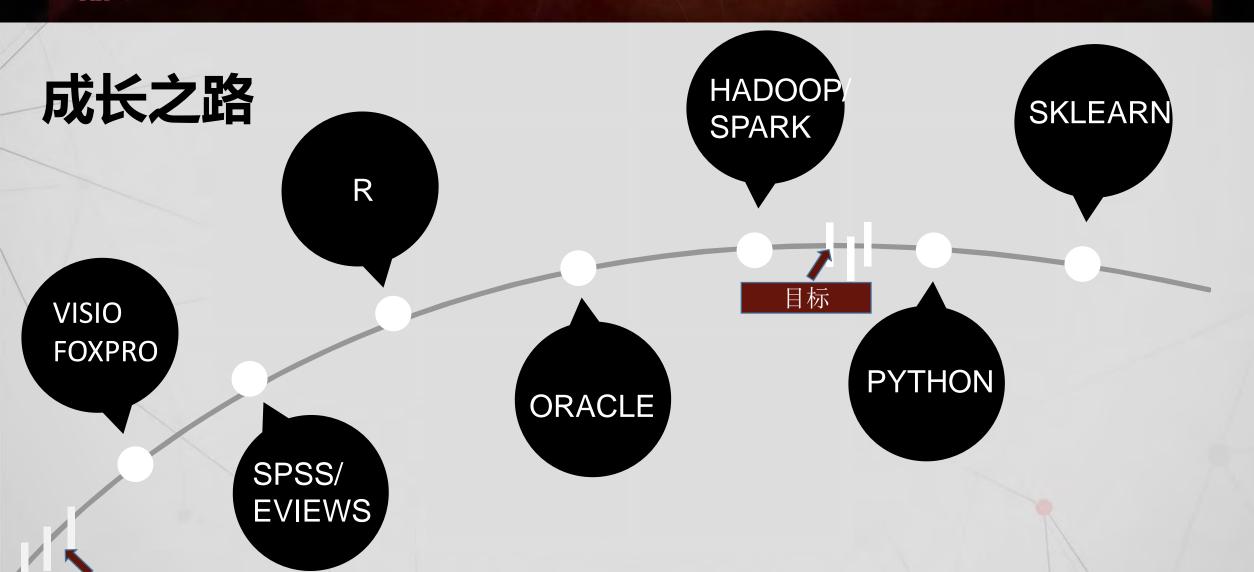


女篡廷的数据分析师之路

演讲人: 刘茜


跨界互联 数聚未来

第四届中国数据分析师行业峰会 CHINA DATA ANALYST SUMMIT

北京 中国大饭店 2017.07

崇拜一切懂技术的人

我的数据分析前半生

调查问卷。

您好!感谢您百忙之中抽出时间帮我们填写问卷。我们是东北大学秦皇岛分校的学生, 由于课业需要,欲探究白酒的消费市场。本问卷采用匿名方式进行,保证不会对您的生活带 来任何的负面影响。希望您能真实、客观地填写问卷。再次感谢! ~

请直接在选项上打钩,如无特殊说明,皆为单项选择。↩

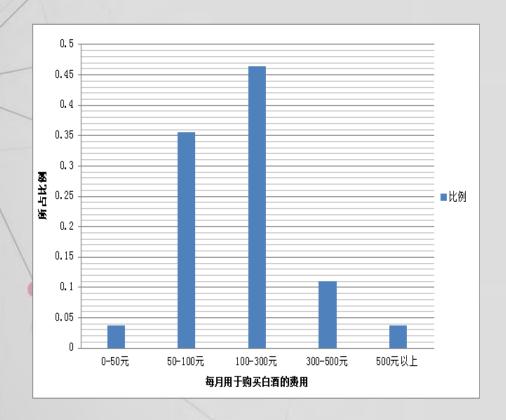
- 1、您的性别: a、男
- b、女↩
- 2、您的年龄: a、20岁以下 b、21-30岁 c、31-45岁 d、46岁以上→
- 3、您的酒龄(仅指白酒)a、不饮酒 b、1-5年 c、5-10年 d、10-20年 e、20年以上↔
- 4、您的家庭所在地 a、城市地区 b、乡村地区→
- 5、您的职业是
- 6、您的月收入大概在 a、2000 元以下 b、2000-4000 元 c、4000 元-6000 元→ d、6000 元以上 ↩

消费者调查篇₽

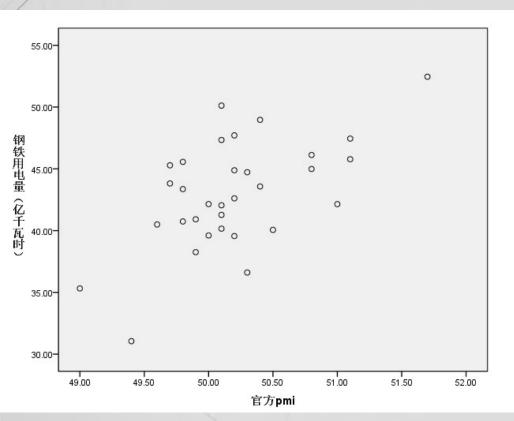
- 1、您消费白酒最多的用途和场合是()↓
- a、自己日常喝 b、婚庆
- c、商务应酬 ↩
- d、朋友聚会 e、送礼
- f、其他↩
- 2、白酒用干下面不同的用途和场合时,影响您选择的决定是(请填写,可多选)↓
- ①、自己日常喝和朋友聚会(
- a、商业广告; b、品牌知名度; c、产品价格; d、包装; e、品牌名称; f、销售员推
- 荐; g、促销礼品; h、其他。↩
- ②、婚庆和商务应酬(
- a、商业广告; b、品牌知名度; c、产品价格; d、包装; e、品牌名称; f、销售员推
- 荐; g、促销礼品; h、其他。↩
- ③、送礼及其他(

- a、商业广告; b、品牌知名度; c、产品价格; d、包装; e、品牌名称; f、销售员推 荐; g、促销礼品; h、其他。↩
- 3、您比较偏好什么香型的白酒产品?↓

- d、清香型() e、米香型()
- f、其他()↩


4、您每月用于购买白酒的费用约为₹

Excel


影响消费者选择白酒品牌的因素。

4%	有效值。	频数#	频率(%)。	¢
6%——— 9%———	商业广告。	55₽	30. 6₽	ته
	品牌知名度₽	70₽	38. 9₽	Ç
11%—	产品价格₽	23₽	12. 8₽	٦
	包装↓	10₽	5. 6₽	₽
8%	销售员推荐。	17₽	9. 40	Ð
	促销礼品₽	5₽	2. 7₽	₽
	合计₽	180₽	100. 0₽	₽

SPSS

變數已輸入/已移除^a

模型	复数已輸入	變數已移除	方性
1	官方pmi ^b		Enter

- a. 應變數: 钢铁用电量(G干瓦(N))
- b. 己輸入所有要求的要數。

模型摘要b

模型	R	R平方	調整後R平方	標準偏斜度錯 読	Durbin- Watson
1	.589ª	.347	.325	3.62524	2.311

- a. 預測值:(常數)。官方pmi
- b. 應變數: 钢铁用电量(亿千瓦时)

樂學數分析

柳型		平方和	df	平均值平方	F	祖製店
1	视解	209.616	1	209,616	15,950	.000b
	殘差	394.272	30	13.142		
	建設計	603.888	31			

- a. 應變數: 钢铁用电量(亿千瓦时)
- b. 預測值:/常數)·官方pm

係數

		非標準化修數		標準化修數		
模型		В	標準錯誤	Beta	T	顯著性
1	(常數)	-197.289	60.164		-3.279	.003
	官方pmi	4.786	1.198	.589	3.994	.000

a. 廖昊默: 钢铁用电量(亿千瓦时

利用SPSS进行线性回归方程拟合,钢铁行业用电量与官方PMI的关系。

EVIEWS

(三)格兰杰因果关系检验↓

	4,4,1	
原假设₽	滞后阶数₽	概率₽₽₽
rsa 不是 asa 的格兰杰因果关系。	6₽	2.59E-01₽₽
asa.不是 rsa.的格兰杰因果关系。	6₽	0. 0509₽₽
m2sa不是 asa的格兰杰因果关系↓	5₽	0. 4553₽₽
asa不是 m2sa的格兰杰因果关系₽	5₽	0.8636₽₽

结果表明,在置信水平为 5%的情况下,接受原假设,即 rsa、m2sa 和 asa 互不是格兰杰因果关系。↓

表 1 各变量的单位根检验结果。 各变量的单位根检验结果。

			· · · · · · · · · · · · · · · · · · ·	
变量↩	ADF 检验值₽	5%的临界值₽	1%的临界值↩	平稳性↩↩
asa↔	-2.040029₽	-2.8892₽	-3. 493747₽	非平稳↩↩
∆asa₽	-5.095214₽	-2.8892₽	-3. 493747₽	平穏↩↩
m2sa√	7. 419412₽	-2.888669₽	−3. 492523₽	非平稳↩↩
∆m2sa₽	-9. 452488₽	-2.888932₽	−3. 493129₽	平穏↩↩
rsa⇔	-1.780957₽	−2.8892₽	-3. 493747₽	非平稳↩↩
∆rsa₽	-7.179815₽	-2.888932₽	-3. 493129₽	平稳↩↩

表 1 结果表明货币政策 M2 和 R 是一阶平稳的,即 M2~I(1),R~I(1)。由于<u>协整关系</u>只存在于<u>同阶单</u>整的时间序列模型之中,初步判断<u>其之</u>间可能存在协整关系。4

Asa_t=β₀+β₁Asa_{t-1}+β₂Asa_{t-2}++α₀m2sa_t+α₁m2sa_{t-1}+α₂ m2sa_{t-2}+ζ_{t'} OLS 估计法,可得如下模型: ⁴

ASA = 95.882+0.997* Asa_{t-1} -0.029* Asa_{t-2} +0.008* m2sa_t-0.002* m2sa_{t-1}-0.006)* m2sa_{t-2}
- T恒 (1.279) (9.987) (-0.289) (1.156) (-0.226) (-0.843) +0.008* m2sa_{t-1}-0.006 m2sa_{t-2} -0.006 m2sa_{t-1}-0.006)* m2sa_{t-2} -0.006 m2sa_{t-2} -0.006 m2sa_{t-1}-0.006)* m2sa_{t-2} -0.006 m2s

利用eviews进行货币政策对股价指数的影响的分析,进行单位根检验、协整分析以及单位根检验。

2. 数据为连续型变量

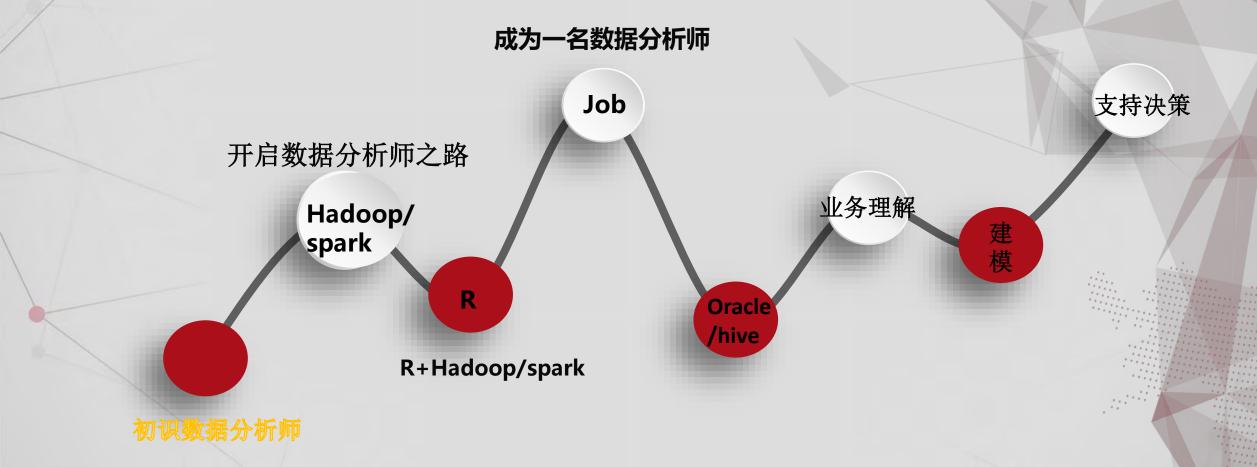
4.勿需编程能力

1.针对较小的样本,基于 统计学的基础进行统计 分析

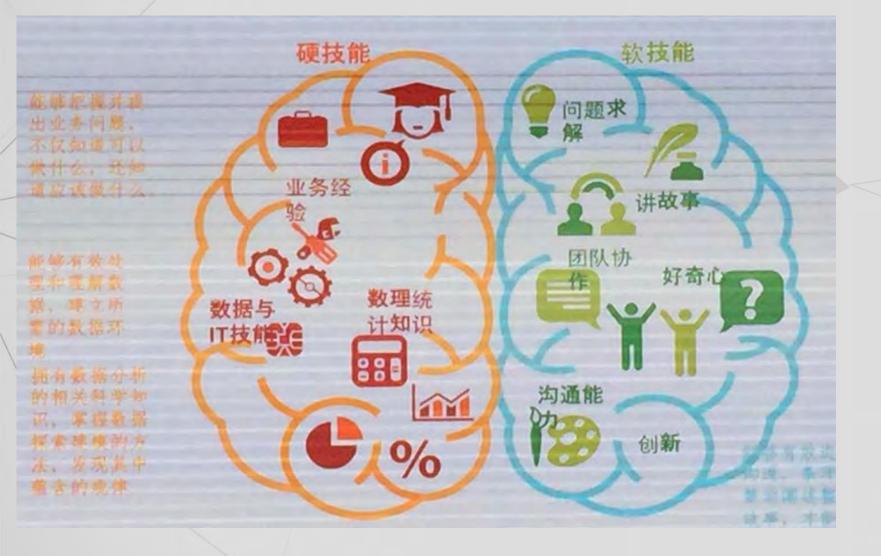
3.主要借助成熟软件现有的功能,通过点点点实现,知其然不知其所以然。

沉寂篇

短暂的迷失了方向


觉醒篇

原来有种职业叫数据分析师



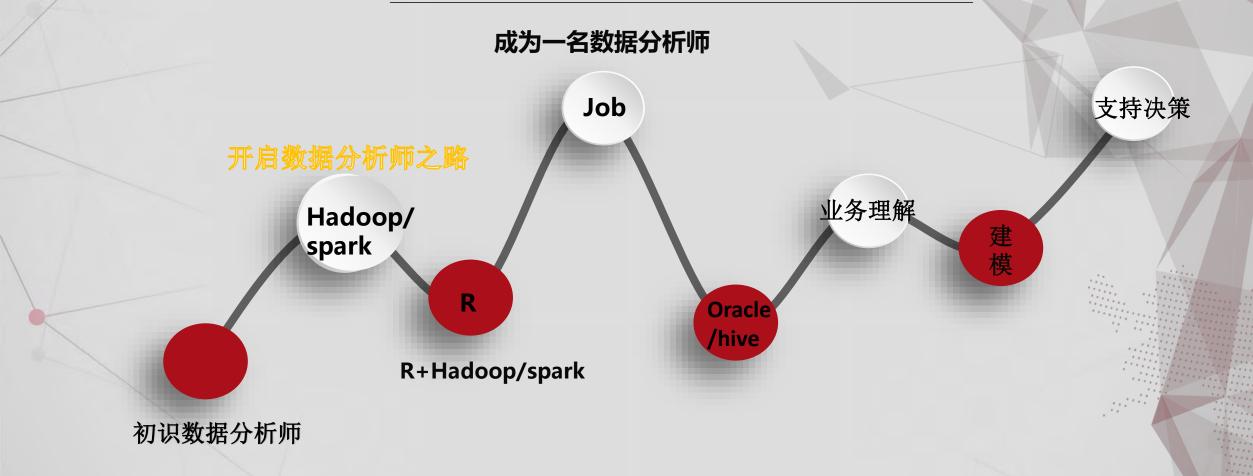
数据分析师的定义:

基于内外部数据结合通过严密的完整商业思考及严密逻辑推理,得出针对业务的结论,并得出改进业务业务的策略。

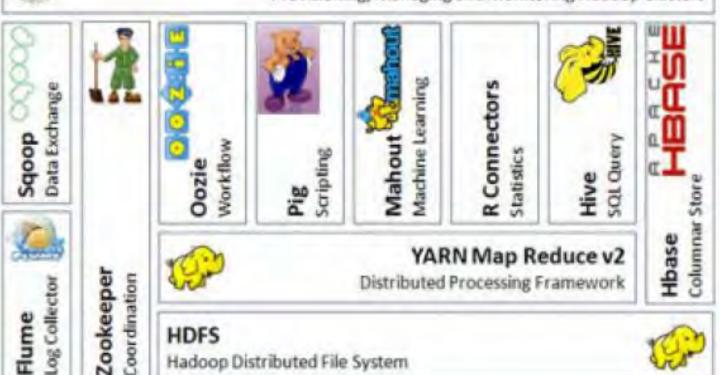
1.格局:格局决定数据分析师能走多远

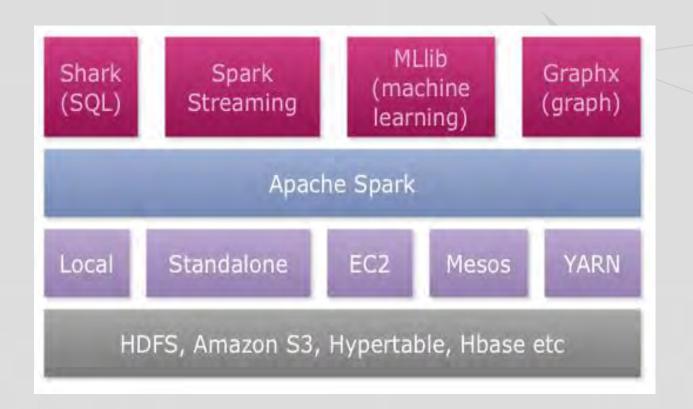
2.内外部数据结合:商业思考,得

出建议与结论

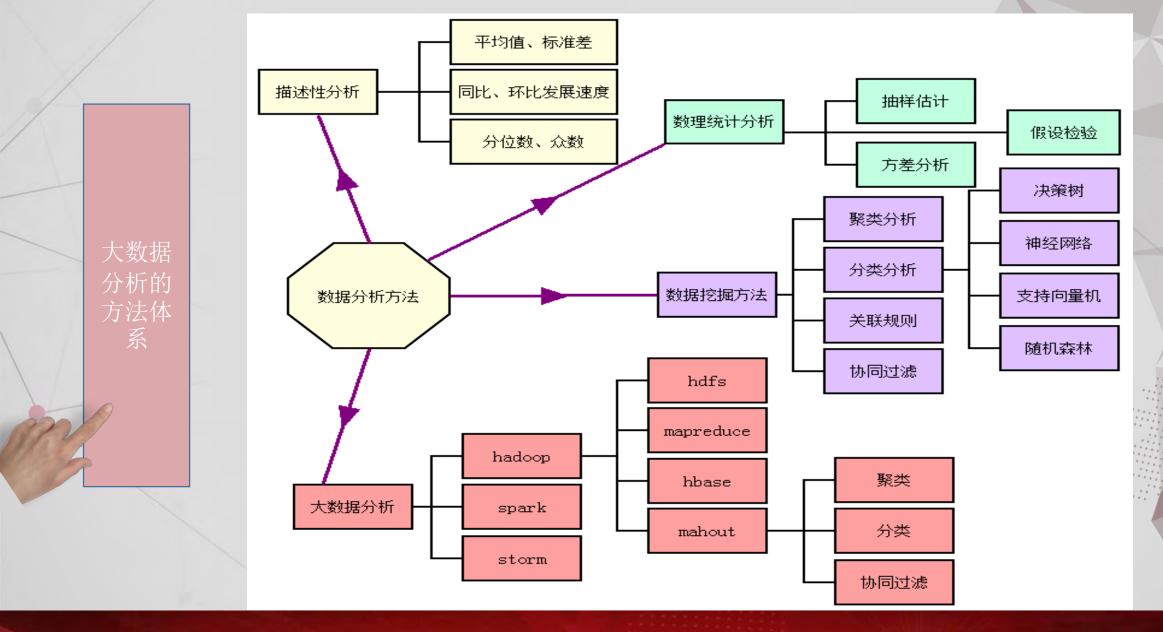

3.基本素质+硬实力+软技能

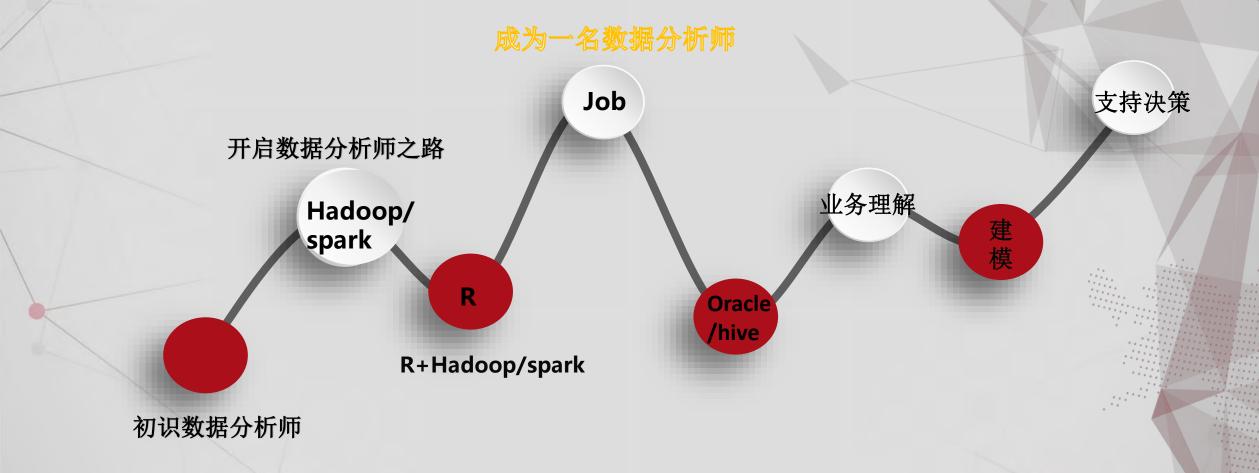
原来有种职业叫数据分析师



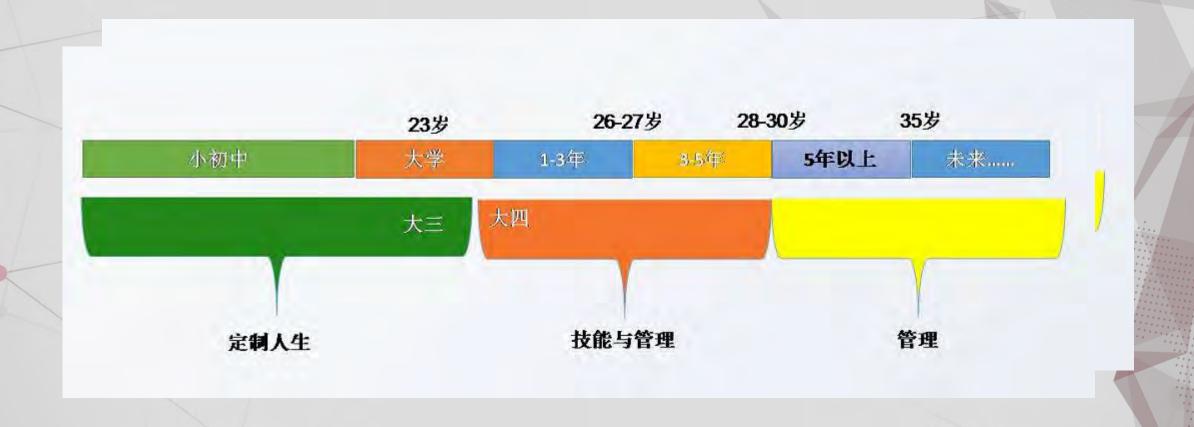


Hadoop Distributed File System

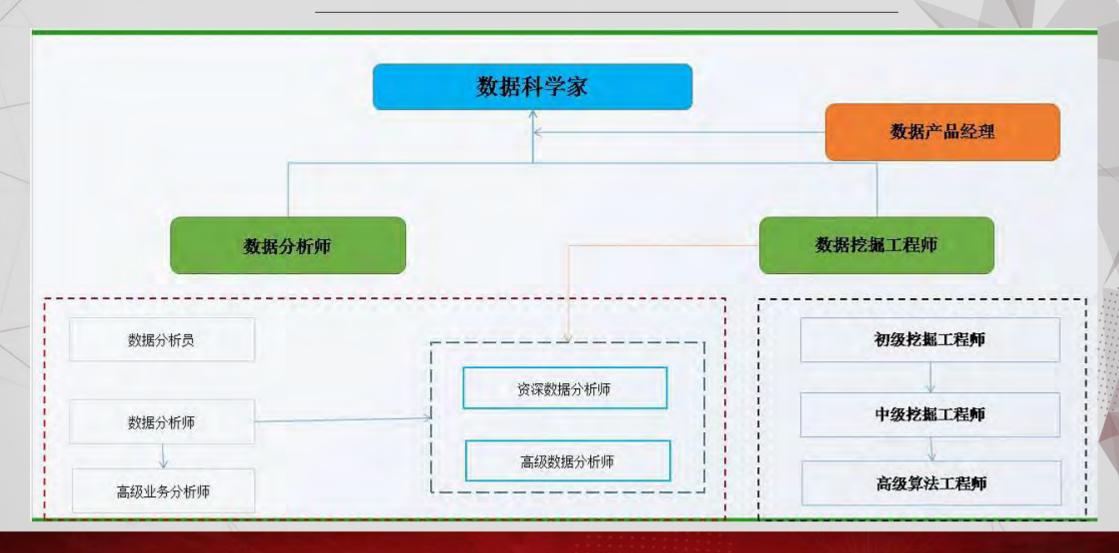




原来有种职业叫数据分析师


职业规划篇

年龄与职业规划



数据分析师的职业规划

跨界互联数聚未来

数据分析师的未来

数据分析通常包括几个阶段:**提出/发现问题——获取并清洗**数据——建模——调整优化——输出结论。

一 其中的每一步都有人的参与,人设立了规则,去让程序根据规则发现问题。

技术的未来:从IT时代到DT时代,从移动互联网到人工智能,背后的技术更迭速度很快。同样的,其中的商业思路和模式也经历着全新的变革,为什么呢?代码开源了,像谷歌的TensorFlow、Facebook的 Torch、微软的CNTK、加州伯克利的Caffe、亚马逊的MXNet、百度的PaddlePaddle等,很多深度学习的代码框架都已经免费向开发者开放。技术的开源,意味着很多代码不需要从底层编写,在开源的代码框架下,调整相应的网络结构和超参数就可以了。

这意味着什么呢?可能纯碎的只是追求技术不能带来大的商业 化的价值。 数据分析师 会被算法替 代吗?

1.积极主动+好奇心

2.朋友圈

3.坚持——勿忘初心方得始终

跨界互联 数聚未来

第四届中国数据分析师行业峰会 CHINA DATA ANALYST SUMMIT

感谢您的聆听

THANKS

跨界互联

第四届中国数据分析师行业峰会 CHINA DATA ANALYST SUMMIT