

机器学习加持下的 时序类数据异常智能监控

刘彪

高级工程师@腾讯

下载极客时间App 获取有声IT新闻、技术产品专栏,每日更新

扫一扫下载极客时间App

人工智能基础课

"通俗易懂的人工智能入门课,,

AI技术内参

你的360度人工智能信息助理

关注落地技术,探寻AI应用场景

- 14万AI领域垂直用户
- 8000+社群技术交流人员,不乏行业内顶级技术专家
- 每周一节干货技术分享课
- AI一线领军人物的访谈
- AI大会的专家干货演讲整理
- 《AI前线》月刊
- AI技能图谱
- 线下沙龙

扫码关注带你涨姿势

全球软件开发大会 的必经之路

[北京站] 2018

会议: 2018年4月20-22日 / 培训: 2018年4月18-19日

北京·国际会议中心

团购享受更多优惠

识别二维码了解更多

2018 · 深圳站

从2012年开始算起,InfoQ已经举办了9场ArchSummit全球架构师峰会,有来自Microsoft、Google、Facebook、Twitter、LinkedIn、阿里巴巴、腾讯、百度等技术专家分享过他们的实践经验,至今累计已经为中国技术人奉上了近干场精彩演讲。

限时7折报名中,名额有限,速速报名吧!

2012.08.10-12 深圳站

2018.07.06-09 深圳站

会议: 07.06-07.07 培训: 07.08-07.09

TABLE OF CONTENTES

背景

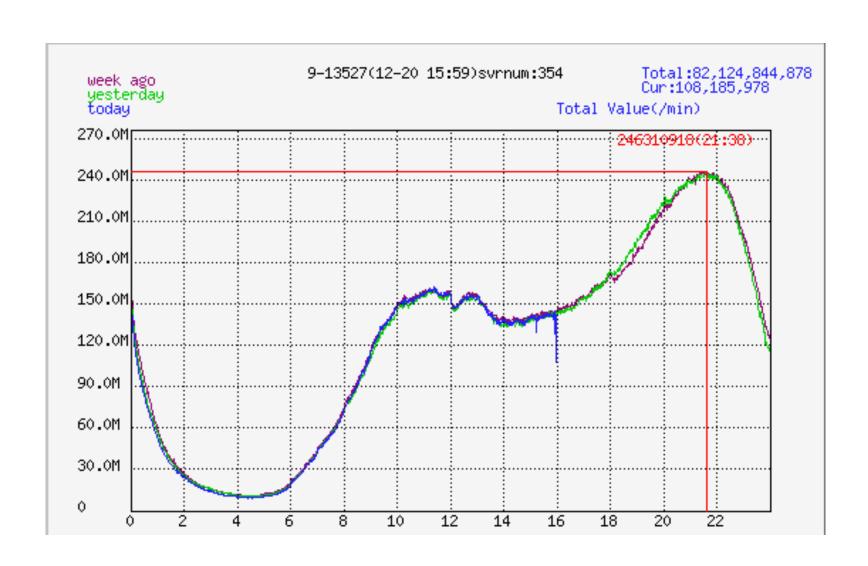
算法探索

落地

下一步

监控系统: Monitor

250万属性20人



Monitor的问题

运维成本高

4万/天, 200条/人

准确率极低、6%

理想中的监控

一个零

● 触发条件"O"维护

两个九

● 准确率:90%

● 召回率:90%

TABLE OF CONTENTES

背景

算法探索

落地

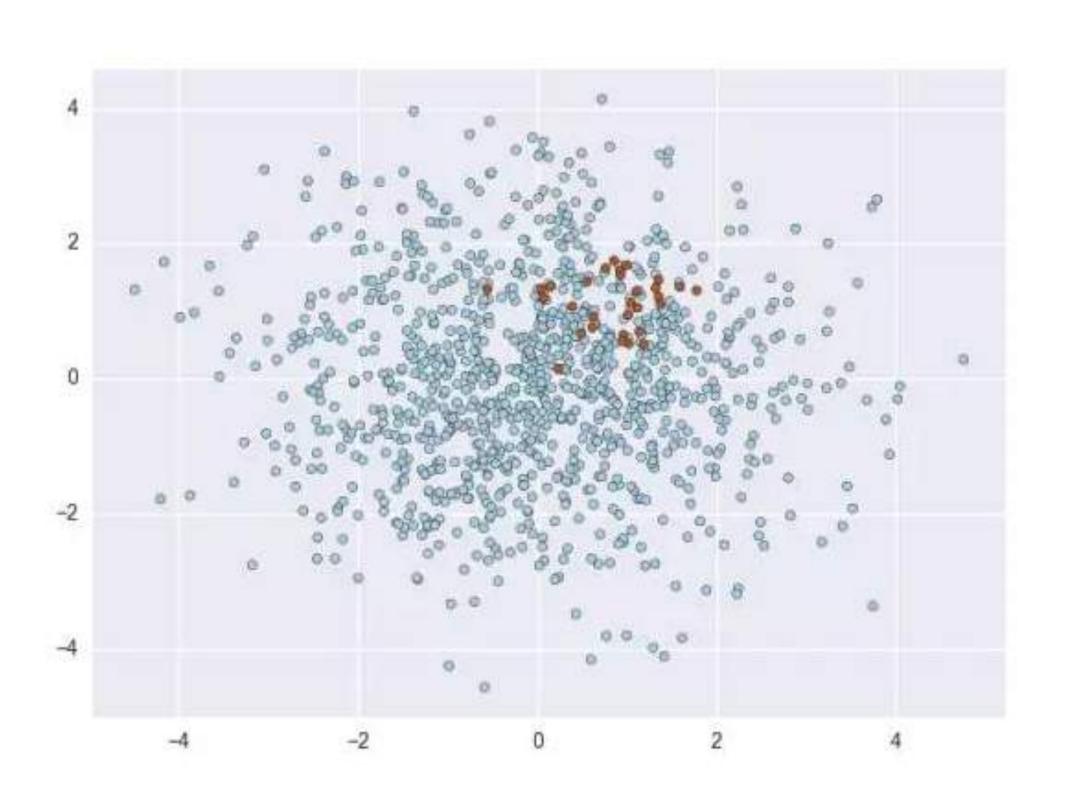
下一步

GBDT初探

初探:

第几轮	样本	正类	负类	正类占比	召回率	准确率	精确率	11个视图,8024个属性	备注
第一轮	1383	541	842	39%	81%	96%	86%		未达预期
第二轮	5707	5285	422	92%	96%	96%	98%	04月30日:13%异常率	过多异常
第三轮	20298	5285	15013	26%	99%	92%	96%	04月30日:0%异常率 05月10日:0%异常率 04月02日:0%异常率	无异常

GBDT"失败"总结



原因分析

- · 样本不全面,11/8000
- 正负样本不均衡,比例为10000:1

结论

- 监控行业负样本稀疏
- 负样本获取困难

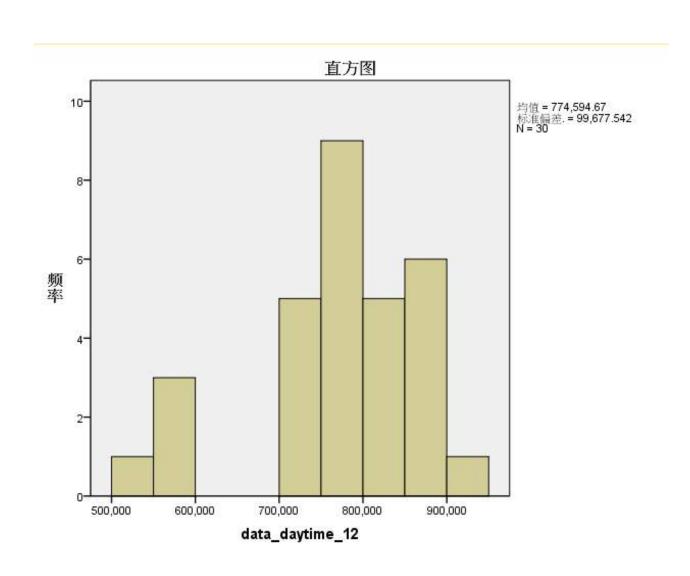
解决方案

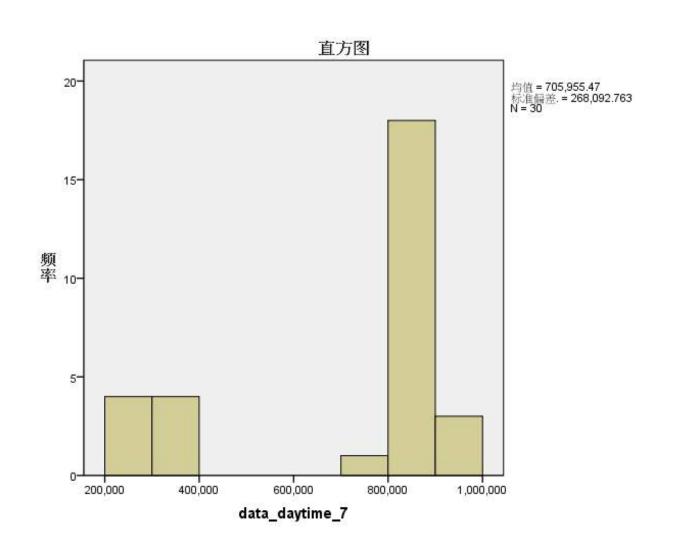
- ✓ 过滤掉大量正常样本
 - 1. 统计判别法
 - 2. 无监督

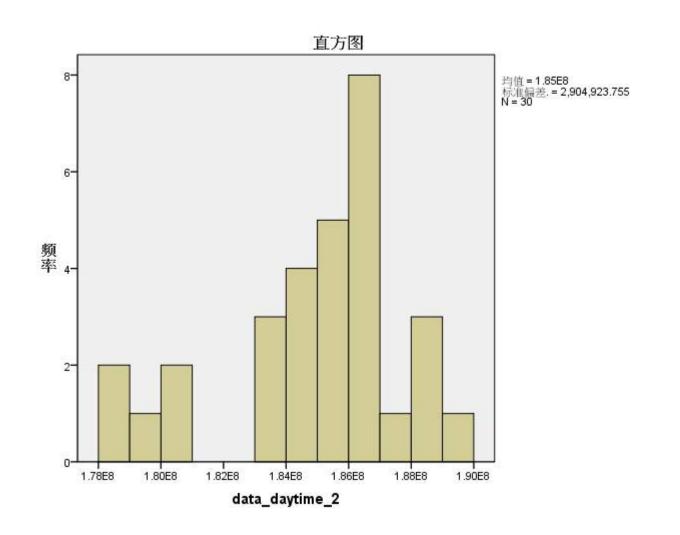
统计判别法

准则	显著性检测	公式	优缺点
Pauta	正态分布	$ x_i-u > 3 * \sigma$	使用简单,样本较少时误差比较大
Chauvenet	正态分布	$ x_i-u > Z_c^* \sigma$	Z _c < 3且与n相关,比Pauta更加准确,可用于n< 10 的粗大判定
Grubbs	正态或接近正态	$ x_i-u > T * \sigma$	T与n和概率α有关,判断标准更加严格,在n=20- 100时,效果较好
Dixon	不需要	相对复杂	应用于同组数据的一致性检验,但计算相对复杂
T-Test	不需要	x _i –u >K*σ 或者 x _i -u >K*σ	与Dixon类似

正态性检测







定性结果: 同一时刻的上报值,长时间窗口看趋于正态分布

统计判别法: Grubbs

```
def calculate_statistic(self, value_list):
    return list(pandas.DataFrame(value_list).describe()[0].values[1:])

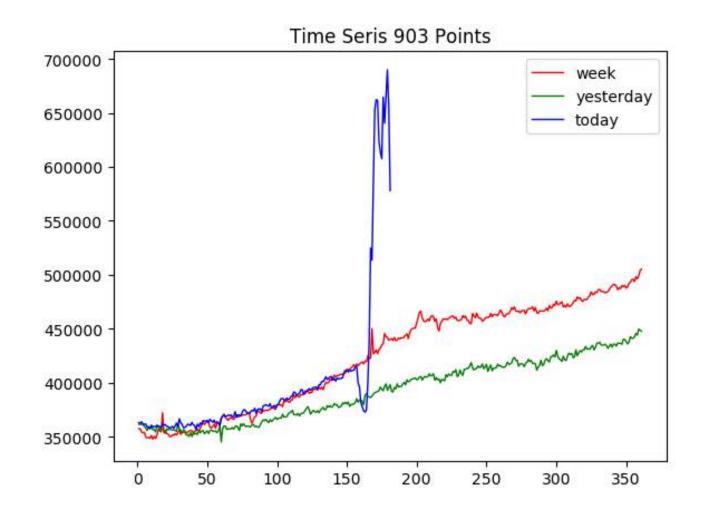
def grubbs_predict(self, check_value, ref_value_list):
    t_index = self.index
    ref_desc = self.calculate_statistic(ref_value_list)
    if abs(check_value - ref_desc[0]) > t_index * ref_desc[1]:
        return -1
    else:
        return 1
```

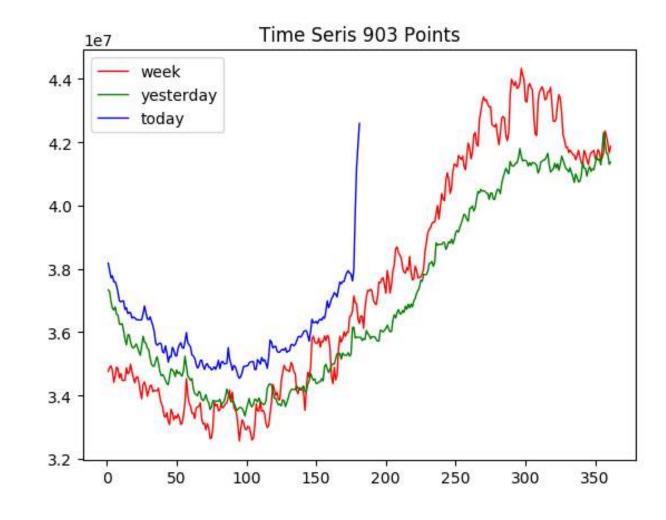
算法

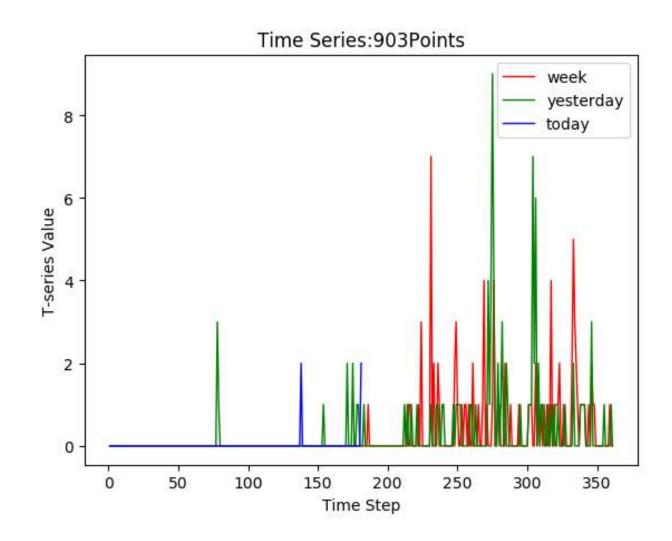
- 1. 值:当前时刻点
- 2. 参考值:前后N分钟的环比、同比、周同比值
- 3. 均值、标准差
- 4. |x_i-u| 与 Z * σ比大小
- 5. 异常: |x_i-u| > Z * σ

Grubbs算法结果









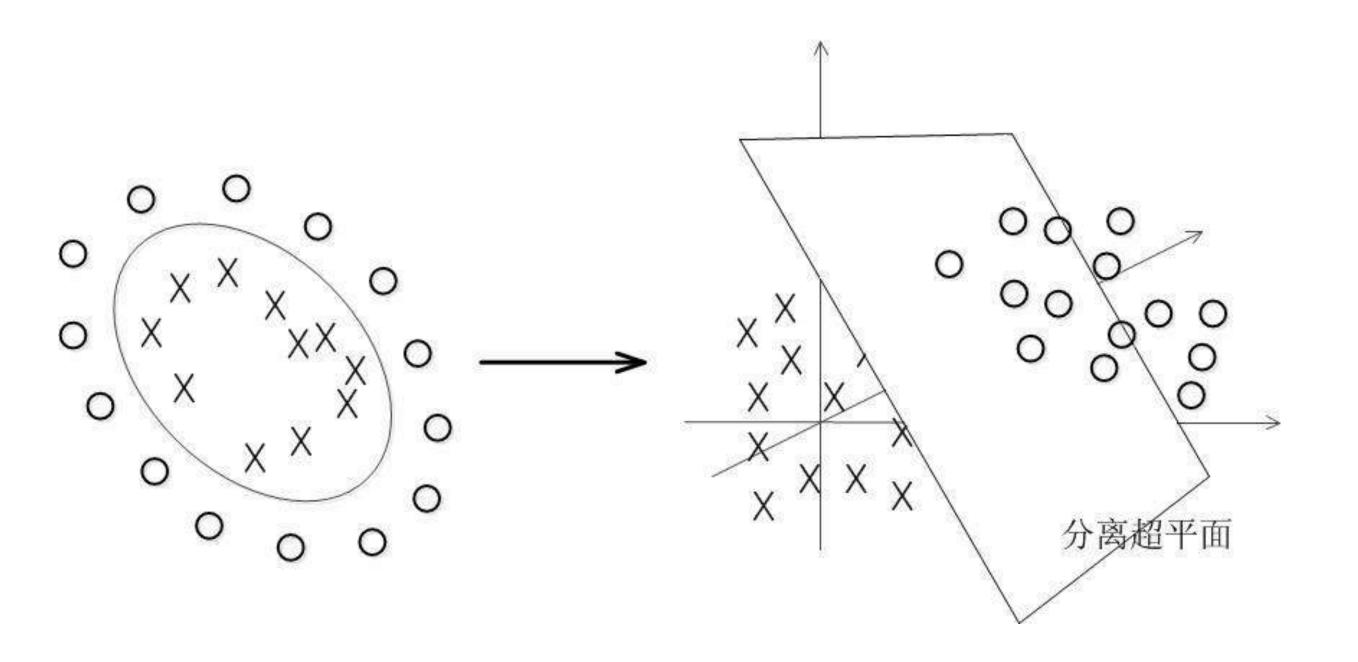
Grubbs分析优化

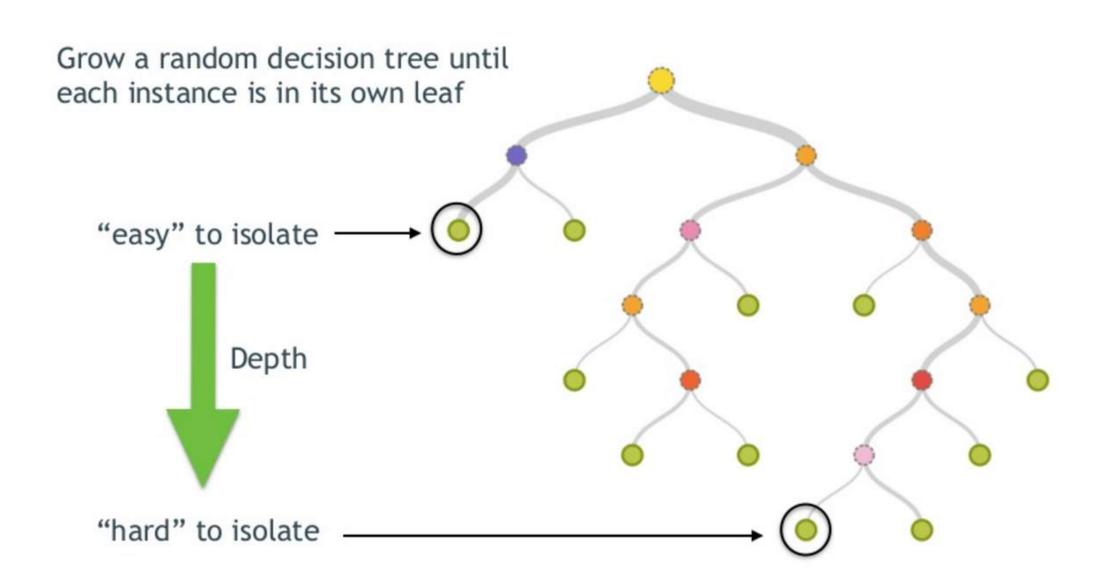
第一轮	总样本	3h_3	1h_3	3h_or_1h_3
正样本	19	17	17	17
负样本	208	153	75	158
准确率		74.9%	40.5%	77.1%
召回率		73.6%	36.1%	76.0%
8000正样本误召回率		0.0%	NA	0%

第二轮	总样 本	1h_2	1h_2.5	1h_3	1h_3.5	3h_2	3h_2.5	3h_3	3h_3.5	1h_or_3h_2	耗时
正样本											
负样本	1328	991	725	542	465	1122	1038	889	690	1147	
准确率											1 m o / A
召回率		74.6%	54.6%	40.8%	35.0%	84.5%	78.2%	66.9%	52.0%	86.4%	4ms/介
8000正样本· 召回率	误	NA	NA	NA	NA	2.0%	0.4%	0.0%	0.0%	<2.0%	

优化点:1, |x_i-u| 与 Z * σ, Z调整; 2, Window大小

无监督算法

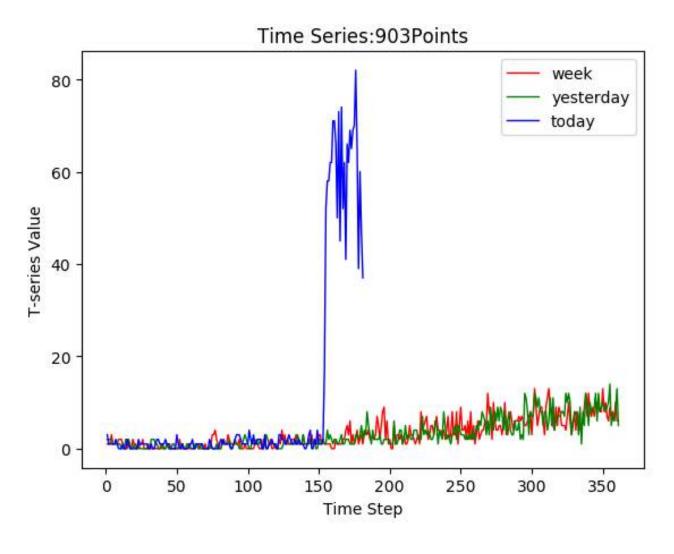


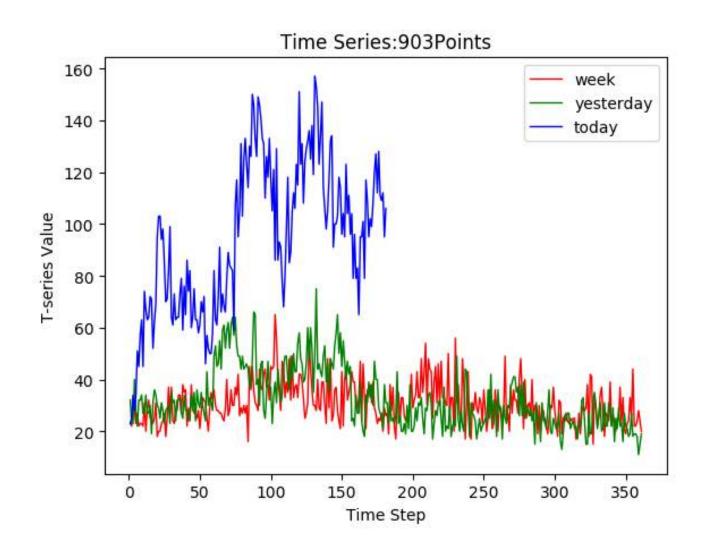


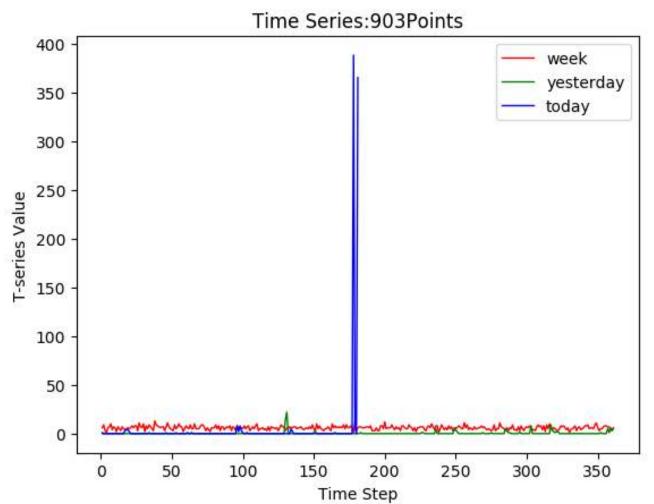
无监督算法: Isolation Forest

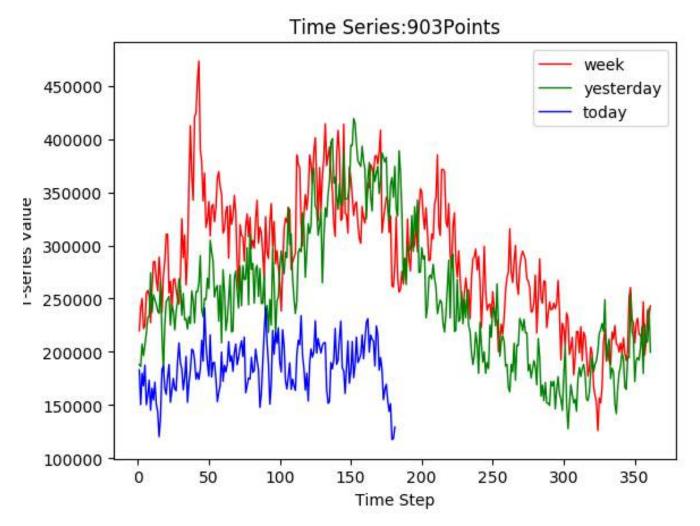
```
def if_predict(self, sample_features):
   clf = IsolationForest(n_estimators=3, max_samples='auto', contamination=0.15)
    # clf = IsolationForest()
    clf.fit(sample_features)
   y_pred_test = clf.predict(sample_features)
    # print y result
   return y_pred_test[-1]
```

Isolation Forest算法结果









Isolation Forest分析优化

第二轮	总样 本	1h_2	1h_2.5	1h_3	1h_3.5	3h_2	3h_2.5	3h_3	3h_3.5	1h_or_3h_2	耗时
正样本	8000										
负样本	1328	991	725	542	465	1122	1038	889	690	1147	
准确率											AmalA
召回率		74.6%	54.6%	40.8%	35.0%	84.5%	78.2%	66.9%	52.0%	86.4%	4ms/个
8000正样本误 召回率		NA	NA	NA	NA	2.0%	0.4%	0.0%	0.0%	<2.0%	

第二轮	总样本	Default	n_estimators=3 max_samples='auto' contamination=0.15
正样本	8000		
负样本	1328	1287	1192
准确率			
召回率		96.9%	89.8%
8000正样本误召回率		5%	11.6%
耗时		243ms/个	10ms/个

优化:参数调整, n_estimators=3, max_samples='auto', contamination=0.15

Grubbs & Isolation Forest

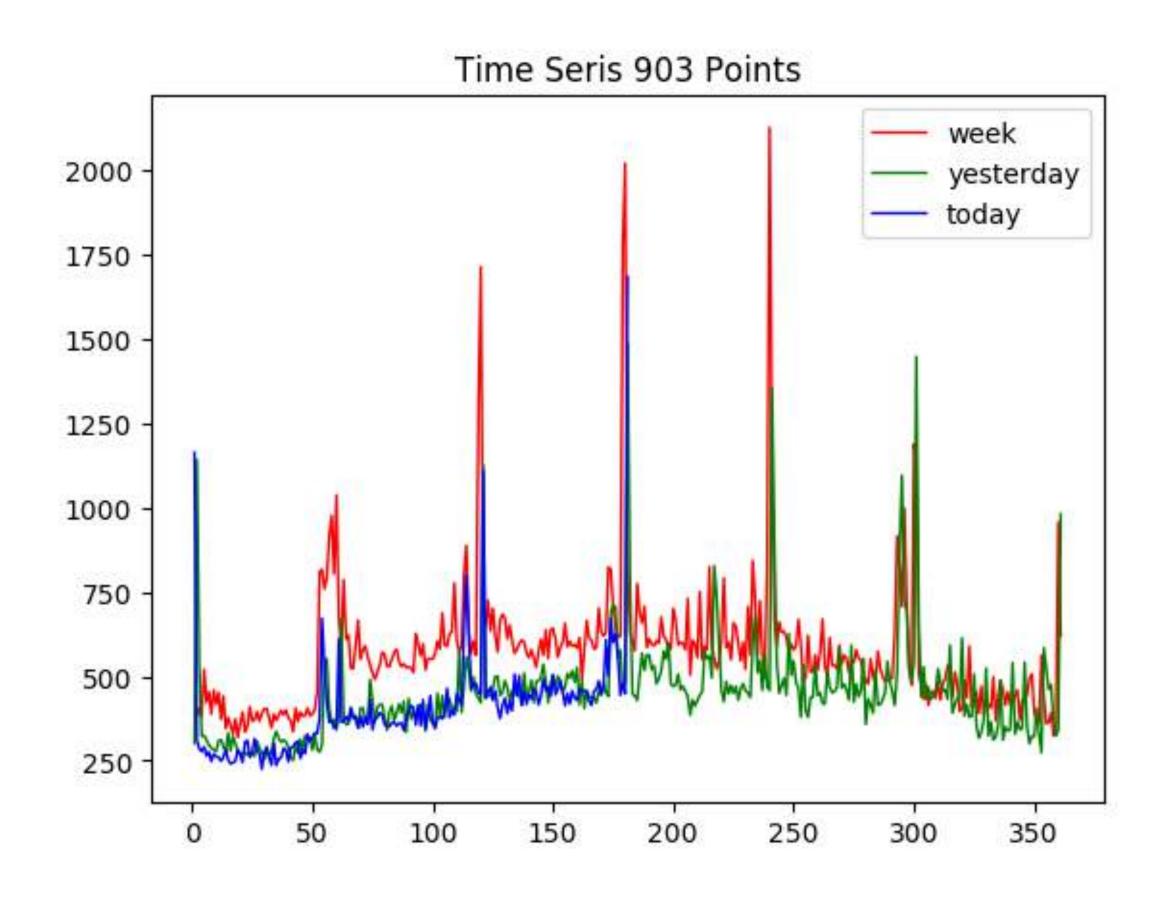
	总样本	3h_2	3h_3	1h_or_3h_2	n_estimators=3 max_samples='auto' contamination=0.15	3h_2 or n_estimators=3 max_samples='auto' contamination=0.15
正样本	8000					
负样本	1328	1122	889	1147	1192	1252
准确率						
召回率		84.5%	66.9%	86.4%	89.8%	95%
8000正样本误召回率		2.0%	0.0%	<2.0%	11.6%	7 %
耗时		4ms/个	4ms/个	4ms/个	10ms/个	

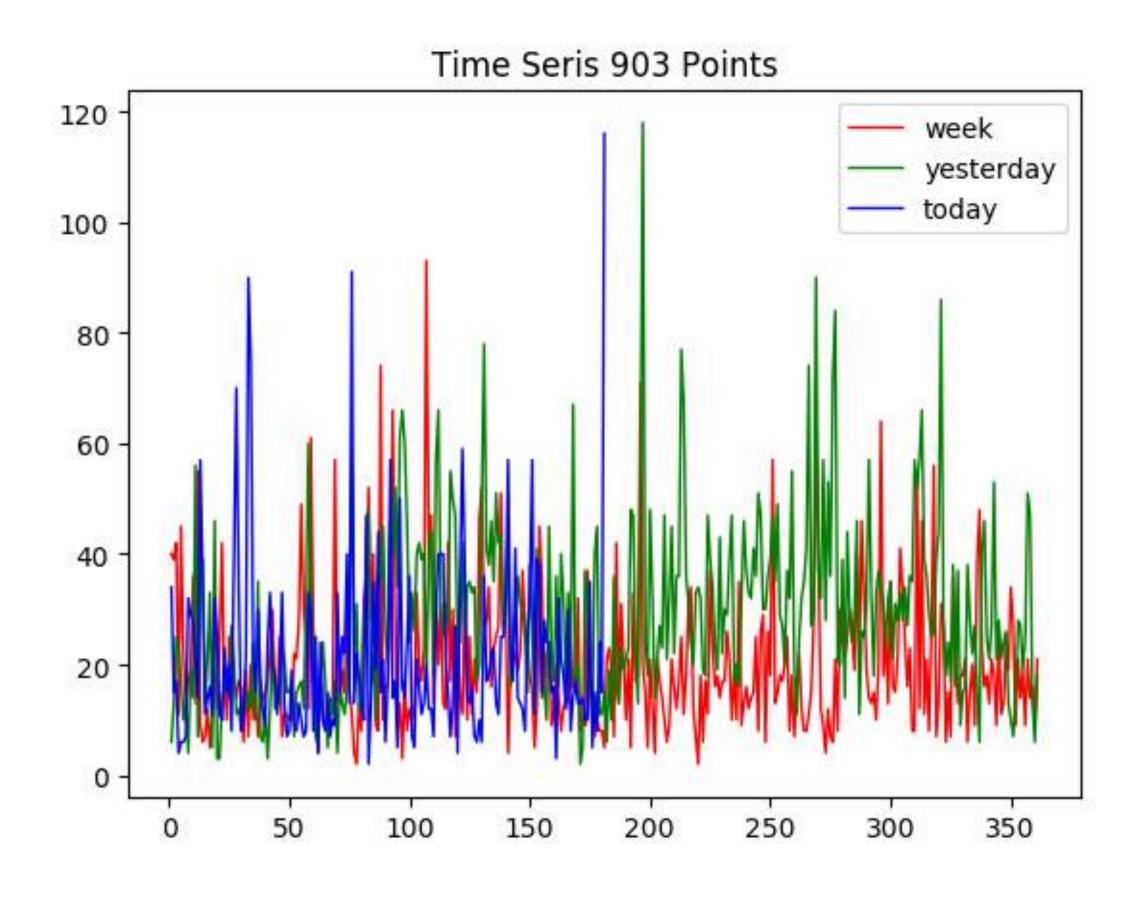
优化:算法整合

有监督算法:

```
def gbdt_train(self, train):
     # Get train/test set random
     sample_random = random.sample(train, len(train))
     trainset = np. array(sample_random[0:int(len(sample_random)*0.9)])
     testset = np. array(sample_random[int(len(sample_random)*0.9):])
    y = trainset[:, -1]
    x = trainset[:, (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31)]
    y_{test} = testset[:, -1]
     x_{test} = testset[:, (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31)]
     # Trainning
     grd = GradientBoostingClassifier(n_estimators=300, max_depth=10, learning_rate=0.05)
     grd.fit(x, y)
    preds = grd.predict_proba(x_test)[:, 1]
     gbdt_auc = roc_auc_score(y_test, preds)
     model_name = "gbdt_model" + "_" + time.strftime('%Y-%m-%d', time.localtime(time.time()))
     pickle.dump(grd, open(model_name, "wb"))
    print "AUC: ", gbdt_auc
                        标记为负样本
def gbdt_predict(self, x_test):
   testset = np.array([x_test]) #注意此处中括号,默认样本位多样本数据
    x_{test} = testset[:, (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31)]
    loaded_model = pickle.load(open("./gbdt_model_2018-01-03", "rb"))
   preds_new = loaded_model.predict_proba(x_test)[:, 1]
    return preds_new[0]
```

GBDT解决的问题





GBDT分析优化

第一轮	总样本	GBDT
正样本	404	323
负样本	96	64
召回率	NA	66.6%
正确率	NA	77.4%

第二轮	总样本	GBDT	GBDT_OPT
正样本	2029	1980	1991
负样本	5464	5350	5410
召回率	NA	98%	99%
正确率	NA	97%	98%

优化:1,新增样本;2,新增特征

TABLE OF CONTENTES

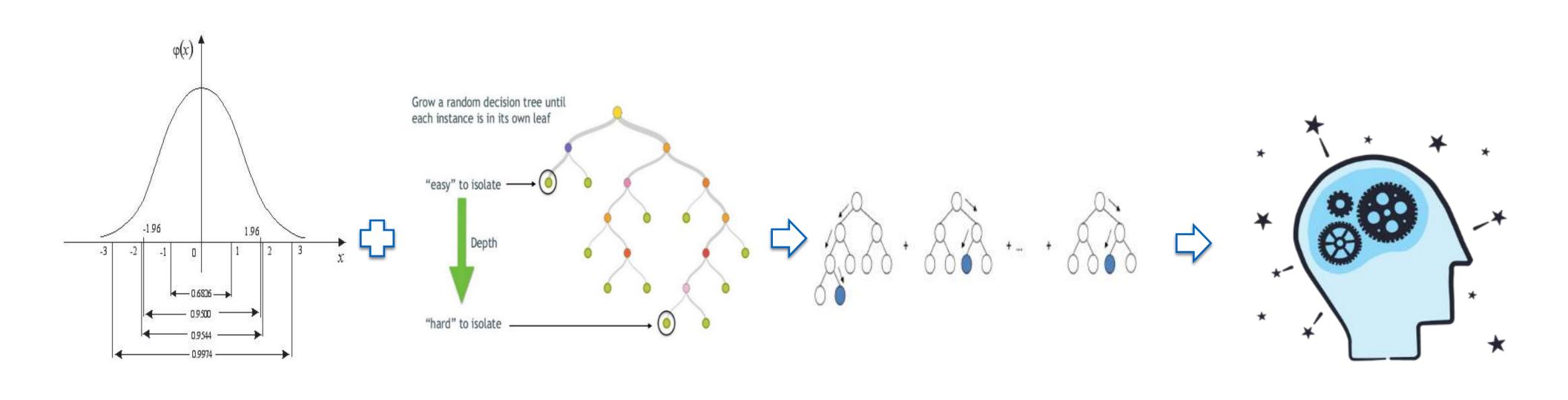
背景

算法探索

落地

下一步

算法方案



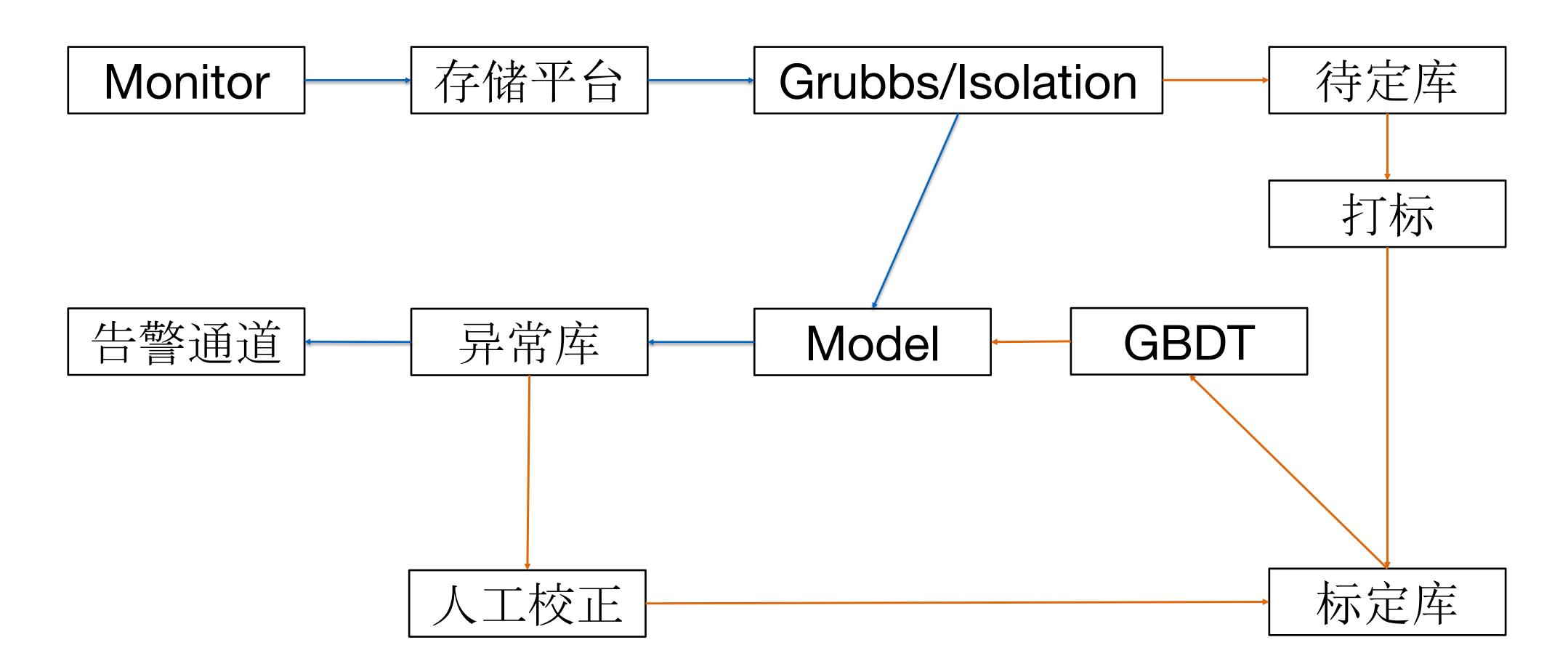
Grubbs

Isolation Forest

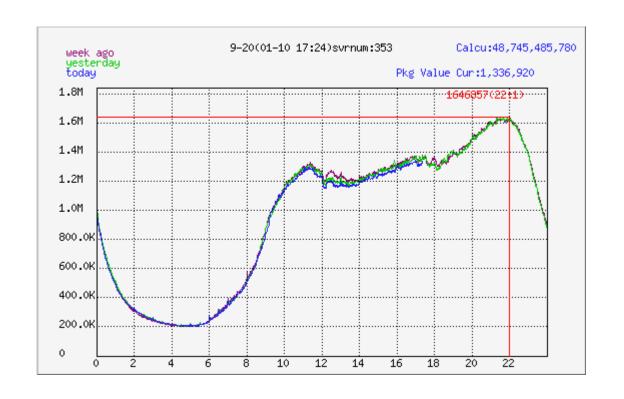
GBDT

● 逻辑策略

工程方案



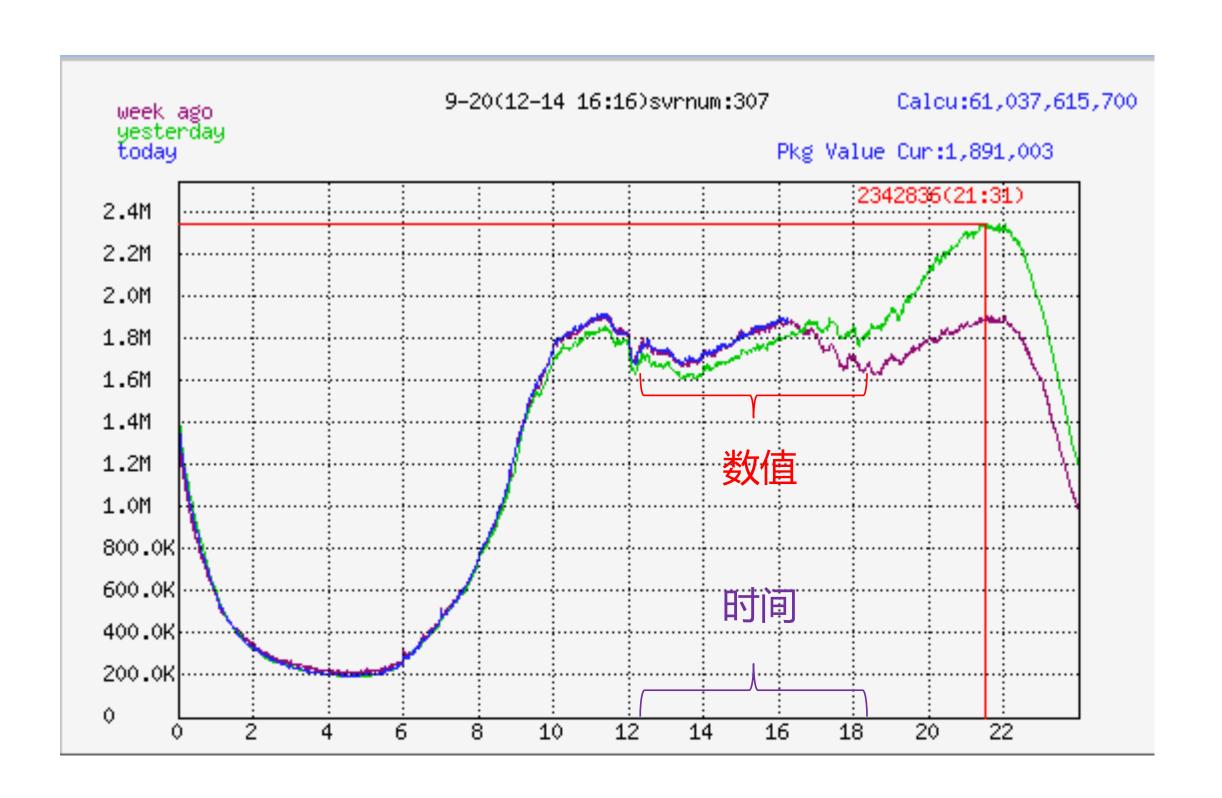
数据与计算"坑"



- 1.数据缺失
- 2."零"值
- 3.数据变更

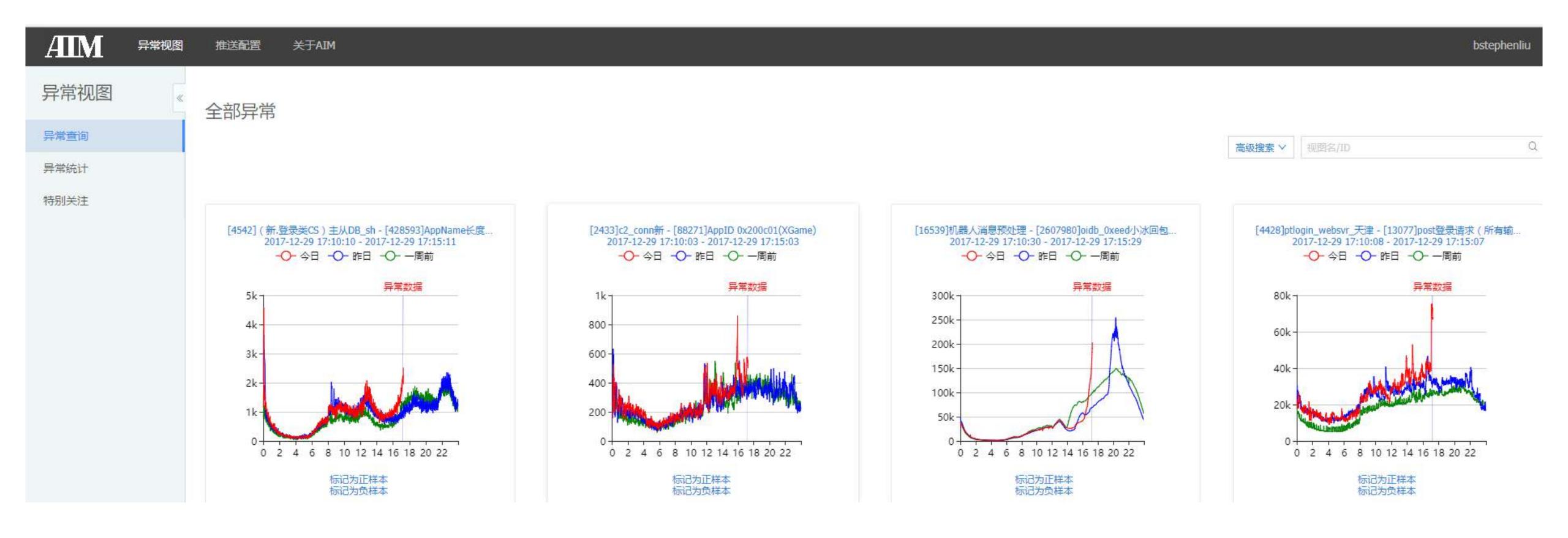
1.计算延时 2."雪崩"

特征"坑"



时间与值对应

系统-展示



系统-接入

AIIM	异常视图	推送配置 关于AIM	
推送配置	«	立に+並えて)四	
视图订阅		新增订阅 配置群信息	2 选择模块/视图
属性屏蔽		HUERTIANS	
			订阅名: 请为本次订阅起个名字吧!
		推	送群号; 请输入接收告警的QQ群号!
			当前用户QQ号为 1064375898!请确保该QQ在该群中为管理员!如需更改请点击此处
			负责人: bstephenlu

系统-输出

智能检测

【智能告警】视图:【udpconn_天津移动】,属性:【sched--老重定向逻辑忽视ISP要求返回本IDC】在时间点:2018-01-09 09:06发生异常。 http://monitor.server.com/link/graph/viewid:5654/pointer:282415/compare

view_id: 5654, attr_id: 282415 2018-01-02 2018-01-08 2018-01-09 145 -116 -87 58 29 The later was been a second to be a 00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 24:00

TABLE OF CONTENTES

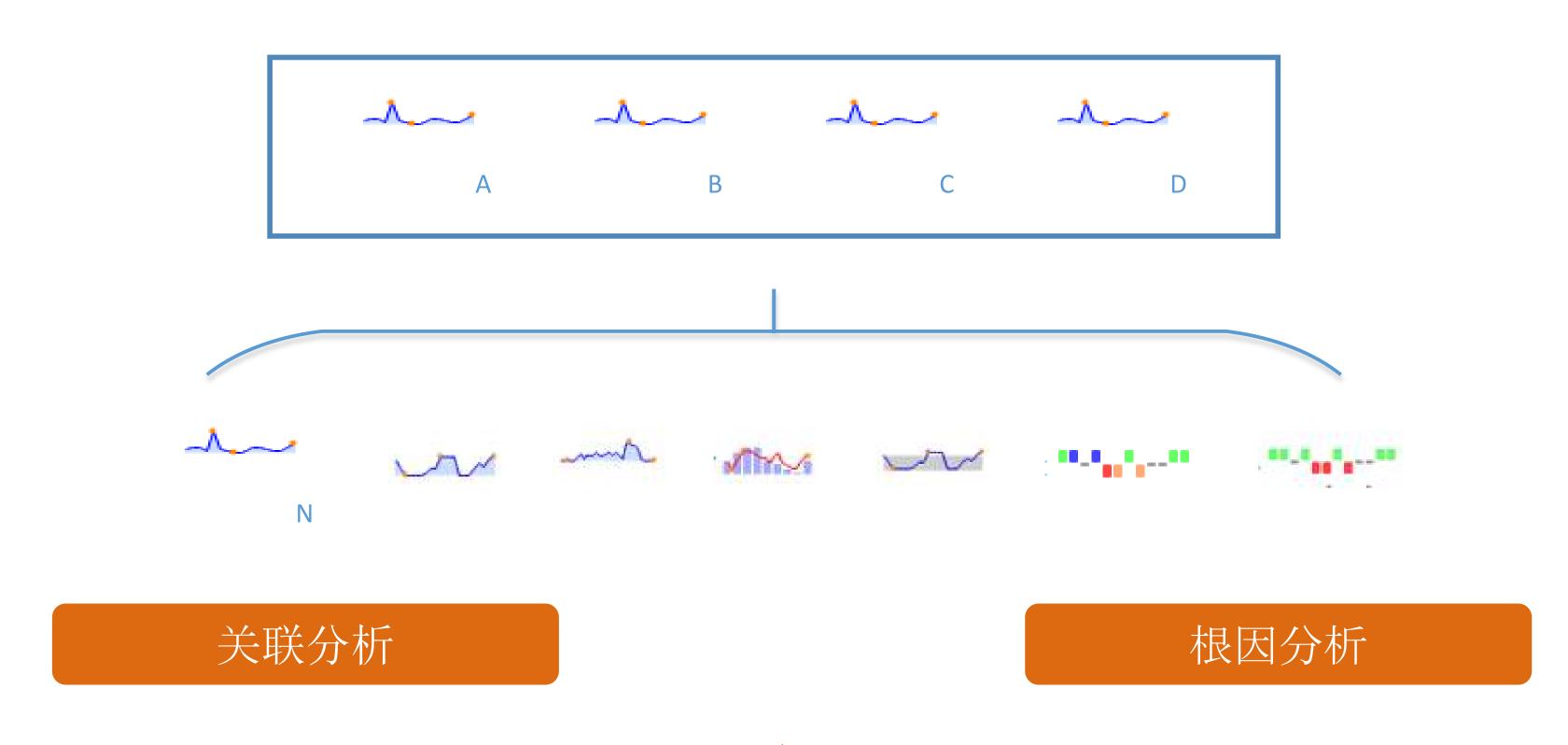
背景

算法探索

落地

下一步

下一步:关联分析和根因分析



- 1. 时间关联
- 2. 空间关联
- 3. 逻辑关联

- 1. 时间、空间与逻辑关联的因、果分析
- 2. "自愈"

Thanks!