
Dec	2017

Model	Based	Architecture	Design
基于模型的架构设计

Ming X Jin 金新明 – Chief Risk Architect
DDD Beijing, 9th Dec 2017

PUBLIC

2

About me …

• Name: Ming X Jin 金新明 Current Role: Chief Risk Architect in HSBC

• Education Background: Automatic Control, Computer Science (Ph.D.)

• PhD topic: Model based business process simulation

• First Job: Cobol programmer for UnionPay POS integration

• Multi Industry Sector experience: Academic, Consultancy, Defense,
Manufacturing, Banking

• Multi Architect Roles:
– Systems Architect – Thales Group (4 years)
– Technology Architect – Infosys (1 year)
– Data Architect – RBS (6-month)
– Process Architect – Barclays Capital (2 years)
– Solution Architect – RBS (6-month), Barclays Capital (1 year), Standard

Chartered (14-month)
– Enterprise Architect – NOW

PUBLIC

3

Ubiquitous Models

• Model is always there, intentionally or not intentionally;

• Model has a wide context, but a specific purpose;

• There is a right model but no complete model;

• There is no universal model but a suitable model;

• Code alignment with models determines the code quality;

PUBLIC

4

Hierarchical Organisation of Software & Complexity

System or product

Subsystems/Modules

Packages

Classes/Objects

Methods

highest abstraction level

lowest level

Product line (or product family)

Source code

PUBLIC

• Application	level	complexity	
– Complexity	of	all	interfaces	that	application	uses
– Complexity	of	all	interfaces	that	application	

provides
– Complexity	of	application	source	code	and	data

• Enterprise	level	complexity	
– Complexity	of	overall	performance	optimisation
– Complexity	of	integration
– Complexity	of	data	management
– Complexity	of	business/technology	alignment

5

System Decomposition & Domain Driven Design

Why decomposing systems?
– Tackle complexity by “divide and conquer”
– See if some parts already exist & can be reused
– Focus on creative parts and avoid reinventing the wheel
– Support flexibility and future evolution by decoupling unrelated parts, so each

can evolve separately (“separation of concerns”)

Why Domain Driven Design?
– Disciplined modelling approach
– Bounded context
– Ubiquitous language for easy communication
– Focusing on domain and domain logic instead of interfaces

PUBLIC

6

Project Example: Zachman Framework Based Modelling

6PUBLIC

7

Project Example: Various Model Usage

PUBLIC

8

Project Example: Model Based Code Generation

PUBLIC

9

Platform
Specific

Generated
Rules

Hand-Built
Application

Code
DAS+ BEM jBPM

Project Example: What & How delivered?

Business
Domain Model

(BDM)
Life Cycle

Events
Business

Process Model
(BPMN)

Business
Analyst 30%

System
Domain Model

(SDM)
System Events

(BEMN)
Functional

Process Model
(BPMN)

Systems
Analyst 30%

Business
Requirements

System
Requirements

Data Object
Model

Event
Execution
Language

(EVEL)

Enriched
Business
Processes

Solution
Architect 15%Formalised

Rules

Platform
Specific

Generated
Code

Platform
Specific

Generated Code

Platform
Specific

Generated Code
5%

Developer 20%

Model
Developer

Business
Requirements

(Level 2)

Functional
Requirements

(Level 3)

Platform
Independent

Model
(Level 4)

Platform
Specific Model

(Level 5)

Code
(Level 6)

Data (What) Events (When) Process (How) Drivers (Why) Resource Type % of Overall
Effort

PUBLIC

10

Project Example:
Defining Context - Business Use Case Meta Model

PUBLIC

11PUBLIC

Project Example:
Defining Context - Use Case Interaction Model

12

Project Example: Model Transformation

class BDM Model Structure

Accounting

Common

Reporting

Level 2

Level 3

Level 4

Code

Level 5

Unified BDM

Accounting

BDM

Accounting

BDM

Reporting

BDM

Reporting

BDM

Reporting

BDM/PVO

PIM

Reporting

BDM/PVO

PIM

Java, XML,

DDL

Java, XML,

DDL

C#, Java,

XML, DDL

C#, Java,

XML, DDL

Accounting

Java Object

Model

Accounting

Java Object

Model

Reporting

C# Object

Model

Reporting

C# Object

Model

LDM

Motif Business
Object Model

Once Only
Manual Merge
Transform
Imported
Recreateable
Code Generation

Legend

C# Language

Interfaces

C# Language

Interfaces

Java Language

Interfaces

Java Language

Interfaces

Barcap PSM Component

Interfaces

Barcap PSM Component

Interfaces

DAS+

Repository

Interfaces

DAS+

Repository

Interfaces

Accounting

BDM/KVO

PIM

Accounting

BDM/KVO

PIM

Reporting

Java Object

Model

Reporting

Java Object

Model

LDM --> BDM

Mapping

LDM --> BDM

Mapping

Motif Accounting
 Java PSM

Motif Presentation
Java PSM

Motif Presentation
 C# PSM

Motif Presentation
Object Model

Motif Accounting
 Object Model

PUBLIC

13

Project Example:
Model Based Design - Cons Vs. Pros

• Pros:
Ø Separate concerns at different levels from different views;
Ø Provide a single version of truth for all design artefacts across different

teams and releases in the project life cycle;
Ø Ensure a holistic, consistent, and integrated Model;
Ø Build traceability between various artefacts of the development process

from high level business requirements to detailed implementation further
extend to testing;

Ø Reusable and extensible;
Ø Supports all development teams with different artefacts originated from

the same source model.
• Cons:

Ø Long release cycle;
Ø Model becomes the bottleneck for fast delivery;
Ø High front investment on modelling;
Ø Need domain experts;
Ø Isolation between business and dev teams.

PUBLIC

14
Source: http://microservices.io/patterns/decomposition/decompose-by-business-capability.html

Supports

What would I do differently ? - Conway’s Law

PUBLIC

Organizations which
design systems . . . are
constrained to produce
designs which are copies
of the communication
structures of these
organizations.

Melvin Conway, 1967

OR

If you build huge, monolithic
teams, you will end up with
huge, monolithic systems, but
if you build small, agile teams,
you will end up with small,
agile systems.

15

What would do differently ? – Move to DevOps Model

PUBLIC

16

What would do differently ? – Move to Microservices (1)

Source: https://www.ibm.com/developerworks/websphere/library/techarticles/1601_clark-trs/1601_clark.html

PUBLIC

17

What would do differently ? – Move to Microservices (2)
Enabling	Pods	to	deliver	business	value	independently

Use Case Use Case Use Case Model Model Model

PUBLIC

18

Looking	Forward	– HSBC’s	Vision	and	How	DDD	May	Help

• Our	Group	CTO	has	got	a	vision	of	100%	API,	100%	Cloud	and	100%	Services;

• The	complexity	of	system	landscape	incorporated	with	domain	knowledge	in	HSBC	needs	
a	full	picture	and	understanding	to	allow	fast	changes;

• We	are	adopting	DevOps	to	compete	with	FinTech	and	InsureTech	firms	who	are	
constantly	releasing	new	and	great	products.	DDD	goes	hand	by	hand	with	DevOps;

• Microservices	are	best	used	in	a	Cloud	architecture,	where	they	can	scale	horizontally.	
However,	we	need	start	from	the	models	instead	of	services;

PUBLIC

19

Thank you!

PUBLIC

