Write-optimization in external memory data structures

Leif Walsh

Two Sigma Investments, LLC.
leif.walsh@gmail.com
@leifwalsh

April 16,2015

Leif Walsh Fractal Trees April 16,2015 1/33

mailto:leif.walsh@gmail.com
https://twitter.com/leifwalsh

Write-optimization in external memory data structures

Background

Leif Walsh Fractal Trees April 16,2015 2/33

Write-optimization in external memory data structures

Data structures:

Leif Walsh Fractal Trees April 16,2015 3/33

Write-optimization in external memory data structures

Data structures:

Leif Walsh Fractal Trees April 16,2015 3/33

Write-optimization in external memory data structures

Data structures:
@ Provide retrieval of data.

o Lookup(Key)
o Pred(Key)
o Succ(Key)

Leif Walsh Fractal Trees April 16,2015 3/33

Write-optimization in external memory data structures

Data structures:
@ Provide retrieval of data.

o Lookup(Key)
o Pred(Key)
o Succ(Key)

@ Dynamic data structures let you change
the data.

o Insert(Key, Value)
o Delete(Key)

Leif Walsh Fractal Trees April 16,2015 3/33

Write-optimization in external memory data structures

[Aggarwal & Vitter '88]

DAM model

@ Problem size N.
@ Memory size M.

Leif Walsh Fractal Trees April 16,2015 4/33

Write-optimization in external memory data structures

[Aggarwal & Vitter '88]

DAM model

@ Problem size N.
@ Memory size M.

@ Transfer data to/from memory in blocks
of size B.

Leif Walsh Fractal Trees April 16,2015 4/33

Write-optimization in external memory data structures

[Aggarwal & Vitter '88]

Efficiency of operations is measured as the
DAM model number of block transfers, a.k.a. |OPS.

@ Problem size N.
@ Memory size M.

@ Transfer data to/from memory in blocks
of size B.

Leif Walsh Fractal Trees April 16,2015 4/33

Write-optimization in external memory data structures

A B-tree is an external memory data structure:

Leif Walsh Fractal Trees April 16,2015 5/33

Write-optimization in external memory data structures

A B-tree is an external memory data structure:

Leif Walsh Fractal Trees April 16,2015 5/33

Write-optimization in external memory data structures

A B-tree is an external memory data structure:

@ Balanced search tree.

@ Fanout of B
(block size / key size).

Leif Walsh Fractal Trees April 16,2015 5/33

Write-optimization in external memory data structures

A B-tree is an external memory data structure:

@ Internal nodes < M.

@ Balanced search tree.
@ Leaf nodes > M.

@ Fanout of B
(block size / key size).

Leif Walsh Fractal Trees April 16,2015 5/33

Write-optimization in external memory data structures

A B-tree is an external memory data structure:

@ Internal nodes < M.
@ Balanced search tree. o Leaf nodes > M.
@ Search: O(logg N) 1/0s

@ Insert: O(logg N) 1/0s

@ Fanout of B
(block size / key size).

Leif Walsh Fractal Trees April 16,2015 5/33

Write-optimization in external memory data structures

[Brodal & Fagerberg 03]

A
-
g B-tree
L Optimal Curve
o)
(%)
C
(]
>
o
s
£
(0]
o 3
9
v Logging
I
Slow Fast

Inserts

Leif Walsh Fractal Trees April 16,2015 6/33

Write-optimization in external memory data structures

Leif Walsh

Point Queries

Fast

Slow

Target of opportunity

[Brodal & Fagerberg 03]

a B-tree
k Optimal Curve
Insertions improve by

10x-100x with
almost no loss of point-
query performance

J Logging
g

Slow
Inserts

Fractal Trees

v

Fast

April 16,2015 7/33

Write-optimization in external memory data structures

OLAP

Leif Walsh Fractal Trees April 16,2015 8/33

Write-optimization technique #1: OLAP

OLAP: Online Analytical Processing

Leif Walsh Fractal Trees April 16,2015 9/33

Write-optimization technique #1: OLAP

OLAP: Online Analytical Processing
Key idea: Analyze data collected in the past.

Leif Walsh Fractal Trees April 16,2015 9/33

Write-optimization technique #1: OLAP

OLAP: Online Analytical Processing
Key idea: Analyze data collected in the past.
B-tree inserts are slow, but...logging and sorting are fast.

Leif Walsh Fractal Trees April 16,2015 9/33

Write-optimization technique #1: OLAP

OLAP: Online Analytical Processing
Key idea: Analyze data collected in the past.
B-tree inserts are slow, but...logging and sorting are fast.

Plan: Log new data unsorted, then build indexes in large batches.

Leif Walsh Fractal Trees

April 16,2015

9/33

Write-optimization technique #1: OLAP

Merge sort:

Leif Walsh Fractal Trees April 16,2015 10/33

Write-optimization technique #1: OLAP

Merge sort in external memory:

Memory |

(size M)

Leif Walsh Fractal Trees April 16,2015 11/33

Write-optimization technique #1: OLAP

Merge sort in external memory:

A 4

Memory |

(size M)

-
M 1
B [

[|

Merge sort cost in DAM model is:
@ Cost to scan through all the data once.

@ Multiplied by the # of levels in the merge tree.

Leif Walsh Fractal Trees April 16,2015 11/33

Write-optimization technique #1: OLAP

Merge sort in external memory:

A 4

Memory |

(size M)

-
M 1
B [

[|

Merge sort cost in DAM model is:

@ Cost to scan through all the data once.
N/B
@ Multiplied by the # of levels in the merge tree.

Leif Walsh Fractal Trees April 16,2015 11/33

Write-optimization technique #1: OLAP

Merge sort in external memory:

A 4

Memory |

(size M)

-
M 1
B [

[|

Merge sort cost in DAM model is:
@ Cost to scan through all the data once.
N/B
@ Multiplied by the # of levels in the merge tree.
10gy/5 N/B

Leif Walsh Fractal Trees April 16,2015 11/33

Write-optimization technique #1: OLAP

Merge sort in external memory:

A 4

Memory T T I |
(size M)

-
M 1
B [

[|

Merge sort cost in DAM model is:
@ Cost to scan through all the data once.

N N
N/B O<B|09/\/I/B B)
@ Multiplied by the # of levels in the merge tree.

10gy/5 N/B

Leif Walsh Fractal Trees April 16,2015 11/33

Write-optimization technique #1: OLAP

Insert N elements into a B-tree:

0] (NIogB /ﬁ)

Merge sort:

N N
0 <B logs B>

Leif Walsh Fractal Trees April 16,2015 12/33

Write-optimization technique #1: OLAP

Insert N elements into a B-tree:

0] (NIogB /ﬁ)

Merge sort:

N N 2N
(0] <B |°9M/B B> =~ ?

Typically, M/B is large, so only two passes are needed to sort.

Leif Walsh Fractal Trees April 16,2015 12/33

Write-optimization technique #1: OLAP

Insert N elements into a B-tree:

N
(0] (NIogB M> >N

Merge sort:

N NY 2N
o gompg)~ g

Typically, M/B is large, so only two passes are needed to sort.
Intuition: Each insert into a B-tree costs ~1 seek, while sorting is close to disk bandwidth.

Leif Walsh Fractal Trees April 16,2015 12/33

Write-optimization technique #1: OLAP

Insert N elements into a B-tree: (assuming 100-1000 byte elements)

N
(0] (NIogB M> > N =~ 10 — 100kB/s = 100 elements/s

Merge sort:

N NY 2N
o gompg)~ g

Typically, M/B is large, so only two passes are needed to sort.
Intuition: Each insert into a B-tree costs ~1 seek, while sorting is close to disk bandwidth.

Leif Walsh Fractal Trees April 16,2015 12/33

Write-optimization technique #1: OLAP

Insert N elements into a B-tree: (assuming 100-1000 byte elements)

N
(0] (NIogB M> > N =~ 10 — 100kB/s = 100 elements/s

Merge sort:

N N 2N
0] <B logy/s B> g A 50MB/s = 50k — 500k elements/s

Typically, M/B is large, so only two passes are needed to sort.
Intuition: Each insert into a B-tree costs ~1 seek, while sorting is close to disk bandwidth.

Leif Walsh Fractal Trees April 16,2015 12/33

Write-optimization technique #1: OLAP

So, how does OLAP work?

Leif Walsh Fractal Trees April 16,2015 13/33

Write-optimization technique #1: OLAP

So, how does OLAP work?

@ Log new data unindexed until you accumulate a lot of it (~10% of the data set).

Leif Walsh Fractal Trees April 16,2015 13/33

Write-optimization technique #1: OLAP

So, how does OLAP work?

@ Log new data unindexed until you accumulate a lot of it (~10% of the data set).
@ Sort the new data.

Leif Walsh Fractal Trees April 16,2015 13/33

Write-optimization technique #1: OLAP

So, how does OLAP work?

@ Log new data unindexed until you accumulate a lot of it (~10% of the data set).
@ Sort the new data.
@ Use a merge pass through existing indexes to incorporate new data.

Leif Walsh Fractal Trees April 16,2015 13/33

Write-optimization technique #1: OLAP

So, how does OLAP work?

@ Log new data unindexed until you accumulate a lot of it (~10% of the data set).
@ Sort the new data.

@ Use a merge pass through existing indexes to incorporate new data.

@ Use indexes to do analytics.

Leif Walsh Fractal Trees April 16,2015 13/33

Write-optimization technique #1: OLAP

So, how does OLAP work?

@ Log new data unindexed until you accumulate a lot of it (~10% of the data set).
@ Sort the new data.

@ Use a merge pass through existing indexes to incorporate new data.

@ Use indexes to do analytics.

Moral: OLAP techniques can handle high insertion volume, but query results are delayed.

Leif Walsh Fractal Trees April 16,2015 13/33

Write-optimization technique #1: OLAP

So, how does OLAP work?

@ Log new data unindexed until you accumulate a lot of it (~10% of the data set).
@ Sort the new data.

@ Use a merge pass through existing indexes to incorporate new data.

@ Use indexes to do analytics.

Moral: OLAP techniques can handle high insertion volume, but query results are delayed.

Leif Walsh Fractal Trees April 16,2015 13/33

Write-optimization in external memory data structures

LSM-trees

Leif Walsh Fractal Trees April 16,2015 14/33

Write-optimization technique #2: LSM-trees

The insight for LSM-trees starts by asking: how can we reduce the queryability delay in OLAP?

Leif Walsh Fractal Trees April 16,2015 15/33

Write-optimization technique #2: LSM-trees

The insight for LSM-trees starts by asking: how can we reduce the queryability delay in OLAP?
The buffer is small, let’s index it!

Leif Walsh Fractal Trees April 16,2015 15/33

Write-optimization technique #2: LSM-trees

The insight for LSM-trees starts by asking: how can we reduce the queryability delay in OLAP?
The buffer is small, let’s index it!

@ Inserts go into the “buffer B-tree”.

@ When the buffer gets full, we merge it with the “main B-tree”.

Queries have to touch both trees and merge results, but results are available immediately.

Leif Walsh Fractal Trees April 16,2015 15/33

Write-optimization technique #2: LSM-trees

The insight for LSM-trees starts by asking: how can we reduce the queryability delay in OLAP?
The buffer is small, let’s index it!

@ Inserts go into the “buffer B-tree”.

@ When the buffer gets full, we merge it with the “main B-tree”.

Queries have to touch both trees and merge results, but results are available immediately.

(This specific technique (which is not yet an LSM-tree) is used in InnoDB and is called the “change buffer”)

Leif Walsh Fractal Trees April 16,2015 15/33

Write-optimization technique #2: LSM-trees

Why is this fast?

Leif Walsh Fractal Trees April 16,2015 16/33

Write-optimization technique #2: LSM-trees

Why is this fast?

@ The buffer is in-memory, so inserts are fast.

@ When we merge, we put many new elements in each leaf in the main B-tree (this amortizes
the I/0 cost to read the leaf).

Leif Walsh Fractal Trees April 16,2015 16/33

Write-optimization technique #2: LSM-trees

Why is this fast?

@ The buffer is in-memory, so inserts are fast.

@ When we merge, we put many new elements in each leaf in the main B-tree (this amortizes
the I/0 cost to read the leaf).

Eventually, we reach a problem:

Leif Walsh Fractal Trees April 16,2015 16/33

Write-optimization technique #2: LSM-trees

Why is this fast?

@ The buffer is in-memory, so inserts are fast.

@ When we merge, we put many new elements in each leaf in the main B-tree (this amortizes
the I/0 cost to read the leaf).

Eventually, we reach a problem:

o If the buffer gets too big, inserts get slow.
@ If the buffer stays too small, the merge gets inefficient (back to O(Nlogg N)).

Leif Walsh Fractal Trees April 16,2015 16/33

Write-optimization technique #2: LSM-trees

How can we fix this?

Leif Walsh Fractal Trees April 16,2015 17/33

Write-optimization technique #2: LSM-trees

How can we fix this? More buffering!

Leif Walsh Fractal Trees April 16,2015 17/33

Write-optimization technique #2: LSM-trees

How can we fix this? More buffering!

insert \

a A LD \
To T1 T2 Ts Ta

Leif Walsh Fractal Trees April 16,2015 17/33

Write-optimization technique #2: LSM-trees

How can we fix this? More buffering!

flush

aA A \ Al

ToTi1 T2 Ts Ta ToTi T Ts Ta

Leif Walsh Fractal Trees April 16,2015 17/33

Write-optimization technique #2: LSM-trees

How can we fix this? More buffering!

flush

aA A \ Al

ToTi1 T2 Ts Ta ToTi T Ts Ta

Each level is twice as large as the previous level, for some value of 2.

Leif Walsh Fractal Trees April 16,2015

17/33

Write-optimization technique #2: LSM-trees

How can we fix this? More buffering!

flush

aA A \ Al

ToTi1 T2 Ts Ta ToTi T Ts Ta

Each level is twice as large as the previous level, for some value of 2. We'll use 2.

Leif Walsh Fractal Trees April 16,2015

17/33

Write-optimization technique #2: LSM-trees

How do queries work?

Leif Walsh Fractal Trees April 16,2015 18/33

Write-optimization technique #2: LSM-trees

o A A

How do queries work?

T() T1 TQ T3 TlogN

Leif Walsh Fractal Trees April 16,2015 18/33

Write-optimization technique #2: LSM-trees

o A A

How do queries work?

T() T1 TQ T3 TlogN
Search cost is:

N N N
loggB+ ...+ Iong + IogBZ + IogB§+ logg N

Leif Walsh Fractal Trees April 16,2015 18/33

Write-optimization technique #2: LSM-trees

o A A

How do queries work?

T() T1 TQ T3 TlogN
Search cost is:

N N N
loggB+ ...+ Iong + IogBZ + IogB§+ logg N

=——(1+...4+1g(N) =3+ Ig(N) —2+ Ig(N) — 1 + Ig(N))

Leif Walsh Fractal Trees April 16,2015 18/33

Write-optimization technique #2: LSM-trees

o A A

How do queries work?

T() T1 TQ T3 TlogN
Search cost is:

N N N
+...+ Iong—i—IogBZ—i- IogB§+ logg N

=——(14+...+1g(N) =3+ Ig(N) — 2+ lg(N) — 1 + Ig(N))

Leif Walsh Fractal Trees April 16,2015 18/33

Write-optimization technique #2: LSM-trees

o A A

How do queries work?

T() T1 TQ T3 TlogN
Search cost is:

N N N
+...+ Iong—i—IogBZ—i- IogB§+ logg N

=——(I4+...4 Ig(N) =3+ Ig(N) =2+ Ig(N) — 1 + Ig(N)) = O(logN - logg N)

Leif Walsh Fractal Trees April 16,2015 18/33

Write-optimization technique #2: LSM-trees

How much do inserts cost?

Leif Walsh Fractal Trees April 16,2015 19/33

Write-optimization technique #2: LSM-trees

How much do inserts cost?
Cost to flush a tree T; of size Xis O(X/B).

Leif Walsh Fractal Trees April 16,2015 19/33

Write-optimization technique #2: LSM-trees

How much do inserts cost?
Cost to flush a tree T; of size Xis O(X/B).
Cost per element to flush T;is O(1/B).

A flush costs O(1/B) per element.

Tj has size X. Tj+1 has size ©(X).

Leif Walsh Fractal Trees April 16,2015 19/33

Write-optimization technique #2: LSM-trees

How much do inserts cost?
Cost to flush a tree T; of size Xis O(X/B).
Cost per element to flush T;is O(1/B).

A flush costs O(1/B) per element.

Tj has size X. Tj+1 has size ©(X).

Each element moves < log N times.

Leif Walsh Fractal Trees April 16,2015 19/33

Write-optimization technique #2: LSM-trees

How much do inserts cost?
Cost to flush a tree T; of size Xis O(X/B).
Cost per element to flush T;is O(1/B).

A flush costs O(1/B) per element.

Tj has size X. Tj+1 has size ©(X).

Each element moves < log N times.

Total amortized insert cost per element is O ('OgN).

Leif Walsh Fractal Trees April 16,2015 19/33

Write-optimization in external memory data structures

Fractal Trees

Leif Walsh Fractal Trees April 16,2015 20/33

Write-optimization technique #3: Fractal Trees

The pain in LSM-trees is doing a full O(logg N) search in each level.

Leif Walsh Fractal Trees April 16,2015 21/33

Write-optimization technique #3: Fractal Trees

The pain in LSM-trees is doing a full O(logg N) search in each level.
We use fractional cascading to reduce the search per level to O(1).

Leif Walsh Fractal Trees April 16,2015 21/33

Write-optimization technique #3: Fractal Trees

The pain in LSM-trees is doing a full O(logg N) search in each level.
We use fractional cascading to reduce the search per level to O(1).

The idea is that once we've searched T;, we know where the key would be in T;, and we can use
that information to guide our search of Tj .

Leif Walsh Fractal Trees April 16,2015 21/33

Write-optimization technique #3: Fractal Trees

The pain in LSM-trees is doing a full O(logg N) search in each level.
We use fractional cascading to reduce the search per level to O(1).

The idea is that once we've searched T;, we know where the key would be in T;, and we can use
that information to guide our search of Tj .

Let's examine the leaves of two consecutive levels of the LSM-tree...

Leif Walsh Fractal Trees April 16,2015 21/33

Write-optimization technique #3: Fractal Trees

Add forwarding pointers from leaves in T; to leaves in T;1 (but remove the redundant ones that
point to the same leaf):

T

- lze gl

Tina

B CRCV] LRI X DR

Leif Walsh Fractal Trees April 16,2015 22/33

Write-optimization technique #3: Fractal Trees

Add forwarding pointers from leaves in T; to leaves in T;1 (but remove the redundant ones that
point to the same leaf):

T

- lze gl
I EXENEIYA DRI ENC) M

Now, from a leaf node in T;, we can jump forward to some of the leaves in T;;; without
searching the whole tree at T, ;.

Leif Walsh Fractal Trees April 16,2015 22/33

Write-optimization technique #3: Fractal Trees

Add ghost pointers to leaves not pointed to in Ti; 1 in leaves in T;:

Leif Walsh Fractal Trees April 16,2015 23/33

Write-optimization technique #3: Fractal Trees

Add ghost pointers to leaves not pointed to in Ti; 1 in leaves in T;:

Now every leaf in T;11 can be reached by a pointer in a leaf node in T;.

Leif Walsh Fractal Trees April 16,2015 23/33

Write-optimization technique #3: Fractal Trees

[Bender, Farach-Colton, Fineman, Fogel, Kuszmaul, & Nelson '07]

After searching T; for a missing element ¢, we look left and right for forwarding or ghost
pointers, and follow them down to look at O(1) leaves in Tjy ;.

Leif Walsh Fractal Trees April 16,2015 24/33

Write-optimization technique #3: Fractal Trees

[Bender, Farach-Colton, Fineman, Fogel, Kuszmaul, & Nelson '07]

After searching T; for a missing element ¢, we look left and right for forwarding or ghost
pointers, and follow them down to look at O(1) leaves in Tjy ;.

This way, search is only O(logg N) (in our example, R = 2).

Leif Walsh Fractal Trees April 16,2015 24/33

Write-optimization technique #3: Fractal Trees

[Bender, Farach-Colton, Fineman, Fogel, Kuszmaul, & Nelson '07]

The internal node structure in each level is now redundant, so we can represent each level as an
array. We can forget about the B-tree structure above the leaves in each level!
This is called a Cache-Oblivious Lookahead Array.

Leif Walsh Fractal Trees April 16,2015 25/33

Write-optimization technique #3: Fractal Trees

The amortized analysis says our inserts are fast, but we flush a very large level to the next one,
we might see a big stall. Concurrent merge algorithms exist, but we can do better.

Leif Walsh Fractal Trees April 16,2015 26/33

Write-optimization technique #3: Fractal Trees

The amortized analysis says our inserts are fast, but we flush a very large level to the next one,
we might see a big stall. Concurrent merge algorithms exist, but we can do better.

We break each level’s array into chunks that can be flushed independently. Each chunk flushes
to a small region of a few chunks in the next level down, found using its forwarding pointers.

Leif Walsh Fractal Trees April 16,2015 26/33

Write-optimization technique #3: Fractal Trees

The amortized analysis says our inserts are fast, but we flush a very large level to the next one,
we might see a big stall. Concurrent merge algorithms exist, but we can do better.

We break each level’s array into chunks that can be flushed independently. Each chunk flushes
to a small region of a few chunks in the next level down, found using its forwarding pointers.

Now we have a tree again!

= S

Leif Walsh Fractal Trees April 16,2015 26/33

Write-optimization technique #3: Fractal Trees

Fractal Tree Advantages over COLA:

Leif Walsh Fractal Trees April 16,2015 27/33

Write-optimization technique #3: Fractal Trees

Fractal Tree Advantages over COLA:

@ Easier to manage an LRU cache of blocks.

Leif Walsh Fractal Trees April 16,2015 27/33

Write-optimization technique #3: Fractal Trees

Fractal Tree Advantages over COLA:

@ Easier to manage an LRU cache of blocks.
@ More flexible with “hotspots’, or non-uniform workload distributions.

Leif Walsh Fractal Trees April 16,2015 27/33

Write-optimization technique #3: Fractal Trees

Fractal Tree Advantages over COLA:

@ Easier to manage an LRU cache of blocks.
@ More flexible with “hotspots’, or non-uniform workload distributions.
© Flushes are O(1), so easier to reduce latency and increase concurrency with client work.

Leif Walsh Fractal Trees April 16,2015 27/33

Write-optimization technique #3: Fractal Trees

Fractal Tree Advantages over COLA:

@ Easier to manage an LRU cache of blocks.

@ More flexible with “hotspots’, or non-uniform workload distributions.

© Flushes are O(1), so easier to reduce latency and increase concurrency with client work.
© Easier to implement a concurrent checkpoint algorithm with small flushes.

Leif Walsh Fractal Trees April 16,2015 27/33

Write-optimization technique #3: Fractal Trees

Fractal Tree Advantages over COLA:

Easier to manage an LRU cache of blocks.

More flexible with “hotspots’, or non-uniform workload distributions.

Flushes are O(1), so easier to reduce latency and increase concurrency with client work.
Easier to implement a concurrent checkpoint algorithm with small flushes.

00000

Enables good tradeoffs for queries, and allows that computation to be cached without
inducing I/O (this is enough complexity for a whole other talk).

Leif Walsh Fractal Trees April 16,2015 27/33

@ Modified B-tree-like dynamic (inserts, updates, deletes) data structure that supports point
and range queries.

@ Inserts are a factor B/ log B (typically 10-100x in practice) faster than a B-tree:
0(*g") <o (5)-

@ Searches are a factor log B/ log R slower than a B-tree: O (:gg,/\al> >0 <'|Zg';’)

@ To amortize flush costs over many elements, we want each block we write to be large
(~4MB), much larger than typical B-tree blocks (~16KB). These compress well.

Leif Walsh Fractal Trees April 16,2015 28/33

Applications

TokuDB for MySQL, TokuMX for MongoDB:
@ Faster indexed insertions.
@ Hot schema changes.
@ Compression.
Read-free replication on secondaries.
Fast (no read before write) updates with messages in buffers.

°
°

@ ACID transactions.

@ Mixed workload concurrency.
°

Faster sharding migrations (TokuMX).

Leif Walsh Fractal Trees April 16,2015 29/33

Benchmarks

iiBench - 1 Billion Row Insertion Test
iiBench Benchmark (throughput) 45,000

TokuMX vs. MongoDB
(higher is better)

40,000 |
25000
TokuMX ——
MongoDB —— 35,000
20000 S R 30,000
2
§ 25,000
2]
e Taoo N
g 20000 1Y A o334
= A T T ¥t e oo
10000 15,000 an
10,000 t
5000 IVl oo | L
Ity W) o, — I
0 L 1 1 v -’\’*\,,{_ o - — ———
10000000 30000000 50000000 70000000 90000000 0 100 200 300 400 500 600 700 800 900 1000
Inserted Rows Rows Inserted (M)

MongoDB MySQL

Fractal Trees

, 2015 30/33

Benchmarks

iiBench Benchmark (Average Write |0Ps)
TokuMX vs. MongoDB
(lower is better)

3000
TokuMX ——
MongoDB ——
2500 -
o
c 2000
o /
o [
3 /
o 1500 - it
[/
o "
'd
& 1000 -
=l
500
[
N ‘ . . ‘
40000 60000 80000 100000 120000

0 20000
Seconds

100M inserts into a collection with 3 secondary indexes

, 2015 31/33

Fractal Trees

Benchmarks

25.00
2042
20.00
8 1500 14.60
E
;
i
£
Fl 10.00
@
5.00
225
- = =
g = ==
MongoDB TokuMX TokuMX TokuMX TokuMX
uncompressed quicklz 2lib lzma

Leif Walsh Fractal Trees April 16,2015 32/33

Questions?

Leif Walsh

Leif Walsh
@leifwalsh
Downloads: www.tokutek.com/downloads
Docs: docs.tokutek.com
Slides: bit.ly/1auluvr

Fractal Trees April 16,2015 33/33

https://twitter.com/leifwalsh
http://www.tokutek.com/downloads
http://docs.tokutek.com
http://bit.ly/1au1uvr

	Background
	OLAP
	LSM-trees
	Fractal Trees
	Results

