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Write-optimization in external memory data structures

Data structures:
@ Provide retrieval of data.

o Lookup(Key)
o Pred(Key)
o Succ(Key)

@ Dynamic data structures let you change
the data.

o Insert(Key, Value)
o Delete(Key)
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[Aggarwal & Vitter '88]

DAM model

@ Problem size N.
@ Memory size M.
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Write-optimization in external memory data structures

[Aggarwal & Vitter '88]

Efficiency of operations is measured as the
DAM model number of block transfers, a.k.a. |OPS.

@ Problem size N.
@ Memory size M.

@ Transfer data to/from memory in blocks
of size B.
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Write-optimization in external memory data structures

A B-tree is an external memory data structure:

@ Internal nodes < M.
@ Balanced search tree. o Leaf nodes > M.
@ Search: O(logg N) 1/0s

@ Insert: O(logg N) 1/0s

@ Fanout of B
(block size / key size).
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Write-optimization in external memory data structures

[Brodal & Fagerberg 03]
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Write-optimization in external memory data structures

Leif Walsh
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OLAP
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OLAP: Online Analytical Processing
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Write-optimization technique #1: OLAP

OLAP: Online Analytical Processing
Key idea: Analyze data collected in the past.
B-tree inserts are slow, but...logging and sorting are fast.

Plan: Log new data unsorted, then build indexes in large batches.
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Write-optimization technique #1: OLAP

Merge sort:
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Merge sort cost in DAM model is:
@ Cost to scan through all the data once.

@ Multiplied by the # of levels in the merge tree.
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Merge sort in external memory:
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Merge sort cost in DAM model is:
@ Cost to scan through all the data once.

N N
N/B O<B|09/\/I/B B)
@ Multiplied by the # of levels in the merge tree.
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Write-optimization technique #1: OLAP

Insert N elements into a B-tree:

0] (NIogB /ﬁ)

Merge sort:

N N
0 <B logs B>
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Insert N elements into a B-tree:

N
(0] (NIogB M> >N

Merge sort:
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Typically, M/B is large, so only two passes are needed to sort.
Intuition: Each insert into a B-tree costs ~1 seek, while sorting is close to disk bandwidth.
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Insert N elements into a B-tree: (assuming 100-1000 byte elements)

N
(0] (NIogB M> > N =~ 10 — 100kB/s = 100 elements/s

Merge sort:

N N 2N
0] <B logy/s B> g A 50MB/s = 50k — 500k elements/s

Typically, M/B is large, so only two passes are needed to sort.
Intuition: Each insert into a B-tree costs ~1 seek, while sorting is close to disk bandwidth.
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LSM-trees
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Write-optimization technique #2: LSM-trees

The insight for LSM-trees starts by asking: how can we reduce the queryability delay in OLAP?
The buffer is small, let’s index it!

@ Inserts go into the “buffer B-tree”.

@ When the buffer gets full, we merge it with the “main B-tree”.

Queries have to touch both trees and merge results, but results are available immediately.

(This specific technique (which is not yet an LSM-tree) is used in InnoDB and is called the “change buffer”)
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Why is this fast?
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Write-optimization technique #2: LSM-trees

Why is this fast?

@ The buffer is in-memory, so inserts are fast.

@ When we merge, we put many new elements in each leaf in the main B-tree (this amortizes
the I/0 cost to read the leaf).

Eventually, we reach a problem:

o If the buffer gets too big, inserts get slow.
@ If the buffer stays too small, the merge gets inefficient (back to O(Nlogg N)).
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How can we fix this?
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Write-optimization technique #2: LSM-trees

How can we fix this? More buffering!

flush

aA A \ Al

ToTi1 T2 Ts Ta ToTi T Ts Ta

Each level is twice as large as the previous level, for some value of 2. We'll use 2.
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How do queries work?
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Write-optimization technique #2: LSM-trees

o A A

How do queries work?

T() T1 TQ T3 TlogN
Search cost is:

N N N
+...+ Iong—i—IogBZ—i- IogB§+ logg N

=——(I4+...4 Ig(N) =3+ Ig(N) =2+ Ig(N) — 1 + Ig(N)) = O(logN - logg N)
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Write-optimization technique #2: LSM-trees

How much do inserts cost?
Cost to flush a tree T; of size Xis O(X/B).
Cost per element to flush T;is O(1/B).

A flush costs O(1/B) per element.

Tj has size X. Tj+1 has size ©(X).

Each element moves < log N times.

Total amortized insert cost per element is O ('OgN).
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Fractal Trees
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The pain in LSM-trees is doing a full O(logg N) search in each level.
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Write-optimization technique #3: Fractal Trees

The pain in LSM-trees is doing a full O(logg N) search in each level.
We use fractional cascading to reduce the search per level to O(1).

The idea is that once we've searched T;, we know where the key would be in T;, and we can use
that information to guide our search of Tj .

Let's examine the leaves of two consecutive levels of the LSM-tree...
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Write-optimization technique #3: Fractal Trees

Add forwarding pointers from leaves in T; to leaves in T;1 (but remove the redundant ones that
point to the same leaf):

T

- lze gl

Tina

B CRCV] LRI X DR
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Write-optimization technique #3: Fractal Trees

Add forwarding pointers from leaves in T; to leaves in T;1 (but remove the redundant ones that
point to the same leaf):

T

- lze gl
I EXENEIYA DRI ENC) M

Now, from a leaf node in T;, we can jump forward to some of the leaves in T;;; without
searching the whole tree at T, ;.
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Write-optimization technique #3: Fractal Trees

Add ghost pointers to leaves not pointed to in Ti; 1 in leaves in T;:
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Write-optimization technique #3: Fractal Trees

Add ghost pointers to leaves not pointed to in Ti; 1 in leaves in T;:

Now every leaf in T;11 can be reached by a pointer in a leaf node in T;.
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Write-optimization technique #3: Fractal Trees

[Bender, Farach-Colton, Fineman, Fogel, Kuszmaul, & Nelson '07]

After searching T; for a missing element ¢, we look left and right for forwarding or ghost
pointers, and follow them down to look at O(1) leaves in Tjy ;.
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[Bender, Farach-Colton, Fineman, Fogel, Kuszmaul, & Nelson '07]

After searching T; for a missing element ¢, we look left and right for forwarding or ghost
pointers, and follow them down to look at O(1) leaves in Tjy ;.

This way, search is only O(logg N) (in our example, R = 2).

Leif Walsh Fractal Trees April 16,2015 24/33



Write-optimization technique #3: Fractal Trees

[Bender, Farach-Colton, Fineman, Fogel, Kuszmaul, & Nelson '07]

The internal node structure in each level is now redundant, so we can represent each level as an
array. We can forget about the B-tree structure above the leaves in each level!
This is called a Cache-Oblivious Lookahead Array.
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Write-optimization technique #3: Fractal Trees

The amortized analysis says our inserts are fast, but we flush a very large level to the next one,
we might see a big stall. Concurrent merge algorithms exist, but we can do better.
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The amortized analysis says our inserts are fast, but we flush a very large level to the next one,
we might see a big stall. Concurrent merge algorithms exist, but we can do better.

We break each level’s array into chunks that can be flushed independently. Each chunk flushes
to a small region of a few chunks in the next level down, found using its forwarding pointers.
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Write-optimization technique #3: Fractal Trees

The amortized analysis says our inserts are fast, but we flush a very large level to the next one,
we might see a big stall. Concurrent merge algorithms exist, but we can do better.

We break each level’s array into chunks that can be flushed independently. Each chunk flushes
to a small region of a few chunks in the next level down, found using its forwarding pointers.

Now we have a tree again!

= S
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Write-optimization technique #3: Fractal Trees

Fractal Tree Advantages over COLA:
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Write-optimization technique #3: Fractal Trees

Fractal Tree Advantages over COLA:

Easier to manage an LRU cache of blocks.

More flexible with “hotspots’, or non-uniform workload distributions.

Flushes are O(1), so easier to reduce latency and increase concurrency with client work.
Easier to implement a concurrent checkpoint algorithm with small flushes.

00000

Enables good tradeoffs for queries, and allows that computation to be cached without
inducing I/O (this is enough complexity for a whole other talk).
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@ Modified B-tree-like dynamic (inserts, updates, deletes) data structure that supports point
and range queries.

@ Inserts are a factor B/ log B (typically 10-100x in practice) faster than a B-tree:
0(*g") <o (5)-

@ Searches are a factor log B/ log R slower than a B-tree: O (:gg,/\al> >0 <'|Zg';’)

@ To amortize flush costs over many elements, we want each block we write to be large
(~4MB), much larger than typical B-tree blocks (~16KB). These compress well.
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Applications

TokuDB for MySQL, TokuMX for MongoDB:
@ Faster indexed insertions.
@ Hot schema changes.
@ Compression.
Read-free replication on secondaries.
Fast (no read before write) updates with messages in buffers.

°
°

@ ACID transactions.

@ Mixed workload concurrency.
°

Faster sharding migrations (TokuMX).
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Benchmarks

iiBench - 1 Billion Row Insertion Test
iiBench Benchmark (throughput) 45,000

TokuMX vs. MongoDB
(higher is better)
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Benchmarks

iiBench Benchmark (Average Write |0Ps)
TokuMX vs. MongoDB
(lower is better)
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Benchmarks
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Questions?

Leif Walsh

Leif Walsh
@leifwalsh
Downloads: www.tokutek.com/downloads
Docs: docs.tokutek.com
Slides: bit.ly/1auluvr
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