
Dec	2017

Model	Based	Architecture	Design
基于模型的架构设计

Ming X Jin 金新明 – Chief Risk Architect
DDD Beijing, 9th Dec 2017

PUBLIC



2

About me …

• Name: Ming X Jin 金新明 Current Role: Chief Risk Architect in HSBC

• Education Background: Automatic Control, Computer Science (Ph.D.)

• PhD topic: Model based business process simulation

• First Job: Cobol programmer for UnionPay POS integration

• Multi Industry Sector experience: Academic, Consultancy, Defense, 
Manufacturing, Banking  

• Multi Architect Roles: 
– Systems Architect – Thales Group (4 years)
– Technology Architect – Infosys (1 year)
– Data Architect – RBS ( 6-month)
– Process Architect – Barclays Capital (2 years)
– Solution Architect – RBS (6-month), Barclays Capital (1 year), Standard 

Chartered (14-month)
– Enterprise Architect – NOW
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Ubiquitous Models

• Model is always there, intentionally or not intentionally;

• Model has a wide context, but a specific purpose;

• There is a right model but no complete model;

• There is no universal model but a suitable model;

• Code alignment with models determines the code quality;
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Hierarchical Organisation of Software & Complexity

System or product

Subsystems/Modules

Packages

Classes/Objects

Methods

highest abstraction level

lowest level

Product line (or product family)

Source code
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• Application	level	complexity	
– Complexity	of	all	interfaces	that	application	uses
– Complexity	of	all	interfaces	that	application	

provides
– Complexity	of	application	source	code	and	data

• Enterprise	level	complexity	
– Complexity	of	overall	performance	optimisation
– Complexity	of	integration
– Complexity	of	data	management
– Complexity	of	business/technology	alignment



5

System Decomposition & Domain Driven Design

Why decomposing systems?
– Tackle complexity by “divide and conquer”
– See if some parts already exist & can be reused
– Focus on creative parts and avoid reinventing the wheel
– Support flexibility and future evolution by decoupling unrelated parts, so each 

can evolve separately (“separation of concerns”)

Why Domain Driven Design?
– Disciplined modelling approach
– Bounded context
– Ubiquitous language for easy communication
– Focusing on domain and domain logic instead of interfaces
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Project Example: Zachman Framework Based Modelling
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Project Example: Various Model Usage
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Project Example: Model Based Code Generation
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Project Example: 
Defining Context - Business Use Case Meta Model
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Project Example: 
Defining Context - Use Case Interaction Model
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Project Example: Model Transformation 
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Project Example: 
Model Based Design - Cons Vs. Pros 

• Pros: 
Ø Separate concerns at different levels from different views;
Ø Provide a single version of truth for all design artefacts across different 

teams and releases in the project life cycle;
Ø Ensure a holistic, consistent, and integrated Model;
Ø Build traceability between various artefacts of the development process 

from high level business requirements to detailed implementation further 
extend to testing;

Ø Reusable and extensible;
Ø Supports all development teams with different artefacts originated from 

the same source model.
• Cons:

Ø Long release cycle;
Ø Model becomes the bottleneck for fast delivery;
Ø High front investment on modelling;
Ø Need domain experts;
Ø Isolation between business and dev teams. 
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Source: http://microservices.io/patterns/decomposition/decompose-by-business-capability.html

Supports

What would I do differently ? - Conway’s Law
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Organizations which 
design systems . . . are 
constrained to produce 
designs which are copies 
of the communication 
structures of these 
organizations.

Melvin Conway, 1967

OR

If you build huge, monolithic 
teams, you will end up with 
huge, monolithic systems, but 
if you build small, agile teams, 
you will end up with small, 
agile systems.
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What would do differently ? – Move to DevOps Model
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What would do differently ? – Move to Microservices (1)

Source: https://www.ibm.com/developerworks/websphere/library/techarticles/1601_clark-trs/1601_clark.html
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What would do differently ? – Move to Microservices (2)
Enabling	Pods	to	deliver	business	value	independently

Use Case Use Case Use Case Model Model Model
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Looking	Forward	– HSBC’s	Vision	and	How	DDD	May	Help

• Our	Group	CTO	has	got	a	vision	of	100%	API,	100%	Cloud	and	100%	Services;

• The	complexity	of	system	landscape	incorporated	with	domain	knowledge	in	HSBC	needs	
a	full	picture	and	understanding	to	allow	fast	changes;

• We	are	adopting	DevOps	to	compete	with	FinTech	and	InsureTech	firms	who	are	
constantly	releasing	new	and	great	products.	DDD	goes	hand	by	hand	with	DevOps;

• Microservices	are	best	used	in	a	Cloud	architecture,	where	they	can	scale	horizontally.	
However,	we	need	start	from	the	models	instead	of	services;
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Thank you!
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