Graph-based RDF Data Managment

Lei Zou

Peking University
Institute of Computer Science and Technology

RDF and Semantic Web

» RDF is a language for the conceptual modeling of information
about web resources
» A building block of semantic web

» Facilitates exchange of information
» Search engines can retrieve more relevant information

» Facilitates data integration (mashes)
» Machine understandable

» Understand the information on the web and the
interrelationships among them

What's Sematic Web: A Simple Example (RDFa)
The traditional Web (HTML) only considers the display of the

content.
How is the page displayed, such as which font and the format of the
pictures 7
<htmlI>
 Lei Zou
</br>

Email:
zoulei@pku.edu.cn
<p>
Publications:
</p>
<div>
Lei Zou, Jinhui Mo, Lei Chen, M. Tamer Ozsu,
Dongyan Zhao, gStore: Answering SPARQL Queries Via
Subgraph Matching, VLDB, 2011
</div>
</html>

What's Sematic Web: A Simple Example (RDFa)

Sematic Web considers the sematics of the content.
What does the content in the page mean? e.g., What are the mean of
“zoulei@pku.edu.cn” and “VLDB” ?

<html>

<div resource="#me" typeof="Person" >

 Lei

Zou

<a property=" http://xmIns.com/foaf/0.1/mbox" href= "mailto: zoulei@pku.edu.cn "

> zoulei@pku.edu.cn

<p>

Publications:

</p>

<div resource="www.vldb.org/pvldb/vol4/p482-zou.pdf'>
 Lei Zou ,
 Jinghui Mo ,
 Lei Chen ,
 M. Tamer Ozsu,
 Dongyan Zhao,
 gStore: Answering SPARQL

Queries Via Subgraph Matching ,
 VLDB
2011

</div>

</html>

What's Sematic Web: Google Snippet

What's Sematic Web: Google Snippet

What's Sematic Web: Google Snippet

What's Sematic Web: Google Snippet

What's Sematic Web: Facebook Social Graph

What's Sematic Web: From Two Perspectives

Expressiveness

N
-
=
o (@]
=) —_
= 3 -
S =
€5 o
&€ o
© 2 =
e p o
= o g
o)]
s (4
L .
E Open Linked Data,
Web-scale Triple Store,
Semantic Wiki
How to get more data ? Scalability

How to manage the Web-scale Semantic Data:?

What's Sematic Web: From Two Perspectives

Expressiveness

More Semantic;
More Powerful Reasoning

More Interesting
Applications

c_n\‘ Apple Siri,
% Google Knowledge Graph;
= IBM Watson;
T N e More Areas
gj Broadcasting: BBC
o Publishing: Thomson Reuters
§' Life: Eli Lilly and Company
O UN e
wn .
.
a
@
LI: -
E Open Linked Data,
Web-scale Triple Store,
Semantic Wiki
How to get more data ? Scalability

How to manage the Web-scale Semantic Data:?

Some Interesting Products

IBM Watson

Some Interesting Products
EVI— acquired by Amazon on October 2012.

William Tunstall-Pedoe: True Knowledge: Open-Domain Question Answering Using
Structured Knowledge and Inference. Al Magazine 31(3): 80-92 (2010)

Some Interesting Products

Google Knowledge Graph

RDF Uses

v

Yago and DBPedia extract facts from Wikipedia & represent
as RDF — structural queries
» Communities build RDF data
» E.g., biologists: Bio2RDF and Uniprot RDF
Web data integration
» Linked Data Cloud

v

RDF Data Volumes ...

> ...are growing — and fast
» Linked data cloud currently consists of 325 datasets with
>25B triples
» Size almost doubling every year

RDF Data Volumes ...

> ...are growing — and fast

» Linked data cloud currently consists of 325 datasets with
>25B triples
» Size almost doubling every year

March '09:
89 datasets

http://lod-cloud.net/

Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch

RDF Data Volumes ...

> ...are growing — and fast

» Linked data cloud currently consists of 325 datasets with
>25B triples
» Size almost doubling every year

September '10:
203 datasets

http://lod-cloud.net/

Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch.

N

RDF Data Volumes ...

> ...are growing — and fast

» Linked data cloud currently consists of 325 datasets with
>25B triples
» Size almost doubling every year

September '11:
295 datasets

http://lod-cloud.net/

Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch

RDF Data Volumes ...

> ...are growing — and fast

» Linked data cloud currently consists of 325 datasets with
>25B triples
» Size almost doubling every year

April "14:
1091 datasets, 777
triples

Max Schmachtenberg, Christian Bizer, and Heiko Paulheim: Adoption of Linked
Data Best Practices in Different Topical Domains. In Proc. ISWC, 2014.

Outline

RDF Introduction

gStore: a graph-based SPARQL query engine
Answering SPARQL queries using graph pattern matching [Zou
et al., PVLDB 2011, VLDB J 2014]

gAnswer: Natural Language Question Answering over RDF
A Data Driven Approach [Zou et al., SIGMOD 2014; Zheng et
al., SIGMOD 2015]

Outline

RDF Introduction

http://en.wikipedia.org/wiki/Abraham_Lincoln

RDF Introduction

» Everything is an uniquely named
resource

RDF Introduction

» Everything is an uniquely named
resource

» Namespaces can be used to scope
the names

xmlns:y=http://en.wikipedia.org/wiki
y:Abraham_Lincoln

RDF Introduction

» Everything is an uniquely named
resource

» Namespaces can be used to scope
the names

» Properties of resources can be
defined

xmlns:y=http://en.wikipedia.org/wiki
y:Abraham_Lincoln

Abraham_Lincoln:hasName “Abraham Lincoln”
Abraham_Lincoln:BornOnDate: “1809-02-12"
Abraham_Lincoln:DiedOnDate: “1865-04-15"

RDF Introduction

» Everything is an uniquely named
resource

» Namespaces can be used to scope
the names

» Properties of resources can be
defined

» Relationships with other resources
can be defined

xmlns:y=http://en.wikipedia.org/wiki
y:Abraham_Lincoln

Abraham_Lincoln:hasName “Abraham Lincoln”
Abraham_Lincoln:B¢rnOnDate: “1809-02-12"
Abraham_Lincoln:DiedOnDate: “1865-04-15"

Abraham_Lincoln:DiedIn

y:Washington_DC

RDF Introduction X”"”S:yz??i‘i;ﬁ;f{ﬂl‘lﬁf'°rg’/wm

» Everything is an uniquely named
resource

» Namespaces can be used to scope
the names

» Properties of resources can be

deflned Abraham_Lincoln:hasName “Abraham Lincoln”
. . . Abraham_Lincoln:B¢rnOnDate: “1809-02-12"
» Relationships with other resources Abraham_Lincoln:DiedOnDate: "1865-04-15"

can be defined

> Resources can be contributed by Abraham Lincoln:Diedin
different people/groups and can be
located anywhere in the web

> Integrated web “database”

y:Washington_DC

RDF Data Model

» Triple: Subject, Predicate (Property),
Object (s, p,0) lTj
Subject: the entity that is described]
(URI or blank node) (Subject)” “'<**5(Object)
Predicate: a feature of the entity (URI) F S
Object: value of the feature (URI, ;o B

u B UB L
blank node or literal) U- set of URls

» (s,p,0) e (UUB)x Ux (UUBUL) LB: set iflblanlr nodes
. set of literals
» Set of RDF triples is called an RDF graph
Subject Predicate Object
Abraham_Lincoln | hasName “Abraham Lincoln”

Abraham_Lincoln | BornOnDate | “1809-02-12"
Abraham_Lincoln | DiedOnDate | “1865-04-15"

RDF Example Instance

Prefix: y=http://en.wikipedia.org/wiki

URI

A

Subject Predicate Object
[__v: Abraham_Lincoln [hasName <] “Abraham Lincoln”
y: Abraham_Lincoln BornOnDate | “1809-02-12"'

y: Abraham_Lincoln DiedOnDate | “1865-04-15"
y:Abraham_Lincoln bornin y:Hodgenville_KY

y: Abraham_Lincoln DiedIn <@s
y:Abraham_Lincoln title “President”
y:Abraham_Lincoln gender “Male”

y: Washington_DC hasName “Washington D.C."
y:Washington_DC foundingYear | “1790"
y:Hodgenville_KY hasName “Hodgenville"
y:United_States hasName “United States”
y:United_States hasCapital <@ “
y:United_States foundingYear | “1776"
y:Reese_Witherspoon | bornOnDate | “1976-03-22"
y:Reese_Witherspoon | bornin y:New_Orleans_LA
y:Reese_Witherspoon | hasName “Reese Witherspoon”
y:Reese_Witherspoon | gender “Female”
y:Reese_Witherspoon | title “Actress”
y:New_Orleans_LA foundingYear | “1718"
y:New_Orleans_LA locatedIn y:United_States
y:Franklin_Roosevelt | hasName “Franklin D. Roosevelt”
y:Franklin_Roosevelt | bornin y:Hyde_Park_NY
y:Franklin_Roosevelt | title “President”
y:Franklin_Roosevelt | gender “Male"
y:Hyde_Park_NY foundingYear | “1810"
y:Hyde_Park_NY locatedIn y:United_States
y:Marilyn_Monroe gender “Female”
y:Marilyn_Monroe hasName “Marilyn Monroe"
y:Marilyn_Monroe bornOnDate | “1926-07-01"
y:Marilyn_Monroe diedOnDate | “1962-08-05"

I Literal

T

URI

RDF Graph

“1926-07-01" “Female”

bornOxDate

“1962-08-05" “Marilyn Monroe"

“Abraham Lincoln” “President” “Male”

:ﬁﬁm\ tl\Ke gtyger
“1809-02-12" M y:Abraham_Lincoln m»{ y:Hodgenville_.KY }mb “Hodgenville”
dWe ')
diedIn “Franklin D. Roosevelt” “Male"

“1865-04-15" “1776"
y:Washington_D.C.

A
“Washington D.C."

“1976-03-22" . r‘oundingear

y:United_States “President”

Name
loca

“United States”

y:Hyde_Park_NY

foundipgYear

“Actress” “Reese Witherspoon” y:New_Orleans_LA

foundipgYear

“1718" “1810"

RDF Query Model

» Query Model - SPARQL Protocol and RDF Query Language
» Given U (set of URIs), L (set of literals), and V (set of
variables), a SPARQL expression is defined recursively:
» an atomic triple pattern, which is an element of

(UuV)x(UuV)x(UuVuUlL)

> ?x hasName “Abraham Lincoln”
» P FILTER R, where P is a graph pattern expression and R is a
built-in SPARQL condition (i.e., analogous to a SQL predicate)
> 7?x price ?p FILTER(?p < 30)
» P1 AND/OPT/UNION P2, where P1 and P2 are graph
pattern expressions
» Example:
SELECT 7name
WHERE {
?m <bornln> 7city. ?m <hasName> 7name.
?m<bornOnDate> ?bd. ?city <foundingYear> ''1718"".
FILTER(regex(str(?bd), '1976""))

}

SPARQL Queries

SELECT 7name
WHERE {
m <bornln> 7city. ?m <hasName> 7name.

?m<bornOnDate> 7bd. ?city <foundingYear> ''1718"’

FILTER(regex(str(?bd), ‘1976 "))
}

FILTER(regex(str(?bd),"1976"))

bornOnDate oundingYear
bornln

Naive Triple Store Design

SELECT ?name

WHERE {

?m <bornln> ?city.
?m<bornOnDate> 7bd.
FILTER(regex(str(?bd), ‘1976 "))

}

?m <hasName> ?name.
?7city <foundingYear>

Subject Property Object
y:Abraham_Lincoln [hasName “Abraham Lincoln”
y:Abraham_Lincoln | bornOnDate “1809-02-12"
y:Abraham_Lincoln | diedOnDate “1865-04-15"
y:Abraham_Lincoln | bornin y:Hodgenville_KY
y:Abraham_Lincoln | diedIn y:Washington_DC
y:Abraham_Lincoln | title “President”
y:Abraham_Lincoln | gender “Male”
y:Washington_DC | hasName “Washington D.C."
y:Washington_DC | foundingYear | “1790"
y:Hodgenville KY | hasName “Hodgenville”
y:United States hasName “United States”
y:United_States hasCapital y:Washington_DC
y:United States foundingYear | “1776"
y:Reese Witherspoon| bornOnDate | “1976-03-22"
y:Reese_Witherspoon| bornln y:New_Orleans_LA
y:Reese_Witherspoon| hasName “Reese Witherspoon”
y:Reese Witherspoon| gender “Female”
y:Reese_Witherspoon| title “Actress”
y:New_Orleans_ LA | foundingYear | “1718"
y:New_Orleans_LA | locatedIn y:United_States
y:Franklin_Roosevelt | hasName “Franklin D. Roo-
sevelt”
_Roosevelt | bornin y:Hyde_Park_NY
-Roosevelt | title “President”
in_Roosevelt | gender “Male”
y:Hyde_Park_NY foundingYear | “1810"
y:Hyde_Park_NY locatedin :United_States
y:Marilyn_Monroe | gender “Female”
y:Marilyn_Monroe hasName “Marilyn Monroe"
y:Marilyn_Monroe bornOnDate “1926-07-01"
y:Marilyn_Monroe | diedOnDate “1962-08-05"

t'1718 " .

Naive Triple Store Design

SELECT ?name

WHERE {
?m <bornln> ?7city. ?m <hasName> ?name.
?m<bornOnDate> ?bd. ?city <foundingYear>@®'1718"".
FILTER(regex(str(?bd), ‘1976 "' "))

}

Subject Property Object

y:Abraham Lincoln | hasName "Abraham Lincoin”
y:Abraham_Lincoln | bornOnDate | “1809-02-12"
y:Abraham_Lincoln | diedOnDate | “1865-04-15"

y:Abraham_Lincoln | bornln y:Hodgenville KY

y:Abraham_Lincoln | diedin y:Washington_DC

y:Abraham_Lincoln | title “President”

y:Abraham_Lincoln | gender “Male"

y:Washington_.DC | hasName “Washington D.C."

y:Washington_DC | foundingYear | “1790"

y:Hodgenville_KY | hasName “Hodgenville" H

y:United_States hasName “United States” SELECT T2 -0 bJ ect

y:United_States hasCapital y:Washington_DC FROI

y:United_States foundingYear | “1776" M T as T1, T as T2, T as T3,
y:Reese_Witherspoon| bornOnDate “1976-03-22" T T4

y:Reese_Witherspoon| bornln y:New_Orleans_LA as

y:Reese Witherspoon| hasName “Reese Witherspoon” WHERE T1. propert y:” bornln”

y:Reese_Witherspoon| gender

y:Reese Witherspoon title AND T2.property="hasName”
y:New_Orleans_LA | foundingYear
y:New_Orleans_LA | locatedin y:United_States AND T3. propert y:” bornOnDate”
y:Franklin_Roosevelt | hasName “Franklin D. Roo- - .

sevelt” AND T1.subject=T2.subject
yFranklin_Roosevelt | bornln y:Hyde_Park NY . .
y:Franklin_Roosevelt | title “President” AND T2.su b_] ect=T3.su bJ ect
y:Franklin_Roosevelt | gender “Male” :
yHydePark NY | foundingYear | “1810" AND T4.propety="foundingYear”
y:HydePark NY | locatedin y:United States . .
y:Marilyn_Monroe | gender “Female” AND T1.object=T4.subject
y:Marilyn Monroe | hasName “Marilyn Monroe” .
y:Marilyn Monroe | bornOnDate | *1026-07-01" AND T4.object="1718"

y:Marilyn-Monroe | diedOnDate _| “1962-08-05" AND T3.object LIKE '%1976%'

Naive Triple Store Design

SELECT ?name
WHERE {
?m <bornln> ?7city. ?m <hasName> ?name.
?m<bornOnDate> ?bd. ?city <foundingYear
FILTER(regex(str(?bd), ‘1976 "' "))

}

Subject Property Object (o)
y-Abraham_Lincoln | hasName "Abraham Lincoln”
y:Abraham_Lincoln | bornOnDate | *1809-02-12"
y:Abraham_Lincoln | diedOnDate | “1865-04-15"
y:Abraham_Lincoln | bornin y:Hodgenville_KY
y:Abraham_Lincoln | diedin y:Washington_DC
y:Abraham_Lincoln | title “President”
y:Abraham_Lincoln | gender “Male”
y:Washington-DC | hasName “Washington D.C."
y:Washington DC | foundingYear | “1790"
y:Hodgenville[KY | hasName “Hodgenville” P
y:United_States hasName “United States” SELECT T2 -0 bJ ect
y:United States | hasCapital | y:Washington_DC FROI
y:United States | foundingYear | “1776" M T as T1, T as T2, as T3,
y:Reese_ Witherspoon| bornOnDate | *1976-03-22"
y:Reese_Witherspoon| bornin y:New_Orleans_LA T as T4
yiReese Witherspoon] hasName | ‘Reese Witherspoon” WHERE T1.property="bornln"
y:Reese_ Witherspoon| gender “Female”
y:Reese_Witherspoon title “Actress” AND T2. propert y:” hasName”
y:New_Orleans_LA | foundingYear | “1718" . .
y:New_Orleans LA | locatedin y:United States AND T3. property="born OnDate
y:Franklin_Roosevelt | hasName “Franklin D. Roo- - f

sevelt” AND T1.subject=T2.subject
yFranklin_Roosevelt | bornln y:Hyde_Park NY . .
y:Franklin_Roosevelt | title “President” AND T2.su b_] ect=T3.su bJ ect
y:Franklin_Roosevelt | gender “Male” ;
yHydePark NY | foundingYear | “1810" AND T4.propety="foundingYear”
y:Hyde_Park NY | locatedin y:United States . .
y:Marilyn_Monroe | gender “Female” AND T1.object=T4.subject
y:Marilyn Monroe | hasName “Marilyn Monroe” .
y:Marilyn Monroe | bornOnDate | *1026-07-01" AND T4.object="1718"
y:Marilyn_Monroe | diedOnDate _| “1962-08-05" .

AND T3.object LIKE '%1976%'

Existing Solutions

1. Property table
» Each class of objects go to a different table = similar to
normalized relations
» Eliminates some of the joins

2. Vertically partitioned tables

» For each property, build a two-column table, containing both
subject and object, ordered by subjects
» Can use merge join (faster)
» Good for subject-subject joins but does not help with
subject-object joins
3. Exhaustive indexing

» Create indexes for each permutation of the three columns

» Query components become range queries over individual
relations with merge-join to combine

» Excessive space usage

Property Tables

» Grouping by entities; Jena [Wilkinson et al., SWDB 03]
,FlexTable [Wang et al., DASFAA 10] , DB2-RDF [Bornea et al.,
SIGMOD 13]

» Clustered property table: group together the properties that
tend to occur in the same (or similar) subjects

» Property-class table: cluster the subjects with the same type
of property into one property table

Subject Property Object
y:Abraham_Lincoln|hasName “Abraham Lincoln”
y:Abraham_Lincoln |bornOnDate | “1809-02-12"
y:Abraham_Lincoln |diedOnDate | “1865-04-15"
y:Washington_DC |hasName “Washington D.C."

y:Washington_DC |foundingYear| “1790"

_ _ Subject hasName foundingYear
Subjectb _ hasName _ bornOnDate |diedOnDate Y Washington_DC| “Washington D.C." 1790
y:Abraham_Lincoln ‘Abraham Lincoln 1809-02-12 | 1865-04-15 y:Hyde_Park NY "Hyde Park” 1810°
y:Reese_Witherspoon | "Reese Witherspoon” | 1976-03-22

Property Tables

» Grouping by entities; Jena [Wilkinson et al., SWDB 03]
,FlexTable [Wang et al., DASFAA 10] , DB2-RDF [Bornea et al.,

SIGMOD

13]

» Clustered property table: group together the properties that

Advantages

» Fewer joins
» If the data is structured, we have a relational system — similar

to normalized relations

Y:ADranam-_Lincoin|pbornunbpate 18UY-UL-12

y:Abraham_Lincoln |diedOnDate | “1865-04-15"

y:Washington_DC |hasName “Washington D.C."

y:Washington_DC |foundingYear| “1790"

_ _ Subject hasName foundingYear
Subject. _ hasNarTle _ bornOnDate |diedOnDate Y Washington_DC| “Washington D.C." 1790

y:Abraham Lincoln | "Abraham Lincoln” | 1800-02-12 | 1865-04-15 yHyde Park NY | "Hyde Park’ 810"
y:Reese_Witherspoon | "Reese Witherspoon” | 1976-03-22

Property Tables

» Grouping by entities; Jena [Wilkinson et al., SWDB 03]
,FlexTable [Wang et al., DASFAA 10] , DB2-RDF [Bornea et al.,
SIGMOD 13

» Clustered property table: group together the properties that

Advantages
» Fewer joins

» If the data is structured, we have a relational system — similar
to normalized relations

Disadvantages
> Potentially a lot of NULLs
» Clustering is not trivial

» Multi-valued properties are complicated

Suuyele | |rounung Tear |

_ _ | nasivainc

Subject hasName bornOnDate |diedOnDate ‘y:Washington,DC‘ “Washington D.C.” ‘ 1790 ‘
y:Abraham Lincoln | “Abraham Lincoln” | 1809-02-12 | 1865-04-15 [y:Hyde Park NY | “Hyde Park’ | 1810 |
y:Reese_Witherspoon | "Reese Witherspoon” | 1976-03-22

Binary Tables

» Grouping by properties: For each property, build a two-column
table, containing both subject and object, ordered by subjects
[Abadi et al., VLDB 07]

» Also called vertical partitioned tables

» n two column tables (n is the number of unique properties in

the data)
Subject Property Object
y:Abraham_Lincoln|{hasName “Abraham Lincoln”
y:Abraham_Lincoln|bornOnDate | “1809-02-12"
y:Abraham_Lincoln|diedOnDate | “1865-04-15"
y:Washington_DC |hasName “Washington D.C."
y:Washington_DC |foundingYear| “1790"
foundingYear
hasName bornOnDate 5 ob
- < < - ubject ject
Subject Object Subject Object y"Washington DC|1790

y:Abraham_Lincoln | “Abraham Lincoln y:Abraham_Lincoln |1809-02-12 y-Hyde Park NY |1810

y:Washington_DC | “Washington D.C." | |y:Reese_Witherspoon|1976-03-22

Binary Tables

» Grouping by properties: For each property, build a two-column
table, containing both subject and object, ordered by subjects

Advantages
» Supports multi-valued properties
» No NULLs
» No clustering
» Read only needed attributes (i.e. less 1/0)
» Good performance for subject-subject joins
y.vvdasmngLon_ue ndasindirne vvdasnimngLon v.«.
y:Washington_DC |foundingYear| “1790" ‘
foundingYe
hasName bornOnDate _ eundingYear _
Subject Object Subject Object Sll\j/sje? on DC 1072];“
y:Abraham_Lincoln| “Abraham Lincoln” | |y:Abraham_Lincoln |1809-02-12 Y:Haj I;g Enl:lY 1810
y:Washington_DC | “Washington D.C." | |y:Reese_Witherspoon|1976-03-22 y-yce-Tark-

Binary Tables

» Grouping by properties: For each property, build a two-column
table, containing both subject and object, ordered by subjects

Advantages
» Supports multi-valued properties
No NULLs
No clustering
Read only needed attributes (i.e. less 1/0)

v

v

v

» Good performance for subject-subject joins

Disadvantages
» Not useful for subject-object joins

» Expensive inserts

Subject Object Subject Object Juyeet et

y:Abraham_Lincoln| “Abraham Lincoln” | |y:Abraham_Lincoln |1809-02-12 y:Washington DC|1790

y:Washington_DC | “Washington D.C." | |y:Reese_Witherspoon|1976-03-22 y:Hyde-Park-NY 1810

Exhaustive Indexing

» RDF-3X [Neumann and Weikum, PVLDB 08] , Hexastore [Weiss
et al., PVLDB 0]
» Strings are mapped to ids using a mapping table

Original triple table Mapping table
Subject Property Object ID |Value
y:Abraham_Lincoln|hasName “Abraham Lincoln” 0 |y:Abraham_Lincoln
y:Abraham_Lincoln|bornOnDate | “1809-02-12" 1 |hasName
y:Abraham_Lincoln|diedOnDate | “1865-04-15" 2 | “Abraham Lincoln”
y:Washington_DC |hasName “Washington D.C." 3 |bornOnDate
y:Washington_DC |foundingYear| “1790" 4 ["1809-02-12"
5 |diedOnDate
Encoded triple table o BT
Subject | Property | Object 8 | “Washington D.C.”
0 1 2 9 |foundingYear
0 3 4 10]"1790"
0 5 6
7 1 8
7 9 10

Exhaustive Indexing

» RDF-3X [Neumann and Weikum, PVLDB 08] , Hexastore [Weiss
et al., PVLDB 08]

» Strings are mapped to ids using a mapping table

> Triples are indexed in a clustered B+ tree in lexicographic

order
Subject | Property | Object
0 1 2
0 3 4
0 5 6
7 1 8
7 9 10

B+ tree

Easy querying
through mapping
table

Exhaustive Indexing

» RDF-3X [Neumann and Weikum, PVLDB 08] , Hexastore [Weiss
et al., PVLDB 08]

» Strings are mapped to ids using a mapping table

> Triples are indexed in a clustered B+ tree in lexicographic

order

> Create indexes for permutations of the three columns: SPO,

SOP, PSO, POS, OPS, OSP

Subject | Property | Object
0 1 2
0 3 4
0 5 6
7 1 8
7 9 10

B+ tree

Easy querying
through mapping
table

Exhaustive Indexing—Query Execution

» Each triple pattern can be answered by a range query

» Joins between triple patterns computed using merge join

» Join order is easy due to extensive indexing

Subject | Property | Object ID | Value
0 1 2 0 | y:Abraham_Lincoln
0 3 4 1 hasName
0 5 6 2 “Abraham Lincoln”
7 1 8 3 bornOnDate
7 9 10 4 “1809-02-12"
5 | diedOnDate
6 “1865-04-15"
7 | y:Washington_ DC
8 “Washington D.C."
9 foundingYear

—_
o

“1790"

Exhaustive Indexing—Query Execution

» Each triple pattern can be answered by a range query
» Joins between triple patterns computed using merge join

» Join order is easy due to extensive indexing

Advantages
» Eliminates some of the joins — they become range queries

» Merge join is easy and fast

7 1 8 bornOnDate

7 9 10 “1809-02-12"
diedOnDate
“1865-04-15"

y:Washington_DC

“Washington D.C."

OO N|O O W

foundingYear

10 | “1790"

Exhaustive Indexing—Query Execution

» Each triple pattern can be answered by a range query
» Joins between triple patterns computed using merge join

» Join order is easy due to extensive indexing

Advantages
» Eliminates some of the joins — they become range queries

» Merge join is easy and fast

Disadvantages

» Space usage

“1865-04-15"

y:Washington_DC

“Washington D.C."

O 00| N| O

foundingYear

10 | “1790"

Outline

gStore: a graph-based SPARQL query engine
Answering SPARQL queries using graph pattern matching [Zou
et al., PVLDB 2011, VLDB J 2014]

gStore — General ldea

v

We work directly on the RDF graph and the SPARQL query
graph

» Answering SPARQL query = subgraph matching

» Subgraph matching is computationally expensive

v

Use a signature-based encoding of each entity and class vertex
to speed up matching

v

Filter-and-evaluate

» Use a false positive algorithm to prune nodes and obtain a set
of candidates; then do more detailed evaluation on those

v

We develop an index (VS*-tree) over the data signature graph
(has light maintenance load) for efficient pruning

0. Start with RDF Graph G

FILTER(regex(str(?bd),"1976"))

171

>

oundingYear

“1926-07-01" “Female”

bornD
diedOnDate

Date

“1962-08-05" “Marilyn Monroe”

"President” "Male”

“Abraham Lincoln”

;ﬁa\ t.\w ge/ger

“1809-02-12" M y:Abraham_Lincoln M»{ y:Hodgenville KY }M» “Hodgenville”
djedOnDat
IO diedin “Franklin D. Roosevelt” “Male”

"1865-04-15"

“1976-03-22"

“Female”

“United States”

y:Hyde_Park_NY

foundipgYear foundipgYear

"1718" "1810"

0. Start with RDF Graph G

Finding matches over a large
FILTER(regex(str(?bd),"1976"))

G graph is not a trivial task!

hasName

“1926-07-01" “Female”

bornD
diedOnDate

Date

“1962-08-05" “Marilyn Monroe”

"President” "Male”

“Abraham Lincoln”

;ﬁa\ t.\w ge/ger

“1809-02-12" M y:Abraham_Lincoln M»{ y:Hodgenville KY }M» “Hodgenville”
dm diedIn

"1865-04-15"

“Franklin D. Roosevelt" “Male”

“1976-03-22"

“President”

hasN

locptédin

y:New_Orleans_LA

foundihgYear

“Female”

“United States”

“Actress” “Reese Witherspoon"

y:Hyde_Park_NY

foundihgYear

"1718" "1810"

gStore

System Architecture

Offline

Online

Results

-
RDF data SPARQL Query
SPARQL
RDF Triples Query Graph
Encoding
Module
RDF Graph Signature Graph

Encoding
Module
Signature Graph
VS*-tree

builder
VS*-tree

Filter

Module
F Node Candidate
Join

Storage
VS*-tree L
Store

ﬂ

Key-Value
Store

gStore

gStore

Peer Review Comments

Charu Aggarwal, ACM Fellow, IBM T. J.
Watson Researcher

NeMa: Fast Graph Search with Label Similarity, Proc. of
VLDB: 181-192 (2013)

Outline

gAnswer: Natural Language Question Answering over RDF
A Data Driven Approach [Zou et al., SIGMOD 2014; Zheng et
al., SIGMOD 2015]

gAnswer: Natural Language Question Answering Over
Knowledge Graph—A Graph Data Driven Approach

» An Easy-to-Use Interface to Access Knowledge Graph
» It is interesting to both academia and industry.
» Interdisciplinary research between database and NLP (natural
language processing) communities.

gAnswer: Natural Language Question Answering Over
Knowledge Graph—A Graph Data Driven Approach

» An Easy-to-Use Interface to Access Knowledge Graph

» It is interesting to both academia and industry.
» Interdisciplinary research between database and NLP (natural
language processing) communities.

gAnswer

Running Example

Question: Who was married to an actor that play in Philadelphia ?

Subject Property Object
Antonio_Banderas type actor
Antonio_Banderas spouse Melanie_Griffith
Antonio_Banderas starring Philadelphia_(film)
Philadelphia_(film) type film
Jonathan_Demme director film

Philadelphia type city

Aaron_McKie bornin Philadelphia
James_Anderson playForTeam Philadelphia_76ers
Constantin_Stanislavski create An_Actor_Prepares
Philadelphia_76ers type Basketball_team
An_Actor_Prepares type Book

Running Example

Question: Who was married to an actor that play in Philadelphia ?

Subject Property Object

Antonio_Banderas type actor

Antonio_Banderas spouse Melanie_Griffith

Antonio_Banderas starring Philadelphia_(film)

Philadelphia_(film) type film

Jonathan_Demme director film

Philadelphia type city

Aaron_McKie bornln Philadelphia '\M - .
James_Anderson playForTeam i i nie Grlfﬁth
Constantin_Stanislavski |create

Philadelphia_76ers type Basketball _team

An_Actor_Prepares type Book

Existing Solutions

Who was married to an actor that play in Philadelphia

SELECT 7y ¢ Translate NL Question to structured queries
WHERE {

?x starring Philadelphia_(film).

7x type actor.

?x spouse ?y . }

l Query Processing

(Melanie Griffith)

?

Existing Solutions

Mbiguity

-
Who was married to an actor that playda_Philadelphia ra
SELECT 7y
WHERE { Translate NL Question to structured queries
?x starring Philadelphia_(film). Philadelpha
?x type actor. 1
? ? .
’x spouse 7y . } Philadelpha_(film)
1
l Query Processing Philadelpha_76ers

(Melanie Griffith)

Existing Solutions

Mbiguity

-

) . -
Who was married to an actor th Philadelphia?
SELECT 7y
WHERE { Translate NL Question to structured queries
?x starring Philadelphia_(film). playForTeam
?x type actor. !
? ? .
?’x spouse 7y . } starring

l Query Processing director

(Melanie Griffith)

Our Method: Motivation—Data Driven

(fim)

type

type
Philadelphia

hia_(film) ornin

PTayEorTeam

Antonio_Banderas
sta g

Spousg Philadelp

An_Actor_Prepares

Our Method: Motivation—Data Driven

Who was married to an actor
that play in Philadelphia ?

(fim)

type

type
Philadelphia

hia_(film) ornin

PTayEorTeam

Antonio_Banderas
sta g
Philadelp

1

Spouss

“Philadelphia”

“actor” /" that”

An_Actor_Prepares

Our Method: Motivation—Data Driven

Who was married to an actor
that play in Philadelphia ?

(fim)

type

type (director, 1.0)
Antonio_Banderas Philadelphia
sta g

Philadelp

(starring, 0.9)

(spouse, 1.0)(p|ayForT;am, 1.0)
hia_(film) ornin ~ N
Melanie_Griffith dlrector | Aaron_McKie @

Jonathan_Demme

Spouss

i
|
I
I
|
!
?Who (actor, 1.0) (Philadelphia, 1.0)
| '

PTayEorTeam
v /
(An_Actor_Prepares, 0.9) /
¢
sgeate pe (Philadelphia_(film), 0.9)

An_Actor_Prepares

(Philadelphia_76ers, 0.8)

Our Method: Motivation—Data Driven

Who was married to an actor
that play in Philadelphia ?

type (director, 1.0)
Philadelphia

film
type

type

(starring, 0.9)
(spouse, 1.0)(playForTeam, 1.0)

Antonio_Banderas

Philadelphia_(film) ornin
Melanie_Griffith dlrector | Aaron_McKie ‘
Jonathan_Demme i

|
Basketball_team l |
?

PTayEorTeam pe

spouss

Combine Disambiguation
and Query Together !

pe (Philadelphia_(film), 0.9)
I
I

(Philadelphia_76ers, 0.8)

An_Actor_Prepares

Experiments: Datasets

» RDF repository: DBPedia

Table : Statistics of RDF Graph

DBpedia

Number of Entities 5.2 million

Number of Triples 60 million
Number of Predicates 1643
Size of RDF Graphs (in GB) 6.1

» Relation Phrase Dictionary: Patty

Table : Statistics of Relation Phrase Dataset

wordnet-wikipedia | freebase-wikipedia

Number of Textual Patterns | 350,568 1,631,530
Number of Entity Pairs 3,862,304 15,802,947
Average Entity Pair 11 9

Number For Each Pattern

Experiments: Online

Benchmark: QALD-3, 99 Natural Language Questions

Table : Evaluating QALD-3 Testing Questions (on DBpedia)

Processed Right | Partially] Recall| Precision| F-1
Our 76 32 11 0.40 0.40 0.40
Method
squall2sparqgl(| 96 77 13 0.85 0.89 0.87
CASIA 52 29 8 0.36 0.35 0.36
Scalewelis 70 1 38 0.33 0.33 0.33
RTV 55 30 4 0.34 | 0.32 0.33
Intui2 99 28 4 0.32 0.32 0.32
SWIP 21 14 2 0.15 0.16 0.16
DEANNA 27 21 0 0.21 0.21 0.21

Experiments: Online

[ID T Questions [Response Time (in ms)
Q2 Who was the successor of John F. Kennedy? 1699
Q3 Who is the mayor of Berlin? 677
Q14 Give me all members of Prodigy? 811
Q17 Give me all cars that are produced in Germany ? 297
Q19 Give me all people that were born in Vienna and died in Berlin ? 2557
Q20 How tall is Michael Jordan ? 942
Q21 What is the capital of Canada ? 1342
Q22 Who is the governor of Wyoming ? 796
Q24 Who was the father of Queen Elizabeth 11?7 538
Q27 Sean Parnell is the governor of which U.S. state ? 1210
Q28 Give me all movies directed by Francis Ford Coppola. 577
Q30 What is the birth name of Angela Merkel ? 250
Q35 Who developed Minecraft ?. 2565
Q39 Give me all companies in Munich. 1312
Q41 Who founded Intel? 1105
Q42 Who is the husband of Amanda Palmer ? 1418
Q44 Which cities does the Weser flow through 7 1139
Q45 Which countries are connected by the Rhine 7 736
Q54 What are the nicknames of San Francisco ? 321
Q58 What is the time zone of Salt Lake City ? 316
Q63 Give me all Argentine films. 427
Q70 Is Michelle Obama the wife of Barack Obama ? 316
Q74 When did Michael Jackson die ? 258
Q76 List the children of Margaret Thatcher. 1139
Q77 Who was called Scarface? 719
Q81 Which books by Kerouac were published by Viking Press ? 796
Q83 How high is the Mount Everest ? 635
Q84 Who created the comic Captain America ? 589
Q86 What is the largest city in Australia ? 1419
Q89 In which city was the former Dutch queen Juliana buried ? 1700
Q98 Which country does the creator of Miffy come from ? 2121
Q100 | Who produces Orangina ? 367

Experiments: Online

100000
7"“\
= 10000 /|
2 -
o
= 1000 | A e-pre
'E h . AT SE -t
2 L
‘S
S 100 - —
o
10 - o

Q2 Q20 Q21 Q22 Q28 Q35 Q41 Q42 Q44 Q45 Q54 Q74 Q76 Q83 Q84 Q86
3 Question Understanding in DEANNA S Question Understanding in Our System
e==t== Overall time in DEANNA =a@= Overall time in Our System

Figure : Online Running Time Comparison

Experiments: Online

QQUESTION ANSWERING OVER LINKED DaTa

QALD-4: Evaluation results

Workshop website: http://wiw.sc.cit-ec.imi-bielafeld.de/qald

Results' for Task 1: Multilingual question answering over DBpedia

Total Processed Right Partially Recall Precision Fomeasure
Nser 50 40 34 i} 0.71 0.72 0.72
gAnswer 50 25 16 4 0.37 0.37 0.37
CASTA B0 26 15 4 0.40 0.32 0.36
Intm3 B0 33 10 4 0.25 0.23 0.24
ISOFT B0 28 10 3 0.26 0.21 0.23
RO_FII B0 a0 6 L1} 0.12 0.12 0.12

Figure : QALD-4 Results

An Example: using gAnswer+gStore in CDBLP

An Example: using gAnswer+gStore in CDBLP

An Example: using gAnswer+gStore in CDBLP

Conclusions

» Graph Database is a Possible Way for RDF Knowledge Base
Management.

Conclusions

» Graph Database is a Possible Way for RDF Knowledge Base
Management.

» Subgraph Matching is a Strong Tool.

Conclusions

» Graph Database is a Possible Way for RDF Knowledge Base
Management.

» Subgraph Matching is a Strong Tool.

» Using RDF repository, how to Provide Knowledge Services for
Applications and Common Users?

Thank you!

gAnswer

	RDF Introduction
	gStore: a graph-based SPARQL query engine
	Answering SPARQL queries using graph pattern matching [Zou et al., PVLDB 2011, VLDB J 2014]

	gAnswer: Natural Language Question Answering over RDF
	A Data Driven Approach [Zou et al., SIGMOD 2014; Zheng et al., SIGMOD 2015]

