Dec 2017

Model Based Architecture Design
Z:TRAEIR 2R T

Ming X Jin £&3#7HH — Chief Risk Architect

DDD Beijing, 9t" Dec 2017 HSBC <X>

PUBLIC

I About me ...

e Name: Ming X Jin 4575/ Current Role: Chief Risk Architect in HSBC
e Education Background: Automatic Control, Computer Science (Ph.D.)

e PhD topic: Model based business process simulation

e First Job: Cobol programmer for UnionPay POS integration

e Multi Industry Sector experience: Academic, Consultancy, Defense,
Manufacturing, Banking

e Multi Architect Roles:
— Systems Architect — Thales Group (4 years)
— Technology Architect — Infosys (1 year)
— Data Architect — RBS (6-month)
— Process Architect — Barclays Capital (2 years)

— Solution Architect — RBS (6-month), Barclays Capital (1 year), Standard
Chartered (14-month)

— Enterprise Architect — NOW

PUBLIC

I Ubiquitous Models

Model is always there, intentionally or not intentionally;

e Model has a wide context, but a specific purpose;

e There is a right model but no complete model;

e There is no universal model but a suitable model;

Code alignment with models determines the code quality;

PUBLIC

I Hierarchical Organisation of Software & Complexity

Product line (or product family) ‘
System or product () .
Subsystems/Modules ~ ()-() ()
Packages (31O O
R) 4
Classes/Objects () (O ~~~~~~~~~~~ oo o

Methods

Source code

e Application level complexity
— Complexity of all interfaces that application uses

— Complexity of all interfaces that application
provides

— Complexity of application source code and data

~~~~~~~~
_____________________

highest abstraction level

() lowest level

Enterprise level complexity

— Complexity of overall performance optimisation
— Complexity of integration

— Complexity of data management

— Complexity of business/technology alignment

PUBLIC 4



I System Decomposition & Domain Driven Design

Why decomposing systems?
— Tackle complexity by “divide and conquer”
— See if some parts already exist & can be reused
— Focus on creative parts and avoid reinventing the wheel

— Support flexibility and future evolution by decoupling unrelated parts, so each
can evolve separately (“separation of concerns”)

Why Domain Driven Design? Y
— Disciplined modelling approach \é}\}
— Bounded context O&Q
— Ubiquitous language for easy communication &0

— Focusing on domain and domain logic instead of interfaces{\
NV

3>

PUBLIC



I Project Example: Zachman Framework Based Modelling

Data (What)

(Structural)

Process (How)

(Dynamic)

Location (Where)

People and
Organisations (Who)

Events (When)

Motivation (Why)

Strategic View

(Scope and User
Requirements)

List ofthingsimportant to
the programme/ strategic
initiative/ enterprise system

(Identifiesthe Business
Domain Objects);

Glossary

List of business events/
cycles

Overarching Strategic
Requirementsinduding
Business goals, strategies,
and requlatory constraints

Business Domain Model
(business objects, attributes
and relationships)

BusinessUse Cases;
BusinessProcess Models

Business Participation (or
Role) Model
(customers of, and

BusinessEvent Catalogue;

Business Exception

BusinessRequirements
including Functional
Requirements, Non-

Message definitions

Business (BPMN); workersin, the maj . : i
A , jor Catalogue; Functional Requirements
Process View | Bysiness States Model Business Context activitiesincluding ) and Business Rules
showing states of ke - g Business Event Model
( Y Diagrams participating BEMN
objects organisations) ( )
. System Event Catalogue; .
Functional Mapping of Business System Use Cases; List of System Actors; System Excet SVSItedm R;quutgmerts
unctional Domain Model to Logical . ystem Exception including Functiona
Specification ) Business Process M,°d35 Use Case Context Catalogue; Requirements, Non-
P DataModel. (Executable BPMN ~
View X Diagram to show actors Functional Requirements
System State-charts System Context Diagram access to use cases (Sgé:j:)EVem Model and Rules
Architectural descriptions .
(e.g. Presentation, Control, gpmponent Interaction
Platform ggﬁ%&:‘;ﬁ:ﬁﬁgg‘;;s SRS Businessrule design
Independent ~omp(¢ Service Choreography (DependingonRule
includingmessage A
Models View structurg)' i rwg Models Engine capabilties)
model with r::_
generalisationetc.
Platform architecture | Detailed Program Design. .
| models; Dataschemas and | Language/Platform Rulgsets for specificrule
Platform Specific | object defintions; Mapping | applications andsource €ngines,
Models View to legacy data; code.

Rule specificationin
program logic

PUBLIC




I Project Example: Various Model Usage

Data Model

Business Domain Model

1
|
|
|
|
2
Accounting Model £ @@@‘0 '%a Reporting Model |
|
|
|
Model Layer |
|

Event Model

Business Events

System Events

Application Layer

PUBLIC

o

o

5

Coherence S Coherence B

Config files pRe Config files fri

§

s
I N
i Coherence Manual En Coherence A Exception |
Ledger AEG [EM Cluster ESE okl il 9 9 Cluster Lt iy HliModues lvepi | R

A Oracle DB MR Oracle DB |

Model Exchange

Process Model

Business Process Model

i/
Detailed Business Process 1
Model

Rule Model

Rule Exchange




Project Example: Model Based Code Generation

|
|
|
1 Ul Layer
\ [—
|
> )i\%‘-f——__ =T I Ul Modules I
b ! i
ol | I Ul Interaction Modules l
|
i / 3
» 1 5 s 4
/ < \ |
5 i Process Layer
s L/
g P jBPM
8 A (MA)
& |
~ jBPM -
8 £ 4' J(MR>
Reporting Model N o 1\
A il BEM
PR =) \ R\ T\
\ | nHibemate \
&\e‘ N Config file \\ 3 A
72 - \: ! v
I \ ! 2
!l \\ Service Layer
3 ‘\
Business Domain Model : N Ledger AEG mz (EI\"‘:;V)
N |
: R
| Exception | Manual Entry
| ESF module module madule (MA)
|
I \
| = 3 72\ A
%, | == X/ X%\ erassaisianaiai N !
y \ I
o ! h \ P .\l DAS* Infrastructure v :
Caherence’ /. \ .
e Koersion \? Pl \| Caching Layer |
I 4 N/ \ | |
Java Imples F AT
: L o ation 74 ’/:f’; [ Coherence Cluster I i
I y
I X i I
‘f'; == i Java : : e :
g ! ] _\J | O-R Mapping Layer i
. | | X
~ Interfa \
Accounting Madel g \\;\ Jovalnartace ] ) J:\ ‘ Hibernate l i
I 1/
N \ A ! e
N A
: Sping 1 H ‘ nHibemate ‘ |
I Config file ] | |
\ ' I |
\. 1
\\\: 0 1 i A |
W N | \ : Y :
] \ 1 i
B N i ] \\| Persistence Layer |
1\ Coherence 1 !
i \. Config files | : S :
| \ 1
| \, 1 ,,.f"lf :
| \ e
N S| | |
I MA DB
! Spec ! : MA Oracle DB MR Oracts DS i
| T 5 e e p a e e e e e e

PUBLIC



Project Example: What & How delivered?

Business
Requirements
(Level 2)

Functional
Requirements
(Level 3)

Platform
Independent
Model
(Level 4)

Platform
Specific Model
(Level 5)

Code
(Level 6)

Data (What) Events (When) Process (How) Drivers (Why) Resource Type
Busiiess Life Cycle LIRS Business Business
LT LA, Events Ao Llene, Requirements Analyst
(BDM) (BPMN) 9 y
System Functional
Domain Model Sys:gg;&'; i Process Model Re Su%f;;n;nts Sl_e':atler:f
(SDM) (BPMN) < Y
BV Enriched
Data Object Execution Busi Formalised Solution
usiness .
Model Language Processes Rules Architect
(EVEL)
Platform Platform
Specific Platf(_)r_m Platfqr_m Specific Model
Generated SITEEIE SIS Generated Developer
Generated Code Generated Code
Code Rules
Hand-Built
DAS+ BEM jBPM Application Developer
Code

PUBLIC

% of Overall
Effort

30%

30%

15%

5%

20%



Project Example:

Defining Context - Business Use Case Meta Model

uc BUC Metamodel

Name: BUC Metamodel
Author: bradlead
Version: 1.0

Created:  15/06/2012 13:47:48
Updated: 130772012 14:21:49

KVO and PVO
Metamodel here:

% wvos and Pvos:
KW0Os and POVs

Motif BEDM Class

s

!
!
!
manages

BEMN Event Metamodel here:

@ BEMN Metamodel :
BEMN Metamodel

Includes Pre-
Conditions and Post-
Conditions: <<testcut>>|

Non Functional
Business
Requirement

L

constrained by o

~ 0.
0. '
Motif Business aActo sy : presents :
preceded by !
1 | ! ;
| 1 '
W 0.7 M- :
i ! Business Event
i = ) ' Instance
details ™~ ", Business Use Case \\ \ trigges
| 3
L Scenae b =m s Business Use Case 40.7 emits |
{D‘ i
% 4 oz 17
~ o - A
o SR ﬂ System Use Case
1y TR Metamodel here:
‘ < e - f
tested by \“\\ B - E SUC Metamodel :
k e e SUC MetaModel
\ System Use Case | 2
Y| @k S
P
o B
/ stestsets 5 from SUC Metamodel)
\ j =
I
N v Business Exception Catalogue
N o «BusinessProcess»
g o
‘

& <<testresult=>

1.7

1.5

BPMN 2.0 Process
Element

~— - || Business

E ,‘> RulefRequirement

aexception»
Business Exception

classifies

pueLic 10



I Project Example:
efining Context - Use Case Interaction Model

System Use Case Dependency Diagram

O R o e e e e e e e e e e e e e e e e e e
[ H 1
- él: ,
atic Data ! 3 T . r
R - ; 3
| : Process Spplicaition| Credit Scoring E Finace Processing
i ; i T
| /__.—“—. 2-"' AR -Lasd p— e
P or o1l
| i - L Trade - AT F ““bl
I [S1CEe: Lo AT male E‘I i K"m Tt 1\ m'd""" - ———  — c“.:’”:ﬁ" R
. = r e 3
X e A &
e = ] e -
- e I e S - —
! ! S a2t T # 1l g A 2t
| .": d A1 L T - Pranicge e~ /.-' - Kk il o -‘um\;m, AL
| I Trades i | E Gl [y
| i - / 4 i 3 = h 2
| ¥ -} s I'\\.\___} z_f f-_‘_.r /':m o I_. : W ~ s
. L = i J \ , (& sy S Ty e
b o et i AL e I\:W ot Sk i o
| 4 o e - = i | L e \_I f(;.lctn’.'-l.'-pmunﬁ
I, Lo S i A Mw:"" tuumm-mm i
(s -Lad P o | " L A ,
| TherddesI Cashy e = | '| * S o
- P | >4 . s
e Fe A Y | o :\\1 p e
L ; 1 -
Plog L Ao R | .-.-uuu.d.mm M o —_—
e S r= L | i - —
| _,-’/ s - EANCEA L - Gt
SICLA -Froruces | [ Secavongter
k\ﬂ:ﬂvdulcuh L i \:euvdulcuh
e | L
lﬁ-ﬂj I
: ™ e
=~ Load Ananclal Cats St | i
TR e L J_I_, i
. AT L i = T pndi ¢
s [ u-mnn.-my' - I ]
13 T o e e &
o \.,__ g o e o o
" e e r
) — e P i [
- st -
L F Aot -Lasares o | i
i [ Wravl_armake e | |
-
4 P i i
T — e | |
e - |
- - | i =,
: % i L RO | | . =
- CoA-LadTESY - i [
o 0, ‘-\\ I\ .uawu-/}" | I _ | )
~ —— - i —— : i | Dispatch Data
""-.\_\_ e X 2 I : |
o - . | i /"’ '\
- , SICLT e
ey Gét Reference Data : T e :- QLI Iu
" -,
o o R | | l\
b . | i - _
e "' |
|
/;.lcm--:u 00 kb IS
IQUE\H!L.I;‘ S e
\, =
\, bt

puBLic 11



I Project Example: Model Transformation

class BDM Model Structure/

Accounting Common Reporting
Accounting é ; Reporting
Level 2 BDM \ BDM
1 [
———> Unified BOM [&<—
Level 3 ]/\[
Motif Accounting ) Molif Bu. inessk Motif Présentation
Objkct Mode), Ob/lect I\/Iodel w ode/
DAS+ Accounting LDM --> BDM Reporting
Level 4 ﬁfgg:‘gggy BDM/KVO [ Mapping > BDM/PVO
Motif L\cccuntingly o LDM M¢tif Presenthtion| S \Votif Presentatio
Java PSM MG C# j:SM Javd PSM
PSM Component
v Interfaces v
Level 5 Accounting Reporting Reporting
Java Object Cﬁll':}';g:;ge Ja‘ﬁt':f';%::ge C# Object Java Object
Model Model Model
Java, XML, C#, Java,
Code DDL XML, DDL

Legend
Once Only

== Manual Merge

Transform

=== |mported

Recreateable
Code Generation

PuBLIC 12




Project Example:
Model Based Design - Cons Vs. Pros

e Pros:

>
>

>
>

Separate concerns at different levels from different views;

Provide a single version of truth for all design artefacts across different
teams and releases in the project life cycle;

Ensure a holistic, consistent, and integrated Model;

Build traceability between various artefacts of the development process
from high level business requirements to detailed implementation further
extend to testing;

Reusable and extensible;

Supports all development teams with different artefacts originated from
the same source model.

e Cons:

YV V VYV

Long release cycle;

Model becomes the bottleneck for fast delivery;
High front investment on modelling;

Need domain experts;

Isolation between business and dev teams.

PUBLIC
13



I What would | do differently ? - Conway’s Law

Organizations which OR
design systems .. . are

constrained to produce

designs which are copies

of the communication Process:

structures of these Continuous delivery/deployment
organizations.

If you build huge, monolithic
teams, you will end up with
huge, monolithic systems, but
if you build small, agile teams,
you will end up with small,
agile systems.

Melvin Conway, 1967

Enables Enables

Successful
Software
Development

Supports >
Organization: - Architecture:
Small, agile, autonomous, Microservice architecture
cross functional teams Enables

Source: http://microservices.io/patterns/decomposition/decompose-by-business-capability.htmi
PUBLIC 14



I What would do differently ? — Move to DevOps Model

I Global I
I Business/Functions
| corem o S s |
CIO Team Sz DevOps Product/Service Team R
= o e - \
/ i e % \
4 P > X3
Y U Group of Pods “3e B
I
i Head of 2 - 5 2
DevO y 2 (|
15 AR Technical 2 Jeet
Al | \ Product T )
cio A ’ : Mesger L ¥ o
1 i ‘ B =0
1 A | £ g 1)
I I Headof | o g 1 ]
! IArchitecture | Platform Architect | i Lael
' | <Product> ! § i 21 L0
V- — U ' : 5 i
: [ | :' . : 1 (B
I <GBIGF> | : Y & -
Head of Practice | z " ! 1 3.3 1 1
infra i %ervll_ce { Technical Expert— : o fE i
ChiefArch. 1 ; @ually | shared across PODs if B % S TR
Security 1 Manager | required & B i
PPM [ £ (] ’ 1 He.g DBAs, Middleware, e S 1 1
Ccoo L [ Compute) (B (1]
[ . I 1 5
I B - | ‘ : 1 Tas I
[ RoeE N i S
| ! Architects 7 !} i e
\ ' SMEs /I Q* Automation ,l -3 3 - I
*\ Design / Risk § Chalneer &2t 0
_ Tribe S s ot il 1
(XS e e e s s e e s s e s s s e e sl " - > 7
I N T O S e oo S S i, S L e oo S S ] S e e o i e e S v i 7’ I
e R e ) R o s P
-~ S R S Sl S Al SR A ) R S S e A Sl e S S S - -
L~ |

PUBLI



I What would do differently ? — Move to Microservices (1)

database =
I

————————————_—_—_—_—_—_—_—__—

Monolithic
application

Silo database

S W BN W W WS W W W W WS W WS W em e e e

Internally
componentized
application

T —————— — —— ——— — —

Microservice
component

Microservice
component

Microservices
application

Source: https://www.ibm.com/developerworks/websphere/library/techarticles/1601_clark-trs/1601_clark.html

PUBLIC

16



What would do differently ? — Move to Microservices (2)

Enabling Pods to deliver business value independently

Microservice

DATA STORE (Optional)

AN

Microservice

DATA STORE (Optional)

—

Microservice

DATA STORE (Optional)

it

Use Casq Mocel

@ Model

PUBLIC

17



I Looking Forward — HSBC’s Vision and How DDD May Help

e Our Group CTO has got a vision of 100% API, 100% Cloud and 100% Services;

e The complexity of system landscape incorporated with domain knowledge in HSBC needs
a full picture and understanding to allow fast changes;

e We are adopting DevOps to compete with FinTech and InsureTech firms who are
constantly releasing new and great products. DDD goes hand by hand with DevOps;

e Microservices are best used in a Cloud architecture, where they can scale horizontally.
However, we need start from the models instead of services;

PUBLIC

18



I Thank you!

PUBLIC

19



