
Domain-Driven
Design

with Functional Programming Paradigm

Quick History

• 2003, Domain-Driven Design by Eric Evans

• 2010, DSLs in Action

• 2015, Microservice

• 设计哲学

• 沟通指引

• ⽅方案讨论基础

• 编程框架

• 代码规范

• 解决⽅方案

 是 不不是

DDD

DDD 是否过时？

运⾏行行架构
Aggregates / Repositories /

Factories

模型设计
Entities / Value Objects /

Services

领域规划
LAYERED ARCHITECTURE

新⼀一代的语⾔言与范式
Scala/Java 8/Golang/Rust/

TypeScript……

新的框架
Akka/Vert.x/Spark/

React……

新的领域与需求
⼤大数据/机器器学习/区块链….

 (Final Manuscript, April 15, 2003) © Eric Evans, 2003 40

The model provides the language of the domain and the basic assignment of responsibilities. If new
language is invented during implementation, the model has changed, and the change needs to be integrated
back into model discussion.

The single model reduces the chances of error, since the design is now a direct outgrowth of the carefully
considered model. The design, and even the code itself, has the communicativeness of a model. Design
elements that are broken along conceptual lines tend to provide natural lines of division making refactoring
easier.

♦♦♦

Developing a single model that captures the problem and provides a practical design is easier said than
done. You can’t just take any model and turn it into a workable design. The model has to be carefully
crafted to make for a practical implementation. Design and implementation techniques have to be employed
that allow code to express a model effectively (see Part II). Knowledge crunchers explore model options
and refine them into practical software elements (Chapter 1). Development becomes an iterative process of
refining the model, design and code as a single activity (see Part III).

Modeling Paradigms and Tool Support
To make a MODEL-DRIVEN DESIGN pay, the correspondence must be literal, exact within bounds of human
error. To make such a close correspondence of model and design possible, it is almost essential to work
within a modeling paradigm that has software tools that directly support it by allowing creation of direct
analogs to the concepts in the paradigm.

Model DesignParadigm

Figure 3. 1

Object-oriented programming is powerful because it is based on a modeling paradigm and provides
implementations of the model constructs. As far as the programmer is concerned, objects really exist in
memory, have associations with other objects, are organized into classes, and provide behavior available by
messaging. Although many developers get benefit from just applying the technical capabilities of objects to
organize program code, the real breakthrough of object design comes when the code expresses the concepts
of a model. Java and many other tools allow the creation of objects and relationships directly analogous to
conceptual object models.

Although it has never reached the mass usage that object-oriented languages have, the Prolog language is a
natural fit for MODEL-DRIVEN DESIGN. In this case, the paradigm is logic, and the model is a set of logical
rules and facts they operate on.

MODEL-DRIVEN DESIGN has limited applicability using languages like C because there is no modeling
paradigm that corresponds to a purely procedural language. Those languages are “procedural”, in the sense
that the programmer tells the computer a series of steps to follow. While the programmer may be thinking

编程范式影响设计
（OOP 不不是唯⼀一选择）

概念对应与FP

Value Object Tuple, i.e (A, B) / Class

Entity Immutable Class / Data Type

Entities Stream of Immutable Data

Aggregates Collection Monads

Services IO Monads

Bounded Context Package

Factories Functions

业务流程 = 函数组合

• ⼤大部分时候，流程中的各种变化离不不开以下基础函数

• a -> b, 由 a 获得 b

• [a] -> [b]，由 a 的容器器 获得 b 的容器器

• a -> [b]，由 a 获得 b 的容器器

• [a] -> b，由 a 的容器器获得 b

• FP 有各种函数组合的⽅方式

• Higher-Order Functions

• Map/FlatMap/Fold

• Kleisli

• Applicative

• Functor

• Monad……

Free Monad 实现
分层结构

• 业务逻辑(Domain Layer) —— AST

• 运⾏行行环境(Application Layer) —— Interpreter

• 数据(Persistence Layer) —— Actor

Demo Code in Scala
(akka http + cats + akka)

https://github.com/neomaclin/movie-ticket-
reservation/tree/free-monad-b

Q & A

