
HTTP/0.9 (1991)

HTTP/1.0 (1996)

HTTP/1.1 (1999)

To reduce the load on the server, HTTP/1.1’s
approach was to limit its TCP connections

“A single-user client should not maintain more
than 2 connections with any server or proxy.”

In real life, browsers hold ~6 TCP connections
simultaneously per origin.

More Bandwidth Doesn’t Make a Big Difference

An increase from 5Mbps to 10Mbps results in a
disappointing 5% improvement in page load times.

Source

https://docs.google.com/a/chromium.org/viewer?a=v&pid=sites&srcid=Y2hyb21pdW0ub3JnfGRldnxneDoxMzcyOWI1N2I4YzI3NzE2

The water pipe example

Bandwidth & Round-Trip Time

Pa
ge

 L
oa

d
Ti

m
e

(m
s)

0

800

1600

2400

3200

Bandwidth

1Mbps 2Mbps 3Mbps 4Mpbs 5Mbps 6Mbps 7Mbps 8Mbps 9Mbps 10Mbps

Page Load Time as bandwidth increases

Source

https://docs.google.com/a/chromium.org/viewer?a=v&pid=sites&srcid=Y2hyb21pdW0ub3JnfGRldnxneDoxMzcyOWI1N2I4YzI3NzE2

Round-trip-times (RTT) have a bigger impact
on performance, more than bandwidth does.

Source

https://docs.google.com/a/chromium.org/viewer?a=v&pid=sites&srcid=Y2hyb21pdW0ub3JnfGRldnxneDoxMzcyOWI1N2I4YzI3NzE2

Round-trip-times (RTT) have a bigger impact
on performance, more than bandwidth does.

Source

https://docs.google.com/a/chromium.org/viewer?a=v&pid=sites&srcid=Y2hyb21pdW0ub3JnfGRldnxneDoxMzcyOWI1N2I4YzI3NzE2

Pa
ge

 L
oa

d
Ti

m
e

(m
s)

0

800

1600

2400

3200

Bandwidth

1Mbps 2Mbps 3Mbps 4Mpbs 5Mbps 6Mbps 7Mbps 8Mbps 9Mbps 10Mbps

Pa
ge

 L
oa

d
Ti

m
e

(m
s)

0

1000

2000

3000

4000

RTT

240ms 220ms 200ms 180ms 160ms 140ms 120ms 100ms 80ms 60ms 40ms 20ms 0ms

Page Load Time as bandwidth increases

Page Load Time as latency decreases

Source

https://docs.google.com/a/chromium.org/viewer?a=v&pid=sites&srcid=Y2hyb21pdW0ub3JnfGRldnxneDoxMzcyOWI1N2I4YzI3NzE2

“HTTP2 produces the biggest performance
gains on mobile bc it remedies high latency” 

— @patrickhamann #smashingconf

Pa
ge

 L
oa

d
Ti

m
e

(m
s)

0

1000

2000

3000

4000

RTT

240ms 220ms 200ms 180ms 160ms 140ms 120ms 100ms 80ms 60ms 40ms 20ms

Page Load Time as latency decreases

Source

https://docs.google.com/a/chromium.org/viewer?a=v&pid=sites&srcid=Y2hyb21pdW0ub3JnfGRldnxneDoxMzcyOWI1N2I4YzI3NzE2

SPDY(2010)

Multiplexing: allow concurrent requests
across a single TCP connection;

Allow browsers to prioritise assets so that
vital resources of a page could are sent first;

Compress and reduce HTTP headers;

Server push: A server can push important
resources to the browser before being asked

for them.

HTTP/2 (2015)

Networking protocol for low-latency transport
of content over the web.

Originally started out from the SPDY protocol,
now standardised as HTTP version 2.

• Multiplexing

• Compressed headers

• Asset Prioritisation & Dependencies

• Server Push  
(saves the time it takes the client to ask for
the resources)

HTTP/2 is backwards-compatible  
with HTTP/1.1

Building for Performance  
with HTTP/2

What do you need to enable HTTP/2?

SSL/TLS required

Google* uses secure connections as a ranking
signal, and browsers are starting to flag non-h#ps
websites as ‘not secure’.

Some HTML5 APIs will also require secure
connections in the future (e.g. Geolocation).

* Baidu Analytics includes a site speed section, so they might follow this
trend in the future.

Leveraging additional benefits of SSL

Serving HTTP/2

Apache Module mod_h!p2

HTTP/2 supporting browsers

Under HTTP/2, some of our current best
practices might impact performance

negatively.

Let’s look at the new anti-pa#erns.

What has Changed?

HTTP/1.x HTTP/2

This was a workaround for the lack of parallelism in
HTTP/1.x to reduce requests;

Combining multiple files into one and fetch with one
request.

Need to wait of the entire file/response to arrive

Concatenation of Files

• Structure code to only deliver what’s needed
• No need for additional build process steps
• Optimise caching policies depending on change

frequency of files

New!
Requests are cheap!

Thanks to the new multiplexing ability of HTTP/2
resources don’t need to be queued anymore.

Nevertheless, depending on the kind of image, and how
they are used, spriting can still be the be#er option in

regards to compression and file size.

Image Sprites

Another workaround for the lack of parallelism in
HTTP/1.x 

Besides increasing the file size of stylesheets etc., the
resource can’t be cached and asset re-use will create

unnecessary overhead

Prioritisation features of HTTP/2 can’t be used

Inline Images

And one more workaround for the lack of multiplexing
in HTTP/1.x

Browsers can handle ~6 connections per origin, but
domain sharding allows us to (theoretically) extend this

to an unlimited amount of connections.

Domain sharding will have a negative impact when
used with HTTP/2.

Domain Sharding

Source

!

https://docs.google.com/presentation/d/1r7QXGYOLCh4fcUq0jDdDwKJWNqWK1o4xMtYpKZCJYjM/present?slide=id.g8919df1c6_0_24

HTTP1.x HTTP2

Reduce DNS lookups ✓ ✓
Reuse TCP connections ✓ ✓
Use a Content Delivery Network ✓ ✓
Minimize number of HTTP redirects ✓ ✓
Eliminate unnecessary request bytes ✓ ✓
Compress assets during transfer ✓ ✓
Cache resources on the client ✓ ✓
Eliminate unnecessary resources ✓ ✓
Apply domain sharding Revisit (max 2) Remove

Concatenate resources Careful & consider caching Remove

Inline resources Careful & consider caching Remove (Server Push)

Source

http://bit.ly/http2-opt

Ge!ing to HTTP/2

Make the move to TLS & add a secure
connection to your site 

(This can be done at any time and brings some additional benefits, even without HTTP/2)

Make sure your server supports HTTP/2 
(Confirm with your hosting provider, roll your own or use a HTTP/2 supporting CDN service)

Prepare your assets & adjust the build process
for HTTP/2 

(Adjust to output the required files that best suit your needs and test your choices)

Check Analytics & confirm your user’s
browser support 

(This could affect users with older browsers negatively, and check for majority support)

Implement your favourite HTTP/2 best
practices and adjust your caching policies 

(Measure your performance before and a$er the update and share your results with the world!!)

!

Holger Bartel | @foobartel | FEDay, Guangzhou, China, 19/03/2016

