
A Pluggable Player Business Framework

Zhang Dawei

Outline

Introduction of the background

Design of the framework

Choices

Introduction of the background

Too many playback related businesses exists in a single activity, and most
businesses are logically independent.

Cross device interaction

Error handling

Tip messages

Settings
Trail playback

QR Code

Playback statistic reporting

Clocks Playback controlling

Video Advertisement

Payment

Scoring

Gifts

Play list

Floating Advertisement

Danmaku

Auto-skipping

3D Playback

Live steaming

Motion control

Voice control

0s playback startup

Multiple audio track

Resolution switching

Subtitles

Message pushing

Panoramic playback

Resolution auto adjustment

Tip messages

Introduction of the background

Some businesses are different in presentation only, and lots of playback
activities contains the same businesses.

Introduction of the background

It’s hard to manage the Z-order and interactions between views from different
controller.

void showViewOfA() {
dismissViewOfB();
dismissViewOfC();
dismissViewOfD();
…

viewOfA.setVisibility(View.VISIBLE);
}

void showViewOfB() {
...

}

Introduction of the background

According the the factor above, we want our new architecture can archive the
following goals:

• All businesses is isolated both in logics and storage, and insensitive to other
businesses.

• Has a linear increment of complexity when business grows
• Separate views and logics as much as possible.
• Find a way to manage the Z-order and the interaction of views easily.
• Businesses can be easily reused in other playback activities.

Outline

Introduction of the background

Design of the framework

Choices

Design of the framework

Video Player
Implementation

View
Management

Implementation

Business Related
Dependencies

Activity Life Cycle
& Event

Dispatching

Runtime Container of Businesses

Video Advertisement Subtitles Danmaku Play list

Trail playbackPlayback statistic reporting …Voice control

Design of the framework

Each business exists as an implementation of IController interface.

<< interface >>
IController

+ onInit()
+ onRelease()

+ onPrepared()
…

+ onActivityResuming()
…

+ onViewDismissed()
…

+ onDispatchKeyEvent()
…

Lifecycle of a controller it self.

Event callbacks from the player.

Lifecycle callbacks from the host activity or fragment.

Event callbacks from view management.

Key input event handling.

Design of the framework

The runtime container of controllers is called ControllerManager.

Activity

Player

View
management

Controller
Manager

Controller A

Dependencies
of

Controller A

Controller B

Dependencies
of

Controller C

Design of the framework

void onCreate() {
controllerManager.addControllers(new IController[] {

new ControllerA(),
new ControllerB(),
…
new ControllerZ()

});

controllerManager.start();
}

To build a new playback activity, just add all controllers you need into
ControllerManager, and then, everything is started.

Design of the framework

Controllers still can sense the existence of other controllers.

For example, playing an video advertisement is done by a controller, and then
other controllers can receive the playback callbacks belongs to the
advertisement. So they are confused!

ControllerManager
(A movie is now playing)
(Now an AD is started)

AD Controller

Innocent Controller A

Go start the Ad

onPrepared() received

What? The movie
restarted??

Design of the framework

There is a lot of way to prevent this issue, better than checking if a AD is
playing or a movie is playing.

Callbacks Hub

Controller C

Controller A

Controller B

Bad Controller

Callbacks

Callbacks Stack

Callbacks Hub

Controller C

Controller A

Controller B

Bad ControllerCallbacks

Callbacks Stack

Design of the framework

How a callback stack solves this issue?

Design of the framework

View of a controller exists as an implementation of IControllerView interface

<< interface >>
IControllerView

+ getView(): View
+ getType(): int

• getView(): To obtain the actual view to be displayed.
• getType(): To indicate the type of this view.

<< interface >>
IPlayInfoView

+ setVideoInfo(info: VideoInfo)
+ updateProgress(int progress)
…

AbsUserActionView

+ setActionListener(l:UserActionListener)
+ triggerAction(actionCode: int, T params)
…

Design of the framework

Controller can get an instance of IControllerView and display it via ViewManager.

// To get an instance which implements the given interface
<T extends IControllerView> T getView(IController controller, Class<T> clazzName);

// To display an IControllerView
boolean showView(IController controller, Class viewClass, IControllerView view);

Controller only knows the interface of the view but don’t know what the view
actually is.

For showing a view, controller do not care where the view is displayed, nor
who is the parent of the view, nor what happed to other views if this view is
shown.

Design of the framework

IViewFactory will take care of the creation of IControllerView.

<< interface >>
IViewFactory

+ create(ctx: Context, className: Class<T>, parent: ViewGroup)

DefaultViewFactory

MyViewFactory

Design of the framework

Different implementation of IViewFactory brings different feeling for the same
controller

TopicFactory

TimeLineTopicFactory

Design of the framework

IViewPolicy manages the Z-Order of the views, and what will happen to other
views if certain view is just displayed.

IViewPolicy do this according to the view type.

BACKGROUND = Integer.MIN_VALUE

VIDEO = 0

DANMAKU = 100

CONTROLLER = 200
MENU = 300

• FLOATING_AD = 25
• CLOCK = 125
• COUNT_DOWN_TIMER = 175
• DEFUALT = 250

Design of the framework

What happened if a view is requesting to be displayed by a controller?
• Refuse the request - AddViewStrategy.REFUSE
• Dismiss one or more other views - AddViewStrategy.REMOVE_EXISTING
• Just display - AddViewStrategy.KEEP_BOTH

Adding View
(type 0)

Existing View
(type 1)

Existing View
(type 2)

Existing View
(type 3)

// To get an instance which implements the given interface
AddViewStrategy getAddViewStrategy(IControllerView adding, IControllerView existing)

Design of the framework

Strategies of the return value of getAddViewStrategy():
• AddViewStrategy.REFUSE: Stop the traversal and refuse the view to be

added.
• AddViewStrategy.REMOVE_EXISTING: Existing views with this strategy will

be collected, and they will be removed later.
• AddViewStrategy.KEEP_BOTH: No effects for existing views with this

strategy.

Design of the framework

Overview of ViewManager, IViewFactory & IViewPolicy.

ViewManagerIViewFactory

IViewPolicy

getView()

showView()

createView()

getAddViewStrategy()

getViewLayer()

Design of the framework

How a controller to communicate with other controllers?

ControllerManager

Local Service Map
<Class, Object>

Controller who provide
local service to others

Controller who depends on
the local service

<< interface >>
ServiceInterface

+ foo1(): void
+ foo2(): int

registerLocalService

getLocalService

Design of the framework

Thank to the local service, we can provide lots of common functionalities by
providing certain controllers.

• Playback statistics reporting
• Video time line management
• Heartbeat scheduler
• Settings framework
• Play list
• Trail playback
• …

We can also provide Extension Packs which contains a set of controllers that is suitable
for certain business domain.
• VOD extension packs
• Live streaming extension packs

Design of the framework

Overview of this framework:
• How a business nested in: IController
• ControllerManager
• Various callbacks

• How a business presents it self to the user: IControllerView
• ViewManager
• ViewFactory & ViewPolicy

• Communications between controllers: Local Service

Outline

Introduction of the background

Design of the framework

Choices

Choices

Shell we supports hot-plugging of controllers, which means we can add or
remove controllers at runtime?

NO.

Who has the rights to add or remove the controller?
Effort is needed for ensure the stability.
There are lots of alternative ways to support enable/disable a controller during
runtime.

Choices

Is Message better than LocalService?

Message is lightweight than callbacks, and is very easy to use for events.
It also provide the weakest dependency between sender and receiver.

But it is a disaster for complex communications, but usually abused because it
is too easy to send or receive a message (cause we are lazy).

We provided a controller named MessageCenter for message delivery.

Choices

What about to provide a layout template? Just like BoarderLayout in Swing? So
showing a view could be like this:

// To get an instance which implements the given interface
// To display an IControllerView
boolean showView(IController controller, Class viewClass, IControllerView view, int
constract);

Dock Top

Dock
Left

Center
Dock
Right

Dock Bottom

NO.

We don’t want the controller knows any
thing about how the view layout is
arranged.

But doing this in the implementation of
IViewFactory sounds good.

Choices

Using an matrix to determine the strategies when adding a view seems simpler
than using an method of IViewPolicy.

A B C D

A 0 -1 0 1

B 1 0 1 1

C 1 1 0 1

D 1 -1 1 0

Adding

existing

This matrix works well for most cases, but
it does not contains enough information
for solving complexed cases.

This is why we didn’t include this matrix
into our framework.

But it is good implement IViewPolicy
based on this matrix, and write extra code
to solve complexed cases.

Thank you!

