
HTTP/0.9 (1991)



HTTP/1.0 (1996)



HTTP/1.1 (1999)



To reduce the load on the server, HTTP/1.1’s 
approach was to limit its TCP connections 

“A single-user client should not maintain more 
than 2 connections with any server or proxy.” 

In real life, browsers hold ~6 TCP connections 
simultaneously per origin.



More Bandwidth Doesn’t Make a Big Difference 

An increase from 5Mbps to 10Mbps results in a 
disappointing 5% improvement in page load times.

Source

https://docs.google.com/a/chromium.org/viewer?a=v&pid=sites&srcid=Y2hyb21pdW0ub3JnfGRldnxneDoxMzcyOWI1N2I4YzI3NzE2


The water pipe example

Bandwidth & Round-Trip Time
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Source

https://docs.google.com/a/chromium.org/viewer?a=v&pid=sites&srcid=Y2hyb21pdW0ub3JnfGRldnxneDoxMzcyOWI1N2I4YzI3NzE2


Round-trip-times (RTT) have a bigger impact 
on performance, more than bandwidth does.

Source

https://docs.google.com/a/chromium.org/viewer?a=v&pid=sites&srcid=Y2hyb21pdW0ub3JnfGRldnxneDoxMzcyOWI1N2I4YzI3NzE2


Round-trip-times (RTT) have a bigger impact 
on performance, more than bandwidth does.

Source

https://docs.google.com/a/chromium.org/viewer?a=v&pid=sites&srcid=Y2hyb21pdW0ub3JnfGRldnxneDoxMzcyOWI1N2I4YzI3NzE2
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Source

https://docs.google.com/a/chromium.org/viewer?a=v&pid=sites&srcid=Y2hyb21pdW0ub3JnfGRldnxneDoxMzcyOWI1N2I4YzI3NzE2


“HTTP2 produces the biggest performance 
gains on mobile bc it remedies high latency” 

— @patrickhamann #smashingconf
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Source

https://docs.google.com/a/chromium.org/viewer?a=v&pid=sites&srcid=Y2hyb21pdW0ub3JnfGRldnxneDoxMzcyOWI1N2I4YzI3NzE2


SPDY(2010)



Multiplexing: allow concurrent requests 
across a single TCP connection; 

Allow browsers to prioritise assets so that 
vital resources of a page could are sent first; 

Compress and reduce HTTP headers; 

Server push: A server can push important 
resources to the browser before being asked 

for them.



HTTP/2 (2015)



Networking protocol for low-latency transport 
of content over the web.  

Originally started out from the SPDY protocol, 
now standardised as HTTP version 2.



• Multiplexing 

• Compressed headers 

• Asset Prioritisation & Dependencies 

• Server Push  
(saves the time it takes the client to ask for 
the resources)



HTTP/2 is backwards-compatible  
with HTTP/1.1



Building for Performance  
with HTTP/2



What do you need to enable HTTP/2?



SSL/TLS required
          



Google* uses secure connections as a ranking 
signal, and browsers are starting to flag non-h#ps 
websites as ‘not secure’. 

Some HTML5 APIs will also require secure 
connections in the future (e.g. Geolocation).  

* Baidu Analytics includes a site speed section, so they might follow this 
trend in the future.

Leveraging additional benefits of SSL

          



Serving HTTP/2

Apache Module mod_h!p2



HTTP/2 supporting browsers



Under HTTP/2, some of our current best 
practices might impact performance 

negatively. 

Let’s look at the new anti-pa#erns.



What has Changed?

HTTP/1.x HTTP/2



This was a workaround for the lack of parallelism in 
HTTP/1.x to reduce requests; 

Combining multiple files into one and fetch with one 
request. 

Need to wait of the entire file/response to arrive

Concatenation of Files



• Structure code to only deliver what’s needed 
• No need for additional build process steps 
• Optimise caching policies depending on change 

frequency of files

New!
Requests are cheap!





Thanks to the new multiplexing ability of HTTP/2 
resources don’t need to be queued anymore. 

Nevertheless, depending on the kind of image, and how 
they are used, spriting can still be the be#er option in 

regards to compression and file size. 

Image Sprites



Another workaround for the lack of parallelism in 
HTTP/1.x 

Besides increasing the file size of stylesheets etc., the 
resource can’t be cached and asset re-use will create 

unnecessary overhead 

Prioritisation features of HTTP/2 can’t be used

Inline Images



And one more workaround for the lack of multiplexing 
in HTTP/1.x 

Browsers can handle ~6 connections per origin, but 
domain sharding allows us to (theoretically) extend this 

to an unlimited amount of connections. 

Domain sharding will have a negative impact when 
used with HTTP/2.

Domain Sharding

Source

!

https://docs.google.com/presentation/d/1r7QXGYOLCh4fcUq0jDdDwKJWNqWK1o4xMtYpKZCJYjM/present?slide=id.g8919df1c6_0_24


HTTP1.x HTTP2

Reduce DNS lookups ✓ ✓
Reuse TCP connections ✓ ✓
Use a Content Delivery Network ✓ ✓
Minimize number of HTTP redirects ✓ ✓
Eliminate unnecessary request bytes ✓ ✓
Compress assets during transfer ✓ ✓
Cache resources on the client ✓ ✓
Eliminate unnecessary resources ✓ ✓
Apply domain sharding Revisit (max 2) Remove

Concatenate resources Careful & consider caching Remove

Inline resources Careful & consider caching Remove (Server Push)

Source

http://bit.ly/http2-opt


Ge!ing to HTTP/2



Make the move to TLS & add a secure 
connection to your site 

(This can be done at any time and brings some additional benefits, even without HTTP/2) 

Make sure your server supports HTTP/2 
(Confirm with your hosting provider, roll your own or use a HTTP/2 supporting CDN service)



Prepare your assets & adjust the build process 
for HTTP/2 

(Adjust to output the required files that best suit your needs and test your choices) 

Check Analytics & confirm your user’s 
browser support 

(This could affect users with older browsers negatively, and check for majority support) 

Implement your favourite HTTP/2 best 
practices and adjust your caching policies 

(Measure your performance before and a$er the update and share your results with the world!!)



!
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