foundingYear

y:Marilyn Monroe“1962-08-05”
diedOnDate

“1926-07-01”

bornOnDate

“Female”

gender

“Marilyn Monroe”
hasName

diedIn

bornIn

hasCapital

bornIn
locatedIn locatedIn

bornIn

Finding matches over a large
graph is not a trivial task!

gStore

System Architecture

Offline Online

 Storage

Input Input

RDF Parser

RDF Graph
Builder

Encoding
Module

VS*-tree
builder

RDF data

RDF Triples

RDF Graph

Signature Graph

Key-Value
Store

VS*-tree
Store

SPARQL
Parser

SPARQL Query

Encoding
Module

VS*-tree

Query Graph

Filter
Module

Join
Module

Signature Graph

Node Candidate

Results

gStore

gStore

Peer Review Comments

Charu Aggarwal, ACM Fellow, IBM T. J.
Watson Researcher

——NeMa: Fast Graph Search with Label Similarity, Proc. of
VLDB: 181-192 (2013)

Outline

RDF Introduction

gStore: a graph-based SPARQL query engine
Answering SPARQL queries using graph pattern matching [Zou
et al., PVLDB 2011, VLDB J 2014]

gAnswer: Natural Language Question Answering over RDF
A Data Driven Approach [Zou et al., SIGMOD 2014; Zheng et
al., SIGMOD 2015]

gAnswer: Natural Language Question Answering Over
Knowledge Graph–A Graph Data Driven Approach

I An Easy-to-Use Interface to Access Knowledge Graph
I It is interesting to both academia and industry.
I Interdisciplinary research between database and NLP (natural

language processing) communities.

gAnswer: Natural Language Question Answering Over
Knowledge Graph–A Graph Data Driven Approach

I An Easy-to-Use Interface to Access Knowledge Graph
I It is interesting to both academia and industry.
I Interdisciplinary research between database and NLP (natural

language processing) communities.

gAnswer

Running Example

Question: Who was married to an actor that play in Philadelphia ?

Subject Property Object
Antonio Banderas type actor
Antonio Banderas spouse Melanie Griffith
Antonio Banderas starring Philadelphia (film)
Philadelphia (film) type film
Jonathan Demme director film
Philadelphia type city
Aaron McKie bornIn Philadelphia
James Anderson playForTeam Philadelphia 76ers
Constantin Stanislavski create An Actor Prepares
Philadelphia 76ers type Basketball team
An Actor Prepares type Book

Melanie Griffith

Running Example

Question: Who was married to an actor that play in Philadelphia ?

Subject Property Object
Antonio Banderas type actor

Antonio Banderas spouse Melanie Griffith

Antonio Banderas starring Philadelphia (film)
Philadelphia (film) type film
Jonathan Demme director film
Philadelphia type city
Aaron McKie bornIn Philadelphia
James Anderson playForTeam Philadelphia 76ers
Constantin Stanislavski create An Actor Prepares
Philadelphia 76ers type Basketball team
An Actor Prepares type Book

Melanie Griffith

Existing Solutions

Who was married to an actor that play in Philadelphia ?

Translate NL Question to structured queriesSELECT ? y
WHERE {
? x s t a r r i n g P h i l a d e l p h i a (f i l m) .
? x t y p e a c t o r .
? x s p o u s e ? y . }

Query Processing

Melanie Griffith

Ambiguity

Existing Solutions

Who was married to an actor that play in Philadelphia ?

Translate NL Question to structured queries
SELECT ? y
WHERE {
? x s t a r r i n g P h i l a d e l p h i a (f i l m) .
? x t y p e a c t o r .
? x s p o u s e ? y . }

Query Processing

Melanie Griffith

Philadelpha

Philadelpha (film)

Philadelpha 76ers

Ambiguity

Existing Solutions

Who was married to an actor that play in Philadelphia?

Translate NL Question to structured queries
SELECT ? y
WHERE {
? x s t a r r i n g P h i l a d e l p h i a (f i l m) .
? x t y p e a c t o r .
? x s p o u s e ? y . }

Query Processing

Melanie Griffith

playForTeam

starring

director

Ambiguity

Our Method: Motivation–Data Driven

actor film city

Antonio Banderas

Philadelphia (film)

Philadelphia

Melanie Griffith

Jonathan Demme

Aaron McKie

James Anderson

Philadelphia 76ers

Basketball team

Constantin Stanislavski

An Actor Prepares

Book

type
type

type

starring
spouse

director

bornIn

PlayForTeam type

create type

Our Method: Motivation–Data Driven

actor film city

Antonio Banderas

Philadelphia (film)

Philadelphia

Melanie Griffith

Jonathan Demme

Aaron McKie

James Anderson

Philadelphia 76ers

Basketball team

Constantin Stanislavski

An Actor Prepares

Book

type
type

type

starring
spouse

director

bornIn

PlayForTeam type

create type

Who was married to an actor

that play in Philadelphia ?

“Who”

“actor”/”that”

“Philadelphia”

“be married to” “play in”

Our Method: Motivation–Data Driven

actor film city

Antonio Banderas

Philadelphia (film)

Philadelphia

Melanie Griffith

Jonathan Demme

Aaron McKie

James Anderson

Philadelphia 76ers

Basketball team

Constantin Stanislavski

An Actor Prepares

Book

type
type

type

starring
spouse

director

bornIn

PlayForTeam type

create type

Who was married to an actor

that play in Philadelphia ?

“Who”

?Who

“actor”/”that”

(actor, 1.0)

(An Actor Prepares, 0.9)

“Philadelphia”

(Philadelphia, 1.0)

(Philadelphia (film), 0.9)

(Philadelphia 76ers, 0.8)

“be married to” “play in”

(spouse, 1.0)(playForTeam, 1.0)

(starring, 0.9)

(director, 1.0)

Our Method: Motivation–Data Driven

actor film city

Antonio Banderas

Philadelphia (film)

Philadelphia

Melanie Griffith

Jonathan Demme

Aaron McKie

James Anderson

Philadelphia 76ers

Basketball team

Constantin Stanislavski

An Actor Prepares

Book

type
type

type

starring
spouse

director

bornIn

PlayForTeam type

create type

Who was married to an actor

that play in Philadelphia ?

“Who”

?Who

“actor”/”that”

(actor, 1.0)

(An Actor Prepares, 0.9)

“Philadelphia”

(Philadelphia, 1.0)

(Philadelphia (film), 0.9)

(Philadelphia 76ers, 0.8)

“be married to” “play in”

(spouse, 1.0)(playForTeam, 1.0)

(starring, 0.9)

(director, 1.0)

Combine Disambiguation

and Query Together !

Experiments: Datasets

I RDF repository: DBPedia

Table : Statistics of RDF Graph
DBpedia

Number of Entities 5.2 million

Number of Triples 60 million

Number of Predicates 1643

Size of RDF Graphs (in GB) 6.1

I Relation Phrase Dictionary: Patty

Table : Statistics of Relation Phrase Dataset

wordnet-wikipedia freebase-wikipedia
Number of Textual Patterns 350,568 1,631,530

Number of Entity Pairs 3,862,304 15,802,947

Average Entity Pair 11 9
Number For Each Pattern

Experiments: Online

Benchmark: QALD-3, 99 Natural Language Questions

Table : Evaluating QALD-3 Testing Questions (on DBpedia)

Processed Right Partially Recall Precision F-1
Our
Method

76 32 11 0.40 0.40 0.40

squall2sparql 96 77 13 0.85 0.89 0.87
CASIA 52 29 8 0.36 0.35 0.36
Scalewelis 70 1 38 0.33 0.33 0.33
RTV 55 30 4 0.34 0.32 0.33
Intui2 99 28 4 0.32 0.32 0.32
SWIP 21 14 2 0.15 0.16 0.16
DEANNA 27 21 0 0.21 0.21 0.21

Experiments: Online
ID Questions Response Time (in ms)

Q2 Who was the successor of John F. Kennedy? 1699
Q3 Who is the mayor of Berlin? 677
Q14 Give me all members of Prodigy? 811
Q17 Give me all cars that are produced in Germany ? 297
Q19 Give me all people that were born in Vienna and died in Berlin ? 2557
Q20 How tall is Michael Jordan ? 942
Q21 What is the capital of Canada ? 1342
Q22 Who is the governor of Wyoming ? 796
Q24 Who was the father of Queen Elizabeth II? 538
Q27 Sean Parnell is the governor of which U.S. state ? 1210
Q28 Give me all movies directed by Francis Ford Coppola. 577
Q30 What is the birth name of Angela Merkel ? 250
Q35 Who developed Minecraft ?. 2565
Q39 Give me all companies in Munich. 1312
Q41 Who founded Intel? 1105
Q42 Who is the husband of Amanda Palmer ? 1418
Q44 Which cities does the Weser flow through ? 1139
Q45 Which countries are connected by the Rhine ? 736
Q54 What are the nicknames of San Francisco ? 321
Q58 What is the time zone of Salt Lake City ? 316
Q63 Give me all Argentine films. 427
Q70 Is Michelle Obama the wife of Barack Obama ? 316
Q74 When did Michael Jackson die ? 258
Q76 List the children of Margaret Thatcher. 1139
Q77 Who was called Scarface? 719
Q81 Which books by Kerouac were published by Viking Press ? 796
Q83 How high is the Mount Everest ? 635
Q84 Who created the comic Captain America ? 589
Q86 What is the largest city in Australia ? 1419
Q89 In which city was the former Dutch queen Juliana buried ? 1700
Q98 Which country does the creator of Miffy come from ? 2121
Q100 Who produces Orangina ? 367

Experiments: Online

10

100

1000

10000

100000

Q2 Q20 Q21 Q22 Q28 Q35 Q41 Q42 Q44 Q45 Q54 Q74 Q76 Q83 Q84 Q86

Question Understanding in DEANNA Question Understanding in Our System

Overall time in DEANNA Overall time in Our System

R
u
n
n
in

g
T

im
e

(i
n
 m

s)

Figure : Online Running Time Comparison

Experiments: Online

Figure : QALD-4 Results

An Example: using gAnswer+gStore in CDBLP

An Example: using gAnswer+gStore in CDBLP

An Example: using gAnswer+gStore in CDBLP

Conclusions

I Graph Database is a Possible Way for RDF Knowledge Base
Management.

I Subgraph Matching is a Strong Tool.

I Using RDF repository, how to Provide Knowledge Services for
Applications and Common Users?

Conclusions

I Graph Database is a Possible Way for RDF Knowledge Base
Management.

I Subgraph Matching is a Strong Tool.

I Using RDF repository, how to Provide Knowledge Services for
Applications and Common Users?

Conclusions

I Graph Database is a Possible Way for RDF Knowledge Base
Management.

I Subgraph Matching is a Strong Tool.

I Using RDF repository, how to Provide Knowledge Services for
Applications and Common Users?

Thank you!

gStore gAnswer

	RDF Introduction
	gStore: a graph-based SPARQL query engine
	Answering SPARQL queries using graph pattern matching [Zou et al., PVLDB 2011, VLDB J 2014]

	gAnswer: Natural Language Question Answering over RDF
	A Data Driven Approach [Zou et al., SIGMOD 2014; Zheng et al., SIGMOD 2015]

