
Domain
Use Cases & Aspect Thinking
End-to-End Evolutionary Design

Pan-Wei Ng, Ph.D.
黄邦伟 博士
pwng@thoughtworks.com

1

黄邦伟博士

On Software Evolution and Change Modularity

• Normal case for software evolution/development is from SN-1 to SN

• with { } to S0 as a special case

• A software evolution/development is a composition of changes

2

S0

Δ1
+ Δ2

+ Δ3
+ Δ4

+ Δ5
+

à
S1

à
S2

à à
SN-1

à
SN

à

SN

=
SN-1

{}

黄邦伟博士

On Change Modularity

• A software evolution/development is a composition of changes

• Every release is a “composition” of ”changes”
• Every change is an identifiable module
• Every change has a natural and unique place in the system

structure
• Requirements architecture - The timeless beauty of good software
• The art of moving from variability in time to variability in space

• Every change has a lifecycle from idea “requirements” to
“composition”

3

Δ1
+ Δ2

+ Δ3
+ Δ4

+ Δ5
+

SN

=
SN-1

黄邦伟博士 4

Separation and Modularity of Concerns ()

by Edsger W. Dijkstra in his 1974
paper "On the role of scientific
thought

… We (want to) know that a program must be
correct ….
.. we can study it from that viewpoint only …
But nothing is gained --on the contrary!-- by
tackling these various aspects simultaneously

It is what I sometimes have called "the separation
of concerns", which, even if not perfectly possible,
is yet the only available technique for effective
ordering of one's thoughts, that I know of.

黄邦伟博士

Effects of Poor Separation of Concerns

M1 M1* F1 M1*F1*F2 M1*F1*F2*F3

• Scattering

F 1
M1* F1 M2* F1 M3* F1

• Duplication

MA* FX MB* FX MB* FX * FY

• Tangling

5

黄邦伟博士 6

Effective Separation and Modularization of Changes

M1

M2

No Separation With Separation With Modularization

• Fighting Tangling: Modularization of Extensions (Changes)

• Fighting Tangling: Separation of Extensions (Changes)
Base

Extension

Changes

Changes

黄邦伟博士 7

Towards Change Separation and Modularity

Customer Requirements Test

• Different Roles Different Perspectives

• Unified Perspective：Alignment from Requirements to Code and
Test

Code

Customer Requirements TestCode

Requirements
Architecture/
Modularity

Transformation

黄邦伟博士 8

From Domain Modularity to Change (Use Case & Aspect) Modularity

Object or Domain
structure

Slices
To Deal with Variability

Slices can be added
and removed easily

黄邦伟博士

Most Methods Do Not Specifically Deal with Change Modularity

• Many design methods? Do they deal with evolution and change
modularity?

9

Use Case
Analysis and

Design

UML in
Color

Class
Responsibilities
Collaboration

Event Storming

Software Evolution?
• SN-1 à SN

Change Modularity?
• SN = SN-1 + Δ1 + Δ2

黄邦伟博士

Let’s take a concrete example: hotel reservation

• Consider existing class with operation makeReservation

10

makeReservation

Rooms
Available?

Create
Reservation

[N]

[Y]Customer Reserve Room
Indicate

No Rooms

黄邦伟博士

Effects of Tangling

• What happens after you add more functionality?

11

Access
granted?

Rooms
Available?

Create
Reservation

[N] Authorization
Error

Put in
Waiting List

[Y]

[N]

[Y]

makeReservation

Reserve Room

Handle Authorization

Handle Waiting List

黄邦伟博士

Lets have some code examples

• Reserve Room Realization

12

1. class Room {
2. int quantityAvailable ;
3. }
4. class ReserveRoom {
5. void makeReservation(Room theRoom) throws

NoRoomException {
6. checkRoomAvalability(theRoom) ;
7. createReservation() ;
8. }
9.}

makeReservation

Rooms
Available?

Create
Reservation

[N]
Indicate

No Rooms
[Y]

Line 5: Operation

Line 6

Line 7
Line 5:
throw

exception

黄邦伟博士

Lets add a waiting list use-case

• Waiting List Realization

13

Rooms
Available?

Create
Reservation

Put in
Waiting List

[N]

[Y]

makeReservation

1. aspect HandleWaitingList {
2. WaitingList Room.queue ; // inter-type declaration
3. pointcut reservingRoom():
4. execution(ReserverRoomHandler.makeReservation()) ;
5. // advice
5. after throwing (NoRoomException e) : reservingRoom() {
7. // behavior to add customer into queue
8. }
9. }

Line 3-4

Line 7 added
here

Note:
You need not use aspectJ,
You can apply other techniques.

黄邦伟博士

Lets add authorization use-case

• Authorization Realization

14

Access
granted?

Rooms
Available?

[N] Authorization
Error[Y]

[N]

[Y]

makeReservation

Indicate No
Rooms

Create
Reservation

Line 2-3

1. aspect HandleAuthorization {
2. pointcut requestHandling() :
3. call(ReserveRoomHandler.makeReservation(..)) ;
3.
4. around () : requestHandling() {
5. if(AccessControlList.isAuthorized()) {
6. proceed() ;
7. }
8. }
9. }

Note:
You need not use aspectJ,
You can apply other techniques.

黄邦伟博士

Lets add authorization (crosscutting)

• Authorization Realization

15

Access
granted?

Rooms
Available?

[N] Authorization
Error[Y]

[N]

[Y]

makeReservation

Indicate No
Rooms

Create
Reservation

Line 2-4

1. aspect HandleAuthorization {
2. pointcut requestHandling() :
3. call(ReserveRoomHandler.*(..))
4. || call(CheckInhandler.*(..));
3.
4. around () : requestHandling() {
5. if(AccessControlList.isAuthorized()) {
6. proceed() ;
7. }
8. }
9. }

Note:
You need not use aspectJ,
You can apply other techniques.

黄邦伟博士

The Use Case + Aspect Advantage

Basic Flow – Reserve Room
1. Customer select room
2. Customer submit reservation
3. System update room availability
4. System create new reservation

Alternate Flow – Waiting List
1. This alternate flow occurs at step 3 of basic

flow when no rooms are available
2. The system puts customer in waiting list

16

1. class ReserveRoom {
2. void makeReservation() {
3. checkRoomAvalability(theRoom);
4. createReservation() ;
5. `}
6. }

1. aspect HandleWaitingList {
2. pointcut reservingRoom()
3. : execution(makeReservation());
4. after thowing (..)
5. : reservingRoom() {
6. // add customer into queue
7. }
8. }

Requirements Modularity Implementation Modularity

黄邦伟博士 17

Different Aspect Technology

AspectJ – Aspect Oriented Programming

Hyper/J – Multi-Dimensional Separation of Concerns

DemeterJ – Adaptive Programming

黄邦伟博士 18

Operationalizing Software Evolution Modularity

1
Change

Storming

2
Change

Modularization

3
Change
Homing

Brainstorm
Dimensions
Of Change/
Variability

Clarify
Semantics and
Boundaries of
Changes

Find the
Natural Home in
the Universe

黄邦伟博士

Existion Event Context

Make Reservation
Cancel Reservation

Check Out

Exception
Handling

Waiting List Full

Waiting List Expiry

Cancel Waiting List

Waiting List Handling
Check Waiting List

System
Operations

Backup
Upgrade

Special
cases

VIP
CustomerPeak

Seasons

Wait List
1. Put into Waiting List
2. Process Waiting List

BA Dev Tester

Change Storming: Identifying Different Dimensions of Variability

19

黄邦伟博士

Reserve Room

1. Select Room Type

2. Provide Check-In/Out Dates

3. Check Availability

4. Confirm Order

5. Create Reservation

20

1. Change Modularization: Extension Semantics (Requirements)

Waiting List Slice

Cancel Reservation
1. Cancel
2. Release Rooms

Check Out
1. Check Out
2. Compute Bills

when no room available
• Put on Waiting List

When room available
• Process Waiting List

When room available
• Process Waiting List

Use Case Extension
Semantics
• Event driven or

object traversal
existion

• Before, after, around
• Singular, multiple,

cross-cutting

• Extension / Feature
interaction

• 1st order, second
order, Nth order
interactions

黄邦伟博士

Use-case extend

• Use case extension is used when you want to add additional
behaviors on top of existing use cases

• Additional behavior can be
• enhancement of the use case
• a separate concern

21

Customer Reserve Room

Handle Waiting
List

«extend»

Establish Session

{alt} Check Authorization

Extension
(Base)
Existion

黄邦伟博士 22

Use-case specification for extension (current approach)

Copyright 2004 © Ivar Jacobson Consulting Co. Ltd.

Use Case: Reserve Room
Basic Flow

1. The use case begins when a
customer wants to reserve a room(s).
2. ...
3. The system displays the types of
rooms in the hotel and the their rates
4. The customer Choose Rooms.
5. …
6. …
7. …
8. The system displays the reservation
confirmation number and check in
instructions.
9. The use case terminates.

Alternate Flows
...
Extension Points
E1 Update Room Availability
Basic Flow – Step 5

Use Case: Handle Waiting List
Basic Flow
…
Extension Flows
EF1.Queue For Room
This extension flow occurs at the

extension point “Update Room Availability”
in the Reserve Room use case when there
are no rooms of the selected type
available.
1. The system creates a pending
reservation with a unique identifier for
the selected room type.
2. The system puts the pending
reservation into a waiting list
3. The system displays unique identifier
of the pending reservation to the
customer.
4. The base use case terminates

黄邦伟博士 23

Extension User Story

When …
As a …
I want to ….
So that …..

When there is no rooms during
reservation

As a traveler
I want to be put on a waiting list
so that I get chance to stay in
the hotel I like.

Extension
Context

Before
After
Around

黄邦伟博士

2. Change Modularization: Crisp Boundaries

Existion Extension Point Extension

Customer tries to
reserve room

IRoomAvailable
Customer cancel
reservation

Customer checks out

Put customer in
waiting list

Go through
waiting list and
check if room
available

INoRoomAvailable

24

Different and many
implementation
mechanisms available
• Design frameworks (e.g.

Spring)
• Design patterns –

decorator, adapter,
observer, strategy and
visitor, etc.

• Service notification,
service mesh

The key is still modularity

黄邦伟博士 25

2. Change Modularization: Crisp Boundaries

ReserveRoom

NoRoom
Adapter

WaitingList
Handler

WaitingListeRoomHandler

iWaitngListCheckInOut

NoRoom
Delegate

iReservation

黄邦伟博士

Reserve Room

core

3. Change Homing: Finding the natural home

• Law of Demeter, Principle of Least Knowledge
• Structure according to change / requirements modularity

26

app

reservation

Waiting list

core adapter
Core handling

Change composition
& extension

INoRoom
Handler

core

Check Out

IRoom
AvailableHandler

Requirements Homing

黄邦伟博士

Change Modularity in the Large

• Every Release adds new
capability to the system
• New functionality
• Extension (Aspect)
• Infrastructure mechanism

27

Reserve
Room

Check-In
Check-Out

Waiting
List

Online
Payment

Handle X
concurrent
users

Application
(Functionality)

Extension
(Functionality)

Infrastructure

Room
Pricing

黄邦伟博士 28

Use Case as Context and Change Modularity Constructs

Infrastructure Use Case

Functional Requirements

Non-Functional Requirements

Application
Use Case

Domain Object

Extension
Application Use

Case

Peer Use Case

Infrastructure Use Case
(tier specific)

«extend»

«extend»

«extend»
«extend»

«extend»

黄邦伟博士

A Mature Process to deal with Extensions

29

Note: Request copies of this book from the me

黄邦伟博士

Use Case driven development

Use Case
Model

Analysis
Model

Design
Model

Infrastructure PlatformPeer Extension

Peer UC1

Peer UC2

Base UC

Extension
UC

áActorñ Infra UC
áPerform

Transactionñ áActorñ

áPerform
Transactionñ

áPlatform UCñext pt
ext pc=*ext pt ext pc=*

Application

Domain

Application/Domain

Infrastructure

áUC
Transactionñ

áBñ

áCñ

Infrastructure
(distribution)

áBñ

áCñ

XX

:B :C :E :B :C :X áBñ áCñ :X áBñ áCñ :Xpointcut Parameterized
pointcut

Parameterized
pointcut

delegate

inteceptor

infrastructure

Minimal
design

Extended
design

We will not discuss this in detail

30

黄邦伟博士

Summary

• Software development = software evolution
• Modularize change
• Change modularity starts with requirements modularity
• Good requirements modularity leads to good design
• Good requirements modularity is change modularity

• Limit impact of change to a single requirements module
• Use cases provide constructs for requirements modularity
• Aspect and related technology helps implement change modulairty

31

黄邦伟博士
32

Thank You

