
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization in external memory data structures

Leif Walsh

Two Sigma Investments, LLC.
leif.walsh@gmail.com

@leifwalsh

April 16, 2015

Leif Walsh Fractal Trees April 16, 2015 1 / 33

mailto:leif.walsh@gmail.com
https://twitter.com/leifwalsh


.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization in external memory data structures

Background

Leif Walsh Fractal Trees April 16, 2015 2 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization in external memory data structures

Data structures:

Provide retrieval of data.
Lookup(Key)
Pred(Key)
Succ(Key)

Dynamic data structures let you change
the data.

Insert(Key, Value)
Delete(Key)

Leif Walsh Fractal Trees April 16, 2015 3 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization in external memory data structures

Data structures:

Provide retrieval of data.
Lookup(Key)
Pred(Key)
Succ(Key)

Dynamic data structures let you change
the data.

Insert(Key, Value)
Delete(Key)

Leif Walsh Fractal Trees April 16, 2015 3 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization in external memory data structures

Data structures:
Provide retrieval of data.

Lookup(Key)
Pred(Key)
Succ(Key)

Dynamic data structures let you change
the data.

Insert(Key, Value)
Delete(Key)

Leif Walsh Fractal Trees April 16, 2015 3 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization in external memory data structures

Data structures:
Provide retrieval of data.

Lookup(Key)
Pred(Key)
Succ(Key)

Dynamic data structures let you change
the data.

Insert(Key, Value)
Delete(Key)

Leif Walsh Fractal Trees April 16, 2015 3 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization in external memory data structures

DAM model

Problem size N.

Memory sizeM.

Transfer data to/from memory in blocks
of size B.

Efficiency of operations is measured as the
number of block transfers, a.k.a. IOPS.

Leif Walsh Fractal Trees April 16, 2015 4 / 33

[Aggarwal & Vitter ’88]



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization in external memory data structures

DAM model

Problem size N.

Memory sizeM.

Transfer data to/from memory in blocks
of size B.

Efficiency of operations is measured as the
number of block transfers, a.k.a. IOPS.

Leif Walsh Fractal Trees April 16, 2015 4 / 33

[Aggarwal & Vitter ’88]



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization in external memory data structures

DAM model

Problem size N.

Memory sizeM.

Transfer data to/from memory in blocks
of size B.

Efficiency of operations is measured as the
number of block transfers, a.k.a. IOPS.

Leif Walsh Fractal Trees April 16, 2015 4 / 33

[Aggarwal & Vitter ’88]



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization in external memory data structures

A B-tree is an external memory data structure:

Balanced search tree.

Fanout of B
(block size / key size).

Internal nodes< M.

Leaf nodes> M.

Search: O(logB N) I/Os

Insert: O(logB N) I/Os

Leif Walsh Fractal Trees April 16, 2015 5 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization in external memory data structures

A B-tree is an external memory data structure:

Balanced search tree.

Fanout of B
(block size / key size).

Internal nodes< M.

Leaf nodes> M.

Search: O(logB N) I/Os

Insert: O(logB N) I/Os

Leif Walsh Fractal Trees April 16, 2015 5 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization in external memory data structures

A B-tree is an external memory data structure:

Balanced search tree.

Fanout of B
(block size / key size).

Internal nodes< M.

Leaf nodes> M.

Search: O(logB N) I/Os

Insert: O(logB N) I/Os

Leif Walsh Fractal Trees April 16, 2015 5 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization in external memory data structures

A B-tree is an external memory data structure:

Balanced search tree.

Fanout of B
(block size / key size).

Internal nodes< M.

Leaf nodes> M.

Search: O(logB N) I/Os

Insert: O(logB N) I/Os

Leif Walsh Fractal Trees April 16, 2015 5 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization in external memory data structures

A B-tree is an external memory data structure:

Balanced search tree.

Fanout of B
(block size / key size).

Internal nodes< M.

Leaf nodes> M.

Search: O(logB N) I/Os

Insert: O(logB N) I/Os

Leif Walsh Fractal Trees April 16, 2015 5 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization in external memory data structures

Leif Walsh Fractal Trees April 16, 2015 6 / 33

[Brodal & Fagerberg ’03]



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization in external memory data structures

Leif Walsh Fractal Trees April 16, 2015 7 / 33

[Brodal & Fagerberg ’03]



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization in external memory data structures

OLAP

Leif Walsh Fractal Trees April 16, 2015 8 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #1: OLAP

OLAP: Online Analytical Processing

Key idea: Analyze data collected in the past.
B-tree inserts are slow, but…logging and sorting are fast.

Plan: Log new data unsorted, then build indexes in large batches.

Leif Walsh Fractal Trees April 16, 2015 9 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #1: OLAP

OLAP: Online Analytical Processing
Key idea: Analyze data collected in the past.

B-tree inserts are slow, but…logging and sorting are fast.

Plan: Log new data unsorted, then build indexes in large batches.

Leif Walsh Fractal Trees April 16, 2015 9 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #1: OLAP

OLAP: Online Analytical Processing
Key idea: Analyze data collected in the past.
B-tree inserts are slow, but…logging and sorting are fast.

Plan: Log new data unsorted, then build indexes in large batches.

Leif Walsh Fractal Trees April 16, 2015 9 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #1: OLAP

OLAP: Online Analytical Processing
Key idea: Analyze data collected in the past.
B-tree inserts are slow, but…logging and sorting are fast.

Plan: Log new data unsorted, then build indexes in large batches.

Leif Walsh Fractal Trees April 16, 2015 9 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #1: OLAP

Merge sort:

Leif Walsh Fractal Trees April 16, 2015 10 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #1: OLAP

Merge sort in external memory:

Merge sort cost in DAM model is:
Cost to scan through all the data once.

N/B

Multiplied by the # of levels in the merge tree.

logM/B N/B

O
(
N
B
logM/B

N
B

)

Leif Walsh Fractal Trees April 16, 2015 11 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #1: OLAP

Merge sort in external memory:

Merge sort cost in DAM model is:
Cost to scan through all the data once.

N/B

Multiplied by the # of levels in the merge tree.

logM/B N/B

O
(
N
B
logM/B

N
B

)

Leif Walsh Fractal Trees April 16, 2015 11 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #1: OLAP

Merge sort in external memory:

Merge sort cost in DAM model is:
Cost to scan through all the data once.

N/B

Multiplied by the # of levels in the merge tree.

logM/B N/B

O
(
N
B
logM/B

N
B

)

Leif Walsh Fractal Trees April 16, 2015 11 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #1: OLAP

Merge sort in external memory:

Merge sort cost in DAM model is:
Cost to scan through all the data once.

N/B

Multiplied by the # of levels in the merge tree.
logM/B N/B

O
(
N
B
logM/B

N
B

)

Leif Walsh Fractal Trees April 16, 2015 11 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #1: OLAP

Merge sort in external memory:

Merge sort cost in DAM model is:
Cost to scan through all the data once.

N/B

Multiplied by the # of levels in the merge tree.
logM/B N/B

O
(
N
B
logM/B

N
B

)

Leif Walsh Fractal Trees April 16, 2015 11 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #1: OLAP

Insert N elements into a B-tree:

(assuming 100-1000 byte elements)

O
(
N logB

N
M

)

≥ N ≈ 10− 100kB/s = 100 elements/s

Merge sort:

O
(
N
B

logM/B
N
B

)

≈ 2N
B

≈ 50MB/s = 50k− 500k elements/s

Typically,M/B is large, so only two passes are needed to sort.
Intuition: Each insert into a B-tree costs ∼1 seek, while sorting is close to disk bandwidth.

Leif Walsh Fractal Trees April 16, 2015 12 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #1: OLAP

Insert N elements into a B-tree:

(assuming 100-1000 byte elements)

O
(
N logB

N
M

)

≥ N ≈ 10− 100kB/s = 100 elements/s

Merge sort:

O
(
N
B

logM/B
N
B

)
≈ 2N

B

≈ 50MB/s = 50k− 500k elements/s

Typically,M/B is large, so only two passes are needed to sort.

Intuition: Each insert into a B-tree costs ∼1 seek, while sorting is close to disk bandwidth.

Leif Walsh Fractal Trees April 16, 2015 12 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #1: OLAP

Insert N elements into a B-tree:

(assuming 100-1000 byte elements)

O
(
N logB

N
M

)
≥ N

≈ 10− 100kB/s = 100 elements/s

Merge sort:

O
(
N
B

logM/B
N
B

)
≈ 2N

B

≈ 50MB/s = 50k− 500k elements/s

Typically,M/B is large, so only two passes are needed to sort.
Intuition: Each insert into a B-tree costs ∼1 seek, while sorting is close to disk bandwidth.

Leif Walsh Fractal Trees April 16, 2015 12 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #1: OLAP

Insert N elements into a B-tree: (assuming 100-1000 byte elements)

O
(
N logB

N
M

)
≥ N ≈ 10− 100kB/s = 100 elements/s

Merge sort:

O
(
N
B

logM/B
N
B

)
≈ 2N

B

≈ 50MB/s = 50k− 500k elements/s

Typically,M/B is large, so only two passes are needed to sort.
Intuition: Each insert into a B-tree costs ∼1 seek, while sorting is close to disk bandwidth.

Leif Walsh Fractal Trees April 16, 2015 12 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #1: OLAP

Insert N elements into a B-tree: (assuming 100-1000 byte elements)

O
(
N logB

N
M

)
≥ N ≈ 10− 100kB/s = 100 elements/s

Merge sort:

O
(
N
B

logM/B
N
B

)
≈ 2N

B
≈ 50MB/s = 50k− 500k elements/s

Typically,M/B is large, so only two passes are needed to sort.
Intuition: Each insert into a B-tree costs ∼1 seek, while sorting is close to disk bandwidth.

Leif Walsh Fractal Trees April 16, 2015 12 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #1: OLAP

So, how does OLAP work?

Log new data unindexed until you accumulate a lot of it (∼10% of the data set).

Sort the new data.

Use a merge pass through existing indexes to incorporate new data.

Use indexes to do analytics.

Moral: OLAP techniques can handle high insertion volume, but query results are delayed.

Leif Walsh Fractal Trees April 16, 2015 13 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #1: OLAP

So, how does OLAP work?

Log new data unindexed until you accumulate a lot of it (∼10% of the data set).

Sort the new data.

Use a merge pass through existing indexes to incorporate new data.

Use indexes to do analytics.

Moral: OLAP techniques can handle high insertion volume, but query results are delayed.

Leif Walsh Fractal Trees April 16, 2015 13 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #1: OLAP

So, how does OLAP work?

Log new data unindexed until you accumulate a lot of it (∼10% of the data set).

Sort the new data.

Use a merge pass through existing indexes to incorporate new data.

Use indexes to do analytics.

Moral: OLAP techniques can handle high insertion volume, but query results are delayed.

Leif Walsh Fractal Trees April 16, 2015 13 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #1: OLAP

So, how does OLAP work?

Log new data unindexed until you accumulate a lot of it (∼10% of the data set).

Sort the new data.

Use a merge pass through existing indexes to incorporate new data.

Use indexes to do analytics.

Moral: OLAP techniques can handle high insertion volume, but query results are delayed.

Leif Walsh Fractal Trees April 16, 2015 13 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #1: OLAP

So, how does OLAP work?

Log new data unindexed until you accumulate a lot of it (∼10% of the data set).

Sort the new data.

Use a merge pass through existing indexes to incorporate new data.

Use indexes to do analytics.

Moral: OLAP techniques can handle high insertion volume, but query results are delayed.

Leif Walsh Fractal Trees April 16, 2015 13 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #1: OLAP

So, how does OLAP work?

Log new data unindexed until you accumulate a lot of it (∼10% of the data set).

Sort the new data.

Use a merge pass through existing indexes to incorporate new data.

Use indexes to do analytics.

Moral: OLAP techniques can handle high insertion volume, but query results are delayed.

Leif Walsh Fractal Trees April 16, 2015 13 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #1: OLAP

So, how does OLAP work?

Log new data unindexed until you accumulate a lot of it (∼10% of the data set).

Sort the new data.

Use a merge pass through existing indexes to incorporate new data.

Use indexes to do analytics.

Moral: OLAP techniques can handle high insertion volume, but query results are delayed.

Leif Walsh Fractal Trees April 16, 2015 13 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization in external memory data structures

LSM-trees

Leif Walsh Fractal Trees April 16, 2015 14 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #2: LSM-trees

The insight for LSM-trees starts by asking: how can we reduce the queryability delay in OLAP?

The buffer is small, let’s index it!

Inserts go into the “buffer B-tree”.

When the buffer gets full, we merge it with the “main B-tree”.

Queries have to touch both trees and merge results, but results are available immediately.

(This specific technique (which is not yet an LSM-tree) is used in InnoDB and is called the “change buffer”.)

Leif Walsh Fractal Trees April 16, 2015 15 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #2: LSM-trees

The insight for LSM-trees starts by asking: how can we reduce the queryability delay in OLAP?
The buffer is small, let’s index it!

Inserts go into the “buffer B-tree”.

When the buffer gets full, we merge it with the “main B-tree”.

Queries have to touch both trees and merge results, but results are available immediately.

(This specific technique (which is not yet an LSM-tree) is used in InnoDB and is called the “change buffer”.)

Leif Walsh Fractal Trees April 16, 2015 15 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #2: LSM-trees

The insight for LSM-trees starts by asking: how can we reduce the queryability delay in OLAP?
The buffer is small, let’s index it!

Inserts go into the “buffer B-tree”.

When the buffer gets full, we merge it with the “main B-tree”.

Queries have to touch both trees and merge results, but results are available immediately.

(This specific technique (which is not yet an LSM-tree) is used in InnoDB and is called the “change buffer”.)

Leif Walsh Fractal Trees April 16, 2015 15 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #2: LSM-trees

The insight for LSM-trees starts by asking: how can we reduce the queryability delay in OLAP?
The buffer is small, let’s index it!

Inserts go into the “buffer B-tree”.

When the buffer gets full, we merge it with the “main B-tree”.

Queries have to touch both trees and merge results, but results are available immediately.

(This specific technique (which is not yet an LSM-tree) is used in InnoDB and is called the “change buffer”.)

Leif Walsh Fractal Trees April 16, 2015 15 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #2: LSM-trees

Why is this fast?

The buffer is in-memory, so inserts are fast.

When we merge, we put many new elements in each leaf in the main B-tree (this amortizes
the I/O cost to read the leaf ).

Eventually, we reach a problem:

If the buffer gets too big, inserts get slow.

If the buffer stays too small, the merge gets inefficient (back to O(N logB N)).

Leif Walsh Fractal Trees April 16, 2015 16 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #2: LSM-trees

Why is this fast?

The buffer is in-memory, so inserts are fast.

When we merge, we put many new elements in each leaf in the main B-tree (this amortizes
the I/O cost to read the leaf ).

Eventually, we reach a problem:

If the buffer gets too big, inserts get slow.

If the buffer stays too small, the merge gets inefficient (back to O(N logB N)).

Leif Walsh Fractal Trees April 16, 2015 16 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #2: LSM-trees

Why is this fast?

The buffer is in-memory, so inserts are fast.

When we merge, we put many new elements in each leaf in the main B-tree (this amortizes
the I/O cost to read the leaf ).

Eventually, we reach a problem:

If the buffer gets too big, inserts get slow.

If the buffer stays too small, the merge gets inefficient (back to O(N logB N)).

Leif Walsh Fractal Trees April 16, 2015 16 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #2: LSM-trees

Why is this fast?

The buffer is in-memory, so inserts are fast.

When we merge, we put many new elements in each leaf in the main B-tree (this amortizes
the I/O cost to read the leaf ).

Eventually, we reach a problem:

If the buffer gets too big, inserts get slow.

If the buffer stays too small, the merge gets inefficient (back to O(N logB N)).

Leif Walsh Fractal Trees April 16, 2015 16 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #2: LSM-trees

How can we fix this?

More buffering!

Each level is twice as large as the previous level, for some value of 2. We’ll use 2.

Leif Walsh Fractal Trees April 16, 2015 17 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #2: LSM-trees

How can we fix this? More buffering!

Each level is twice as large as the previous level, for some value of 2. We’ll use 2.

Leif Walsh Fractal Trees April 16, 2015 17 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #2: LSM-trees

How can we fix this? More buffering!

Each level is twice as large as the previous level, for some value of 2. We’ll use 2.

Leif Walsh Fractal Trees April 16, 2015 17 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #2: LSM-trees

How can we fix this? More buffering!

Each level is twice as large as the previous level, for some value of 2. We’ll use 2.

Leif Walsh Fractal Trees April 16, 2015 17 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #2: LSM-trees

How can we fix this? More buffering!

Each level is twice as large as the previous level, for some value of 2.

We’ll use 2.

Leif Walsh Fractal Trees April 16, 2015 17 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #2: LSM-trees

How can we fix this? More buffering!

Each level is twice as large as the previous level, for some value of 2. We’ll use 2.

Leif Walsh Fractal Trees April 16, 2015 17 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #2: LSM-trees

How do queries work?

Search cost is:

logB B+ . . .+ logB
N
8
+ logB

N
4
+ logB

N
2
+ logB N

=
1

log B
(1 + . . .+ lg(N)− 3 + lg(N)− 2 + lg(N)− 1 + lg(N))

= O(logN · logB N)

Leif Walsh Fractal Trees April 16, 2015 18 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #2: LSM-trees

How do queries work?

Search cost is:

logB B+ . . .+ logB
N
8
+ logB

N
4
+ logB

N
2
+ logB N

=
1

log B
(1 + . . .+ lg(N)− 3 + lg(N)− 2 + lg(N)− 1 + lg(N))

= O(logN · logB N)

Leif Walsh Fractal Trees April 16, 2015 18 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #2: LSM-trees

How do queries work?

Search cost is:

logB B+ . . .+ logB
N
8
+ logB

N
4
+ logB

N
2
+ logB N

=
1

log B
(1 + . . .+ lg(N)− 3 + lg(N)− 2 + lg(N)− 1 + lg(N))

= O(logN · logB N)

Leif Walsh Fractal Trees April 16, 2015 18 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #2: LSM-trees

How do queries work?

Search cost is:

logB B+ . . .+ logB
N
8
+ logB

N
4
+ logB

N
2
+ logB N

=
1

log B
(1 + . . .+ lg(N)− 3 + lg(N)− 2 + lg(N)− 1 + lg(N))

= O(logN · logB N)

Leif Walsh Fractal Trees April 16, 2015 18 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #2: LSM-trees

How do queries work?

Search cost is:

logB B+ . . .+ logB
N
8
+ logB

N
4
+ logB

N
2
+ logB N

=
1

log B
(1 + . . .+ lg(N)− 3 + lg(N)− 2 + lg(N)− 1 + lg(N))

= O(logN · logB N)

Leif Walsh Fractal Trees April 16, 2015 18 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #2: LSM-trees

How do queries work?

Search cost is:

logB B+ . . .+ logB
N
8
+ logB

N
4
+ logB

N
2
+ logB N

=
1

log B
(1 + . . .+ lg(N)− 3 + lg(N)− 2 + lg(N)− 1 + lg(N)) = O(logN · logB N)

Leif Walsh Fractal Trees April 16, 2015 18 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #2: LSM-trees

How much do inserts cost?

Cost to flush a tree Tj of size X is O(X/B).
Cost per element to flush Tj is O(1/B).

Each element moves≤ logN times.
Total amortized insert cost per element is O

(
logN
B

)
.

Leif Walsh Fractal Trees April 16, 2015 19 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #2: LSM-trees

How much do inserts cost?
Cost to flush a tree Tj of size X is O(X/B).

Cost per element to flush Tj is O(1/B).

Each element moves≤ logN times.
Total amortized insert cost per element is O

(
logN
B

)
.

Leif Walsh Fractal Trees April 16, 2015 19 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #2: LSM-trees

How much do inserts cost?
Cost to flush a tree Tj of size X is O(X/B).
Cost per element to flush Tj is O(1/B).

Each element moves≤ logN times.
Total amortized insert cost per element is O

(
logN
B

)
.

Leif Walsh Fractal Trees April 16, 2015 19 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #2: LSM-trees

How much do inserts cost?
Cost to flush a tree Tj of size X is O(X/B).
Cost per element to flush Tj is O(1/B).

Each element moves≤ logN times.

Total amortized insert cost per element is O
(

logN
B

)
.

Leif Walsh Fractal Trees April 16, 2015 19 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #2: LSM-trees

How much do inserts cost?
Cost to flush a tree Tj of size X is O(X/B).
Cost per element to flush Tj is O(1/B).

Each element moves≤ logN times.
Total amortized insert cost per element is O

(
logN
B

)
.

Leif Walsh Fractal Trees April 16, 2015 19 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization in external memory data structures

Fractal Trees

Leif Walsh Fractal Trees April 16, 2015 20 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #3: Fractal Trees

The pain in LSM-trees is doing a full O(logB N) search in each level.

We use fractional cascading to reduce the search per level to O(1).

The idea is that once we’ve searched Ti, we know where the key would be in Ti, and we can use
that information to guide our search of Ti+1.

Let’s examine the leaves of two consecutive levels of the LSM-tree…

Leif Walsh Fractal Trees April 16, 2015 21 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #3: Fractal Trees

The pain in LSM-trees is doing a full O(logB N) search in each level.
We use fractional cascading to reduce the search per level to O(1).

The idea is that once we’ve searched Ti, we know where the key would be in Ti, and we can use
that information to guide our search of Ti+1.

Let’s examine the leaves of two consecutive levels of the LSM-tree…

Leif Walsh Fractal Trees April 16, 2015 21 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #3: Fractal Trees

The pain in LSM-trees is doing a full O(logB N) search in each level.
We use fractional cascading to reduce the search per level to O(1).

The idea is that once we’ve searched Ti, we know where the key would be in Ti, and we can use
that information to guide our search of Ti+1.

Let’s examine the leaves of two consecutive levels of the LSM-tree…

Leif Walsh Fractal Trees April 16, 2015 21 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #3: Fractal Trees

The pain in LSM-trees is doing a full O(logB N) search in each level.
We use fractional cascading to reduce the search per level to O(1).

The idea is that once we’ve searched Ti, we know where the key would be in Ti, and we can use
that information to guide our search of Ti+1.

Let’s examine the leaves of two consecutive levels of the LSM-tree…

Leif Walsh Fractal Trees April 16, 2015 21 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #3: Fractal Trees

Add forwarding pointers from leaves in Ti to leaves in Ti+1 (but remove the redundant ones that
point to the same leaf ):

Now, from a leaf node in Ti, we can jump forward to some of the leaves in Ti+1 without
searching the whole tree at Ti+1.

Leif Walsh Fractal Trees April 16, 2015 22 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #3: Fractal Trees

Add forwarding pointers from leaves in Ti to leaves in Ti+1 (but remove the redundant ones that
point to the same leaf ):

Now, from a leaf node in Ti, we can jump forward to some of the leaves in Ti+1 without
searching the whole tree at Ti+1.

Leif Walsh Fractal Trees April 16, 2015 22 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #3: Fractal Trees

Add ghost pointers to leaves not pointed to in Ti+1 in leaves in Ti:

Now every leaf in Ti+1 can be reached by a pointer in a leaf node in Ti.

Leif Walsh Fractal Trees April 16, 2015 23 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #3: Fractal Trees

Add ghost pointers to leaves not pointed to in Ti+1 in leaves in Ti:

Now every leaf in Ti+1 can be reached by a pointer in a leaf node in Ti.

Leif Walsh Fractal Trees April 16, 2015 23 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #3: Fractal Trees

After searching Ti for a missing element c, we look left and right for forwarding or ghost
pointers, and follow them down to look at O(1) leaves in Ti+1.

This way, search is only O(logR N) (in our example, R = 2).

Leif Walsh Fractal Trees April 16, 2015 24 / 33

[Bender, Farach-Colton, Fineman, Fogel, Kuszmaul, & Nelson ’07]



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #3: Fractal Trees

After searching Ti for a missing element c, we look left and right for forwarding or ghost
pointers, and follow them down to look at O(1) leaves in Ti+1.

This way, search is only O(logR N) (in our example, R = 2).

Leif Walsh Fractal Trees April 16, 2015 24 / 33

[Bender, Farach-Colton, Fineman, Fogel, Kuszmaul, & Nelson ’07]



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #3: Fractal Trees

The internal node structure in each level is now redundant, so we can represent each level as an
array. We can forget about the B-tree structure above the leaves in each level!
This is called a Cache-Oblivious Lookahead Array.

Leif Walsh Fractal Trees April 16, 2015 25 / 33

[Bender, Farach-Colton, Fineman, Fogel, Kuszmaul, & Nelson ’07]



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #3: Fractal Trees

The amortized analysis says our inserts are fast, but we flush a very large level to the next one,
we might see a big stall. Concurrent merge algorithms exist, but we can do better.

We break each level’s array into chunks that can be flushed independently. Each chunk flushes
to a small region of a few chunks in the next level down, found using its forwarding pointers.

Now we have a tree again!

Leif Walsh Fractal Trees April 16, 2015 26 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #3: Fractal Trees

The amortized analysis says our inserts are fast, but we flush a very large level to the next one,
we might see a big stall. Concurrent merge algorithms exist, but we can do better.

We break each level’s array into chunks that can be flushed independently. Each chunk flushes
to a small region of a few chunks in the next level down, found using its forwarding pointers.

Now we have a tree again!

Leif Walsh Fractal Trees April 16, 2015 26 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #3: Fractal Trees

The amortized analysis says our inserts are fast, but we flush a very large level to the next one,
we might see a big stall. Concurrent merge algorithms exist, but we can do better.

We break each level’s array into chunks that can be flushed independently. Each chunk flushes
to a small region of a few chunks in the next level down, found using its forwarding pointers.

Now we have a tree again!

Leif Walsh Fractal Trees April 16, 2015 26 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #3: Fractal Trees

Fractal Tree Advantages over COLA:

1 Easier to manage an LRU cache of blocks.
2 More flexible with “hotspots”, or non-uniform workload distributions.
3 Flushes are O(1), so easier to reduce latency and increase concurrency with client work.
4 Easier to implement a concurrent checkpoint algorithm with small flushes.
5 Enables good tradeoffs for queries, and allows that computation to be cached without

inducing I/O (this is enough complexity for a whole other talk).

Leif Walsh Fractal Trees April 16, 2015 27 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #3: Fractal Trees

Fractal Tree Advantages over COLA:

1 Easier to manage an LRU cache of blocks.

2 More flexible with “hotspots”, or non-uniform workload distributions.
3 Flushes are O(1), so easier to reduce latency and increase concurrency with client work.
4 Easier to implement a concurrent checkpoint algorithm with small flushes.
5 Enables good tradeoffs for queries, and allows that computation to be cached without

inducing I/O (this is enough complexity for a whole other talk).

Leif Walsh Fractal Trees April 16, 2015 27 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #3: Fractal Trees

Fractal Tree Advantages over COLA:

1 Easier to manage an LRU cache of blocks.
2 More flexible with “hotspots”, or non-uniform workload distributions.

3 Flushes are O(1), so easier to reduce latency and increase concurrency with client work.
4 Easier to implement a concurrent checkpoint algorithm with small flushes.
5 Enables good tradeoffs for queries, and allows that computation to be cached without

inducing I/O (this is enough complexity for a whole other talk).

Leif Walsh Fractal Trees April 16, 2015 27 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #3: Fractal Trees

Fractal Tree Advantages over COLA:

1 Easier to manage an LRU cache of blocks.
2 More flexible with “hotspots”, or non-uniform workload distributions.
3 Flushes are O(1), so easier to reduce latency and increase concurrency with client work.

4 Easier to implement a concurrent checkpoint algorithm with small flushes.
5 Enables good tradeoffs for queries, and allows that computation to be cached without

inducing I/O (this is enough complexity for a whole other talk).

Leif Walsh Fractal Trees April 16, 2015 27 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #3: Fractal Trees

Fractal Tree Advantages over COLA:

1 Easier to manage an LRU cache of blocks.
2 More flexible with “hotspots”, or non-uniform workload distributions.
3 Flushes are O(1), so easier to reduce latency and increase concurrency with client work.
4 Easier to implement a concurrent checkpoint algorithm with small flushes.

5 Enables good tradeoffs for queries, and allows that computation to be cached without
inducing I/O (this is enough complexity for a whole other talk).

Leif Walsh Fractal Trees April 16, 2015 27 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Write-optimization technique #3: Fractal Trees

Fractal Tree Advantages over COLA:

1 Easier to manage an LRU cache of blocks.
2 More flexible with “hotspots”, or non-uniform workload distributions.
3 Flushes are O(1), so easier to reduce latency and increase concurrency with client work.
4 Easier to implement a concurrent checkpoint algorithm with small flushes.
5 Enables good tradeoffs for queries, and allows that computation to be cached without

inducing I/O (this is enough complexity for a whole other talk).

Leif Walsh Fractal Trees April 16, 2015 27 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Results

Modified B-tree-like dynamic (inserts, updates, deletes) data structure that supports point
and range queries.

Inserts are a factor B/ log B (typically 10-100x in practice) faster than a B-tree:
O
(

logN
B

)
< O

(
logN
log B

)
.

Searches are a factor log B/ log R slower than a B-tree: O
(

logN
log R

)
> O

(
logN
log B

)
.

To amortize flush costs over many elements, we want each block we write to be large
(∼4MB), much larger than typical B-tree blocks (∼16KB). These compress well.

Leif Walsh Fractal Trees April 16, 2015 28 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Applications

TokuDB for MySQL, TokuMX for MongoDB:

Faster indexed insertions.

Hot schema changes.

Compression.

Read-free replication on secondaries.

Fast (no read before write) updates with messages in buffers.

ACID transactions.

Mixed workload concurrency.

Faster sharding migrations (TokuMX).

Leif Walsh Fractal Trees April 16, 2015 29 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Benchmarks

Leif Walsh Fractal Trees April 16, 2015 30 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Benchmarks

Leif Walsh Fractal Trees April 16, 2015 31 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Benchmarks

Leif Walsh Fractal Trees April 16, 2015 32 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Questions?

Leif Walsh
@leifwalsh

Downloads: www.tokutek.com/downloads
Docs: docs.tokutek.com
Slides: bit.ly/1au1uvr

Leif Walsh Fractal Trees April 16, 2015 33 / 33

https://twitter.com/leifwalsh
http://www.tokutek.com/downloads
http://docs.tokutek.com
http://bit.ly/1au1uvr

	Background
	OLAP
	LSM-trees
	Fractal Trees
	Results

