
1

PB级Hadoop集群跨机房迁移实战

董西成 @ Hulu

2

About Hulu

3

Agenda

● Background

● Multi-DC HDFS

● Experience

● Summary

4

Background
basic background of hadoop migration

5

Nesto

Hulu Big Data Infrastructure

Hulu
Made

HDFS / HBase / Zookeeper

VoidboxSpark/MapReduce/Pig

Flume / Kafka

YARN

Hive /
Presto/Impala/Druid

Spark Streaming

Hulu
Made

Hulu
Internal

Hulu
Internal

Hulu
Internal atscale (cube cache

layer)

in-house tools micro strategy Tableau

6

Why Hadoop Migration?

7

Challenge
● Big data & complex applications

○ Data volume: tens of PB
○ Applications: 20k ~30k per day
○ Mixed types of applications(MapReduce, Hive, Spark, docker...)
○ “all or nothing”

● hour-level downtime
○ Decrease business impact

● Economical way
○ Order as less new machine in LAS as possible

● Across-team efforts
○ DCOps/Devops/Data Teams in BJ/Seatle/SM

● Customize infrastructure (code-level) to guarantee migration smoothly
○ simplify application-level migration by enhancing infrastructure

8

Hulu Big Data Landscape

Base Infrastructure
(hardware, network, power supply)

Kafka Flume
HDFS(Data) HBase

YARN
MR Spark Voidbox Hive Presto

Zo
ok

ee
pe

r

O
oz

ie

Big Data Infrastructure
Druid

Reporting Search RECO AD DS

Data Pipelines

RddisCodis MySQL CouchBase Cassandra …..

All Data Teams

Big Data
Infrastructure

DCOps Team

9

The Key For Hadoop Migration: Data Migration
● Stateless system is easy

○ YARN, Presto, Impala

● Stateful system is harder

○ With small meta data

■ Hive (MySQL), Zookeeper(Disk)

○ With windowed data

■ Kafka

○ With huge data

■ HDFS(metadata & files), HBase(storing data in HDFS)

10

Multi-DC HDFS
how to extend HDFS to support several data centers

11

HDFS: Introduction

● HDFS: Hadoop Distributed File System

○ Almost all hulu big data are stored on HDFS

● HDFS namespaces

○ HDFS federation

○ Three namespaces stored different kinds of data

12

HDFS: Introduction

Active
NameNode

Standby
NameNode

/

tmp user data

1.txt x.y

a.dat b.dat

/user/1.txt: b11, b12
/user/x.y/a.dat: b21
/user/x.y/b.dat/: b31,b32,b33

b11

DataNode DataNode DataNode DataNode

fsimage

Memory Disk

snapshot

Disk

Block

Namenode
Machine

b11:node1, node2, node3
b12:node4,node9,node3
b21: node1,node2,node3
...

Folder

Fille

13

HDFS: Brief Introduction

● HDFS Namenode (meta data)

○ directory tree

○ file-blocks mapping

○ block-locations mapping (report from every datanodes)

● HDFS datanode(real data)

○ blocks

14

Extended HDFS: Implement HDFS-level “rsync”

blockblock

block block

block block

block

block

“rsync”

Old DC New DC

15

Extended HDFS: Solutions Comparison

machine

Hadoop In DC1 Hadoop In DC2

machine

machine machine

machine machine

machine machine

machine machine

machine machine

Solution 1: Set up a mirror hadoop cluster in new DC

➔ pros
◆ non-invasive to HDFS kernel
◆ different hadoop versions

➔ cons
◆ keep data consistent is hard
◆ not transparent to users (address is changed)
◆ order same number of machines

➔ Use in one small hadoop cluster(HDP → CDH)

machine

One single Hadoop In DC1 & DC2

machine

machine machine

machine machine

machine machine

machine machine

Solution 2: Extend HDFS to support multiple DC

➔ pros
◆ transparent
◆ economical

➔ cons
◆ invasive
◆ risky

➔ Use in our biggest hadoop cluster(today only covers
this part)

16

Architecture

ELS DC

Datanode

block block

Datanode

block block

DCNamenodeDCBalancer
ELS DC

LAS DC

Datanode

block block

Datanode

block block

DCBalancer
LAS DC

DCTunnel

HDFS

17

DCNameNode: Add Data Center Level Topology

● Topology Configuration
○ Format “/datacenter/rack/node”, e.g

■ /datacenter1/rack1/node1

■ /datacenter2/rack2/node1

○ One of the data centers is “primary”, which is set by admin

● Read/Write Strategy
○ Read local data center first, and then the other

○ Write to primary data center only

18

DCNameNode: Data Center Replica Control

● Each file has a file-level replication factor
○ 3 by default

● Control global file replica across different data centers
○ e.g DC1:DC2 = 3 : 2

● Fine-grained replica control
○ each DC has a minimum and maximum replication factor(RF)

○ minimum file replica = min {file-level RF, DC minimum RF}

○ maximum file replica = min {file-level RF DC maximum RF}

19

DCNamenode: Modified From Namenode

NetworkTopology Server RPC

BlockPlacement DatanodeManager FsImage

BlockManager FSDirectory

FSNamesystem

20

DCBalancer: Balance Data In One Single DC

● Balancer
○ A HDFS component to balance data among different machines

● DCBalancer
○ Modified from HDFS Balancer

○ Only balance data among one specific data center

21

DCTunnel: Distributed Block Replication Scheduler

● Transfer data block across datacenters in a controllable way

● Features
○ Sync blocks according to folder-level whitelist & blacklist

○ Bandwidth limitation

○ Priority-based block replication

■ Missing blocks will be replicated quickly from the other datacenter

○ Quote adjustment

■ E.g. DC1: DC2=3:2

○ Web portal to display progress

22

DCTunnel: Architecture

23

DCTunnel: Optimization

● Minimize impact to online namenode and datanode

● MVCC-based block location management

● Memory-friendly structure to store block-location mapping

● PID-based automatic bandwidth controller

● Optimized for “the long tail”

24

DCTunnel: Minimize Impact To Online NN & DN

● fetch fsimage from backup namenode

● fetch block location from tree service on

every datanode host

● fetch live node list from active

namenode

● replication task will send to datanode

without touching namenode

Namenode
active

Namenode
backup

DCTunnel

pu
ll

fs
im

ag
e

query live

datanode

Physical Machine

Datanode

TreeServie

Physical Machine

Datanode

TreeServie

Physical Machine

Datanode

TreeServie

...

...

25

DCTunnel: MVCC-based Block Location Management

● Challenge in block management

○ 0.3 billion blocks * 5 replica(3 replicas in DC1 and 2 replicas in DC2)

○ update every two hours(fetch metadata from fsimage, block-locations mapping
from every datanodes)

○ replica changes frequently(moved, deleted or created)

● Solution:
○ MVCC(Multiversion Concurrency Control) based block location management

lashost1 lashost2 lashost3locations of one block

new version(=6)
offset of las

old version(=5)
offset of las

Read with version 5: lashost1, lashost2, lashost3
Read with version 6: lashost1, lashost2

lashost2
write new host with version 6

26

DCTunnel: Memory-friendly Structure Storing Block-location

● Memory-friendly map structure

○ low overhead for each element

○ mark deleted and obsolete block collection to
avoid huge GC

○ modified from HDFS internal structure
LightWeightGSet(add slot-level fined-grained
lock)

● OverHead for ~0.2B blocks

lock lock lock ...

head head head ...

node

node

node

node

... ...

node

node

...

16M slot for 200M blocks, total consumed memory is 40GB(One
machine is enough).

ConcurrentHashMap ConcurrentSkipList LightWeightGSet

40GB+ 20GB+ 4GB+

27

DCTunnel: PID-based Automatic Bandwidth Controller

● PID controller -- based on speed error

TaskExecutor

integral

proportional

derivative

Speed
Estimator

Expected
Speed

Speed
Error

十

–
Actual
Speed

PID controller

Concurrent
Task count

十
十

十

TaskExecutor: control how many migration task
execute concurrently. Every task migrate a block
from DC1 to DC2.FRI: https://en.wikipedia.org/wiki/PID_controller

https://en.wikipedia.org/wiki/PID_controller

28

DCTunnel: PID-based Automatic Bandwidth Controller

● PID controller example

start with expected speed 800MB/s change expected speed to 1.5GB/s

29

DCTunnel: Optimize For “The Long Tail”

● The Long Tail Problem
○ The meta data is updated every 2 hours

○ When most replicas(e.g. 99.9%) are migrated to new DC, finding out remaining

blocks(e.g. 0.1%) becomes harder and harder

● Optimization: build directory-blocks cache for each folder to store only not-migrated blocks

directory->block list
immutable

Cache for directory 1
mutable

Cache for directory 2
mutable

Task Generator

...

...

delete the block
 when it is replicated success

scan scan

30

Demo

31

Execution

32

Experience Gained
sharing experiences

33

Experience

● Network
○ Fully control network utilization between two DC

○ Avoid machine hotspot

● Validation
○ validate both metadata and data

○ Ensure data is copied accurately

● Monitoring
○ Measure everything to know your bottleneck(can’t fail behind)

● Fully test and rehearsal before actual migration

34

THANK YOU

