ThoughtWorks

Domain
Use Cases & Aspect Thinking
End-to-End Evolutionary Design

Pan-Wei Ng, Ph.D.

EFS fﬁi
pwng@thoughtworks.com

On Software Evolution and Change Modularity

« Normal case for software evolution/development is from S, to Sy
» with {} to S, as a special case

+L I+l 4

SN-1

w AR

JdH
—
E
=

’ ThoughtWorks:

On Change Modularity

A software evolution/development is a composition of changes

+L LT+l 4
A, A, Ay Ay A

>N SN-1

« Every release is a “composition” of "changes”
« Every change is an identifiable module

» Every change has a natural and unique place in the system
structure

« Requirements architecture - The timeless beauty of good software
« The art of moving from variability in time to variability in space

» Every change has a lifecycle from idea “requirements” to
“composition”

w AR

JdH
—
E
=

3 ThoughtWorks'

Separation and Modularity of Concerns ()

... We (want to) know that a program must be
correct

.. we can study it from that viewpoint only ...
But nothing Iis gained --on the contrary!-- by
tackling these various aspects simultaneously

It Is what | sometimes have called "the separation
: of concerns”, which, even if not perfectly possible,
by Edsger W. Dikstra in his 1974 1S Y€t the only available technique for effective

paper "On the role of scientific

thought ordering of one's thoughts, that | know of.

AT 1

bl

4 ThoughtWorks'

Effects of Poor Separation of Concerns

» Tangling

» Scattering

» Duplication

my —\

M, * F,

my —\¢

M,* F,

Y o W
I
ALY
BT e G\ > —
\ N & =
— - N o —
wy

M,* F,

M3* I:’I

B AR

bl

5

ThoughtWorks:

Effective Separation and Modularization of Changes

+ Fighting Tangling: Separation of Extensions (Changes)

_‘\.‘
_Q\‘

Base

Extension

- B

Changes

* Fighting Tangling: Modularization of Extensions (Changes)

No Separation

‘3

= B

With Separation

With Modularization

=

Changes

=
=

B AR

bl

6

ThoughtWorks'

Towards Change Separation and Modularity

 Different Roles Different Perspectives

Customer Requirements Code Test

» Unified Perspective : Alignment from Requirements to Code and

Test
Customer Requirements Code Test
\) \)
Y Y

Requirements ,

Architecture/ Transformation
Modularity

S 1 E 7 ThoughtWorks'

From Domain Modularity to Change (Use Case & Aspect) Modularity

Object or Domain

Slices
To Deal with Variability

/StrUCt/uri//\

Slices can be added
and removed easily

w AR

bl

8

ThoughtWorks'

Most Methods Do Not Specifically Deal with Change Modularity

« Many design methods? Do they deal with evolution and change
modularity?

Class Software Evolution?
Responsibilities * SN-1 ™ SN
Collaboration

Use Case
Analysis and
Design

Change Modularity?
* SN = Snet t At A,

Event Storming

s A fE -

bl

9 ThoughtWorks:

Let's take a concrete example: hotel reservation

« Consider existing class with operation makeReservation

—C

Customer Reserve Room

makeReservation /

[N]

Rooms
Available?
[Y]

Indicate
No Rooms

e

Create
{ Reservation } @

AT 1

bl

10

ThoughtWorks:

Effects of Tangling

« What happens after you add more functionality?

-

Handle Waiting List

s
24

O

Reserve Room

| 2
N\
N\

Handle Authorization

makeReservation /

Access [N] [Authorization
[Y]

.

—®

granted? Error
Rooms [N] Put in
Available? Waiting List
[Y]
{ Create O
Reservation

AR

5

[

bl

11

ThoughtWorks'

Lets have some code examples

e Reserve Room Realization

makeReservation

Line 6 ——

Line 7

[N]

Line 5: Operation

Rooms

Indicate
Available? [NG Rooms\ }—*@
[Y]
ot Llne !
reate
’[Reservation }—'@ throw
exception

1. class Room {
2. I nt quantityAvail abl e ;
3. }
4. class ReserveRoom {
5. vol d nakeReservati on(Room t heRoom t hrows
NoRoonExcepti on {
6. checkRoomAval ability(t heRoom ;
/. creat eReservation() ;
8. }
9.}
S T 2 ThoughtWorks

Lets add a waiting list use-case

¢ Waiting List Realization makeReSGr"atioy Line 3-4

Rooms [N] Put in ,@
Available? Waiting List

[Y] \
Create
R ti] @
[SSEEEEN Line 7 added
here

1. aspect Handl eWaiti nglLi st {
2. WAl t1 ngLi st Room queue ; // inter-type declaration
3. poi nt cut reservi ngRoon):
4. execut i on(Reser ver RoonHandl er. nakeReservation()) ;
5. [/ advi ce
5. after throw ng (NoRoonmException e) : reservingRoon() {
/. /] behavior to add custoner |1 nto queue
8. }
9. 1}
Note:
You need not use aspectd,
You can apply other techniques.
AL T 3 ThoughtWorks:

Lets add authorization use-case

 Authorization Realization

makeReservation /

Line 2-3 ~ Access Authonzatlon C
granted? Error }
Rooms Indicate No O
Ava”able? Rooms
Create
Resen/atlon
1. aspect Handl eAut hori zation {
2. poi nt cut request Handl i ng()
3. cal | (ReserveRoonHandl er. makeReservation(..)) ;
3.
4. around () request Handl i ng() {
5. | f (AccessControl List.isAuthorized()) {
6. proceed() ;
7. }
g) Note:
9.) You need not use aspectd,
' You can apply other techniques.
+= = N 14 ®
S T ThoughtWorks

Lets add authorization (crosscutting)

 Authorization Realization

makeReservation /
Line 2-4 T A A thorizat
e granted? iorzaton| @
Rooms Indicate No O
Ava|lable’? Rooms
Create
Reservatlon
1. aspect Handl eAut hori zation {
2. poi nt cut request Handl I ng()
3. cal | (ReserveRoonHandl er.*(..))
4. || call (Checklnhandler.*(..));
3.
i around () : requestHandling() {
5. | f (AccessControl List.isAuthorized()) {
6. proceed() ;
/. J Note:
8. } You need not use aspectd,
9. } You can apply other techniques.
mAEE 15

ThoughtWorks:

The Use Case + Aspect Advantage

Requirements Modularity

Basic Flow - Reserve Room

1. Customer select room

2. Customer submit reservation

3. System update room availability
4. System create new reservation

Alternate Flow - Waiting List

1. This alternate flow occurs at step 3 of basic
flow when no rooms are available

2. The system puts customer in waiting list

Implementation Modularity

cl ass ReserveRoom {
voi d nakeReservation() {
checkRoomAval abi l 1 ty(t heRoom ;
creat eReservation() ;
)
}

o Gl g) i) =

aspect Handl eWai ti1 ngLi st {
poi nt cut reservi ngRoon()
. execution(makeReservation());
after thowmng (..)
. reservi ngRoon() {
[/ add custoner into queue

oo =1 en B o=) [=

AT 1

bl

® ThoughtWorks

Different Aspect Technology

Aspectd — Aspect Oriented Programming

Hyper/J — Multi-Dimensional Separation of Concerns

Demeterd — Adaptive Programming

B AR

[

17

ThoughtWorks:

Operationalizing Software Evolution Modularity

l 2

Change Change

Storming Modularization
Brainstorm Clarify Find the
Dimensions Semantics and Natural Home in
Of Change/ Boundaries of the Universe
Variability Changes

ST L '“ ThoughtWorks

Change Storming: Identifying Different Dimensions of Variability

System
Operations

Upgrade
Backup

T

. VIP
Special Peak Customer
cases Seasons

Wait List
1. Putinto Waiting List
2. Process Waiting List

Cancel Waiting List

Check Waiting List

Waiting List Handling

Existion Event Context

Check Out

Cancel Reservation
Make Reservation

Waiting List Full

Waiting List Expiry

Exception
Handling

AT 1

bl

" ThoughtWorks'

1. Change Modularization: Extension Semantics (Requirements)

Reserve Room
1. Select Room Type
Provide Check-In/Out Dates
Check Availability

Waiting List Slice

QO

2.
3.
4. Confirm Order
5.

Create Reservation

when no room available
* Put on Waiting List

Cancel Reservation Q

1. Cancel
2. Release Rooms

When room available
* Process Waiting List

Check Out

1. Check Out
2. Compute Bills

When room available
* Process Waiting List

Use Case Extension

Semantics

 Eventdriven or
object traversal
existion

 Before, after, around
« Singular, multiple,
cross-cutting

 Extension / Feature
Interaction

* 1storder, second
order, Nth order
Interactions

AT 1

bl

2 ThoughtWorks

Use-case extend

« Use case extension is used when you want to add additional
behaviors on top of existing use cases

 Additional behavior can be
e enhancement of the use case

* d Separate concern EXtenSiOn
(Base)

Existion «extend» Q
Handle Waiting
Customer Reserve Room Q

Establish Session
{alt} Check Authorization

w AR

JdH
—
E
=

21 ThoughtWorks:

Use-case specification for extension (current approach)

Use Case: Reserve Room
Basic Flow
1. The use case begins when a
customer wants to reserve a room(s).
2. ...
3. The system displays the types of
rooms in the hotel and the their rates
4, The customer Choose Rooms.
5. ...
6. ...
7. ...
8. The system displays the reservation
confirmation number and check in
Instructions.
9. The use case terminates.
Alternate Flows

Extension Points
E1 Update Room Availability

Basic Flow - Step 5-

Use Case: Handle Waiting List
Basic Flow

Extension Flows

EF1.Queue For Room

This extension flow occurs at the
extension point “Update Room Availability”
In the Reserve Room use case when there
are no rooms of the selected type
available.
1. The system creates a pending
reservation with a unique identifier for
the selected room type.
2. The system puts the pending
reservation into a waiting list
3. The system displays unique identifier
of the pending reservation to the
customer,
4. The base use case terminates

bl

E#K’f J T@ — Copyright 2004 © lvar Jacobson Consulting Co. Ltd.

ThoughtWorks'

Extension User Story

When ... When there is no rooms during Extension
As a ... reservation Context
| want to
So that As a traveler Before
| want to be put on a waiting list = After
so that | get chance to stay in Around
the hotel | like.
SO 1L ThoughtWorks:

2. Change Modularization: Crisp Boundaries

Different and many

Existion Extension Point Extension implementation
| 5 mechanisms available
Customer tries to INoRoomAvailable , « Design frameworks (e.g.
B S (FEGIAT Put customer in Spring)
Q waiting list Pring

| g » Design patterns -

e pm— | decorator, adapter,

reservation IRoomAvailable observer, strategy and
' Go through visitor, etc.
I waiting list and , . :
— e : i~ Service notification,
ustomer checks ou i available Service mesh

The key is still modularity

bl

B - “ ThoughtWorks

2. Change Modularization: Crisp Boundaries

RoomHandler

(@

IReservation

IWalitngList

ST L > ThoughtWorks:

3. Change Homing: Finding the natural home

« Law of Demeter, Principle of Least Knowledge

 Structure according to change / requirements modularity

[]

app
— |
reservation
| Waiting list Requirements Homing
Core handling
core adapter
Change composition
| Reserve Room | Check Out & extension
| |
| INoRoom core >0
Galrs 4®, Handler IRoom
AvailableHandler
% ThoughtWorks

Change Modularity in the Large

» Every Release adds new
capability to the system

« New functionality

Extension Online Waiting » Extension (Aspect)
onali Payment List i
(Functionality) y e Infrastructure mechanism
- Room Reserve Check-In
Application L
(Functionality) Pricing Room Check-Out
Handle X
Infrastructure concurrent
users
AT [H L 27

ThoughtWorks'

Use Case as Context and Change Modularity Constructs

Functional Requirements

D

Peer Use Case

Domain Object

-~ «extend»

>

«extend» Extension

-
-
-
-
-
-
-
-
: |

SApplication \\sfextend»
" Use Case)

Application Use
Case

«extend»

< __
C_ D <swtands C D

Infrastructure Use Case

Infrastructure Use Case

Non-Functional Requirements

(tier specific)

AR

5

[

bl

28

ThoughtWorks'

A Mature Process to deal with Extensions

Team LiB 4 PREVIOUS [MEXT »

Part IV: Establishing an
Architecture Based on Use Cases
and Aspects

Building good software is like building many other kinds of
systems. You start by building a skeleton, and then you add on
to that skeleton, making sure that whatever you add to the
system later will not impact what you built previously. When it
comes to software, you can, after some initial prototyping,
design a skinny system that includes the skeleton that you can
build upon. To make sure that you can grow the skinny system
to become the full-fledged system, you must determine whether
the features not yet included in the skinny system can be added
later without redesign of the system. In fact, you need to make
sure that all risks that may impact the graceful growth of the
skinny system can be taken care of without redesign.

. Veloped as an early version of the

¥¥ lecture baseline. It contains the small
of the system, including requirements,
nd testsbut only the important ones.
recture baseline is an architecture

ates your decisions.

’A‘spr.(.'r-ORu:.*rr,n
SOFTWARE DEVELOPMENT
WITH USE CASES

acture is one of the most significant

tess of the project. The emphasis in the
on establishing a resilient architecture,
Kkeeps concerns separate. Since there are
ns, you use different techniques, too.
you can keep the specifics of different

> with classes. You apply layering to
domain separate from those of the

2 emphasis of this book is about keeping

Contents

Aspect-Oriented Software Development with Use Cases
Table of Contents
Copyright
» Praise for Aspect-Oriented Software Development with Use Cases
» Preface
Acknowledgments
» Part I: The Case for Use Cases and Aspects
» Part Il: Modeling and Capturing Concerns with Use Cases
» Part lll: Keeping Concerns Separate with Use-Case Modules

¥ Part IV: Establishing an Architecture Based on Use Cases and Aspects
» Chapter 11. Road to a Resilient Architecture
» Chapter 12. Separating Functional Requirements with Application Peer Use Cases
» Chapter 13. Separating Functional Requirements with Application-Extension Use Cases

Separating Nonfunctional Requirements with Infrastructure Use Cases
Separating Platform Specifics with Platform-Specific Use-Case Slices
Separating Tests with Use-Case Test Slices

» Chapter 17. Evaluating the Architecture

» Chapter 18. Describing the Architecture
» Part V: Applying Use Cases and Aspects in a Project
» Appendix A. Modeling Aspects and Use-Case Slices in UML
» Appendix B. Notation Guide

References

Glossary

» Chapter 14.
» Chapter 15.
» Chapter 16.

s
ety

AL

Note: Request copies of this book from the me

s AR -

bl

29

ThoughtWorks:

Use Case driven development

Peer Extension Infrastructure Platform
Use Case D peeruct O O _C e
e oo e K e X G
MOdel O Peer UC2 ext pt Extension (Actor) Transaction) Infra uc (Actor) (Platform UC)
ucC ext pt ext pc=* ext pc=*
]]]]]]

I C < (C) C uc
Ana|yS|S @\Q//@ Application @\0/26 ;g%\ Application/Domain 5 C>< / Trarfsacﬁom
Model |—AL 1 ;

1 iﬁ """ —| U\ v
d \Q Domain Infrastructure Infrastructure
X X (distribution)
%@ CC> 9 %@ ? CXD pointcut %Fg <CC>> Cx> Parameterized %Q <CC>> Cx> Parscr)r:r?;tf:tzed
N T T T pointcut
—
Design | — = i —
H 0 O 1 O Minimal
MOdeI A l o] | | B—— / ________________________ i | ; design
g g delegate ——— — /
______ SO | Extended
inteceptor design
"""" e T S
infrastructure

We will not discuss this in detalil

[

AR

5

bl

30

ThoughtWorks:

Summary

 Software development = software evolution
» Modularize change
« Change modularity starts with requirements modularity
» Good requirements modularity leads to good design
» Good requirements modularity is change modularity
 Limit impact of change to a single requirements module
« Use cases provide constructs for requirements modularity
» Aspect and related technology helps implement change modulairty

w AR

JdH
—
E
=

3 ThoughtWorks'

Thank You

7 ; s Ve ~ \ A‘ ‘,(™\ I' r 4
to add me on WeChat

bl

T - ~ ThoughtWorks

