Towards Building Interactive and Online Analytics Systems

Feifei Li

https://www.cs.utah.edu/~lifeifei/

University of Utah

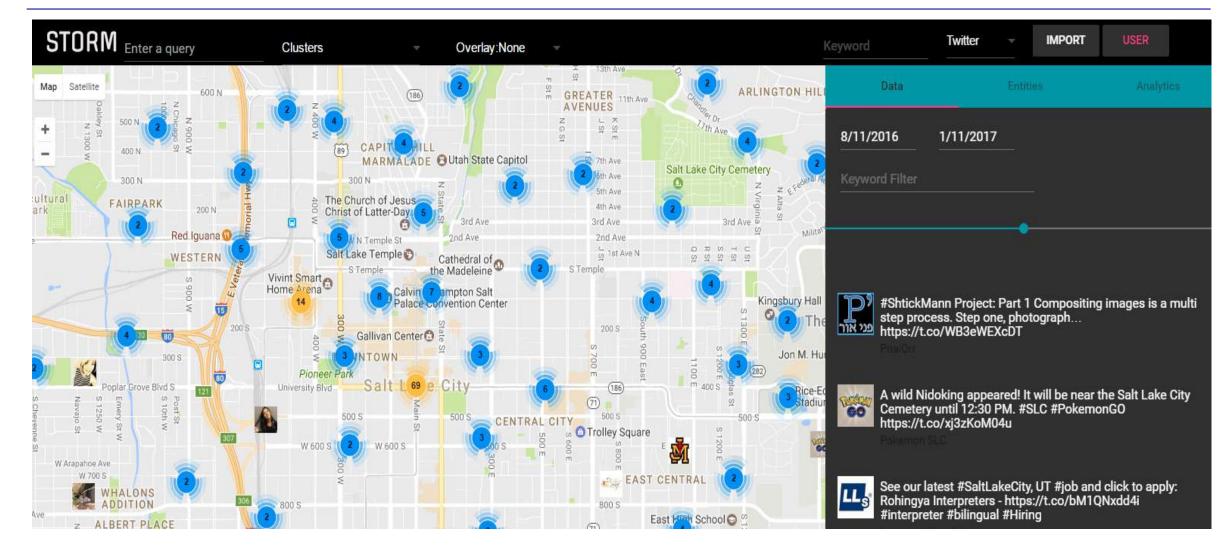
Interactive and Online Data Analytics Systems

- Interactive query and analytics:
 - Issue Queries as You Wish
- Online query and analytics:
 - Control the tradeoff between result quality and query/analytics efficiency
- Rich analytical support:
 - Support query and analytical operations for knowledge discovery through easy-to-use and intuitive query abstraction and interfaces

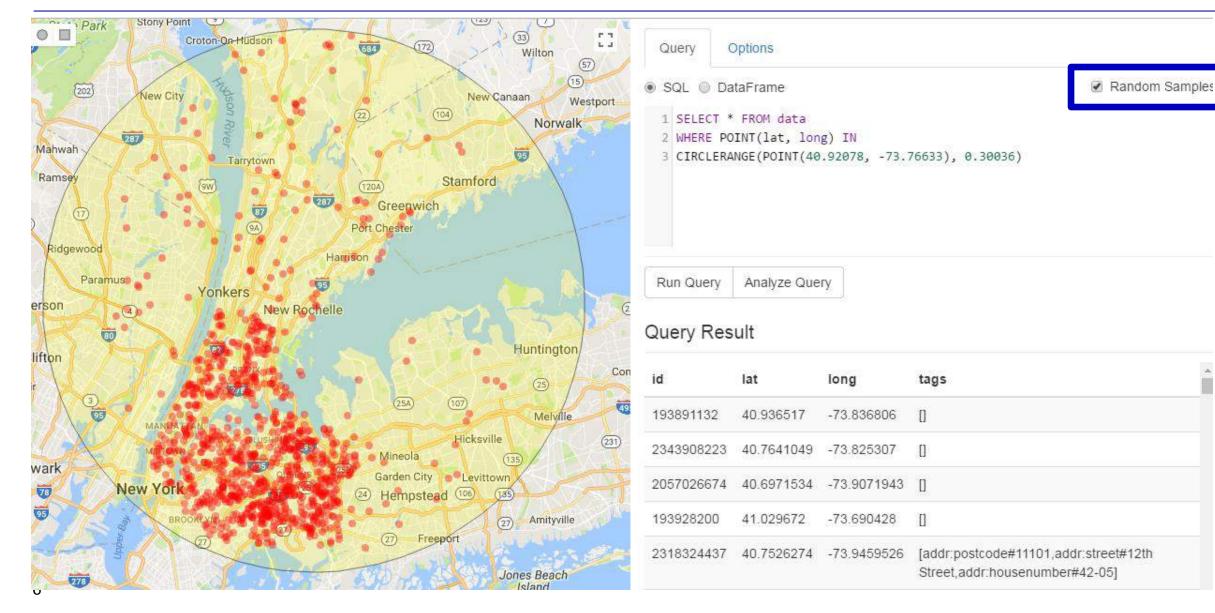
Interactive and Online Data Analytics Systems

- Geo-tagged tweets as an example (crawling since May 2014)
 - 1.4 geo-tagged billion tweets so far
 - 1.8 TB
 - 3-4 million new tweets per day
- Interactive and online analytics is a must-have:
 - Doing ETL and building a data warehouse is expensive and restrictive

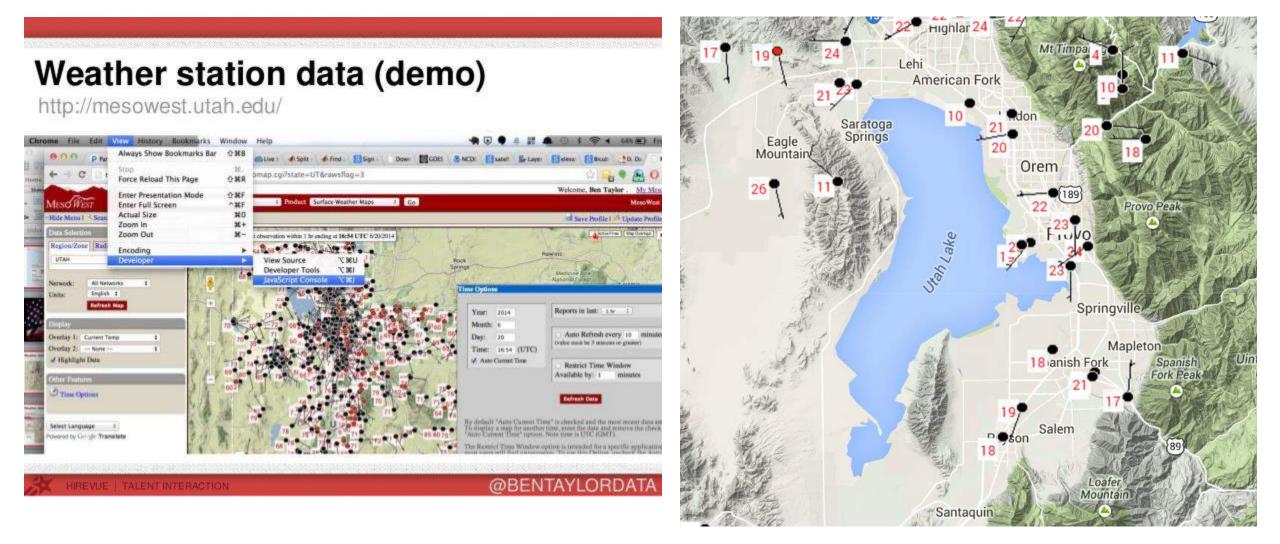
System Interface



Interactive and Online Data Analytics Systems

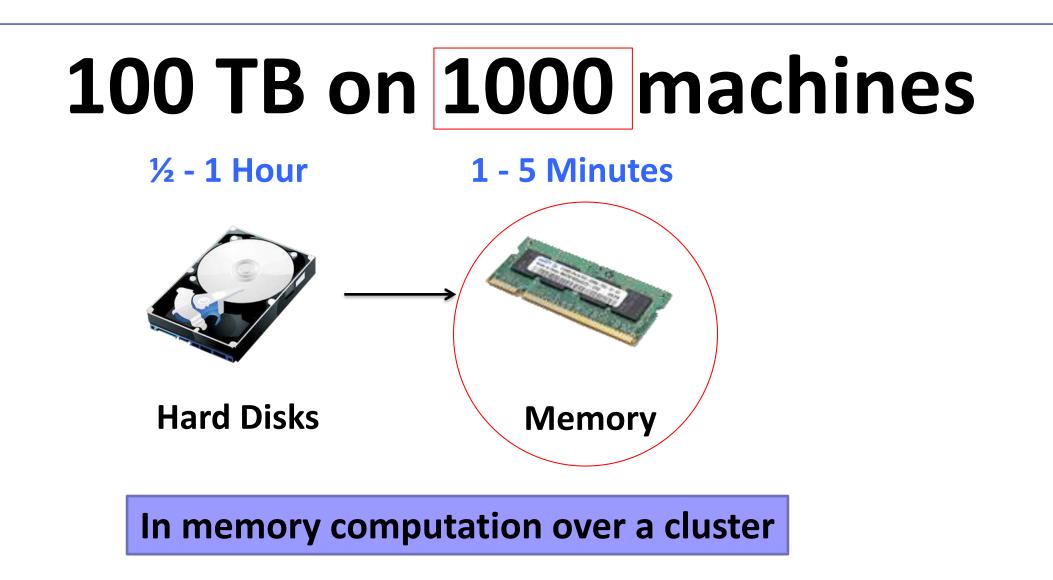


Another example: The MesoWest Project

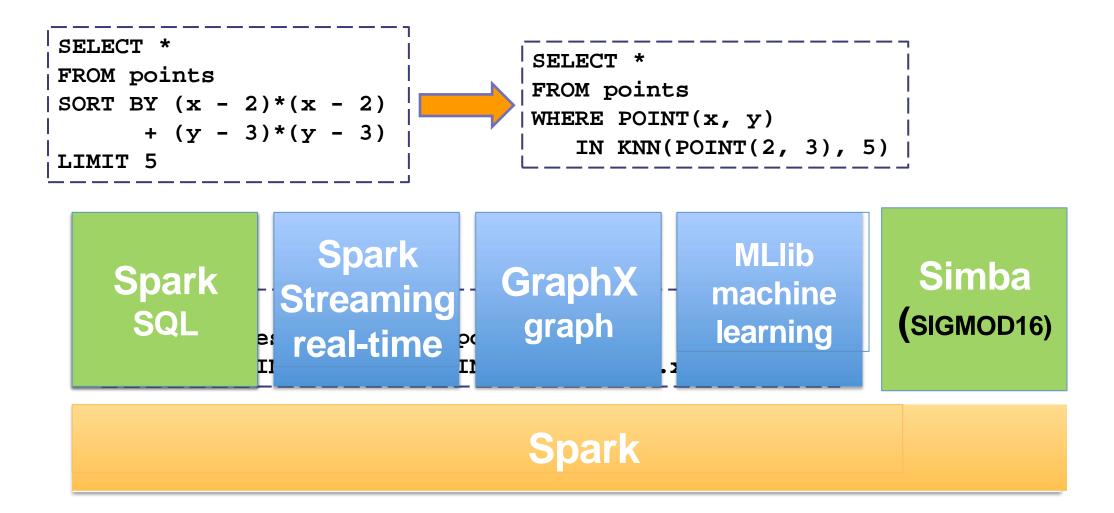


Interactive and Online Data Analytics Systems

- Key challenges and opportunities
 - Interactive: In-Memory Cluster Based Computation
 - Online: Accuracy vs. Efficiency Tradeoff: existing systems are binary, either no results or wait for unknown amount of time
 - Learning: Real-time Tracking, Monitoring and Prediction: analyzing incoming data in conjunction with historical data (using machine-learning based, data driven approach)



Rich types of queries and analytics: spatial/multimedia data



Simba: <u>Spatial In-Memory Big data Analytics</u>

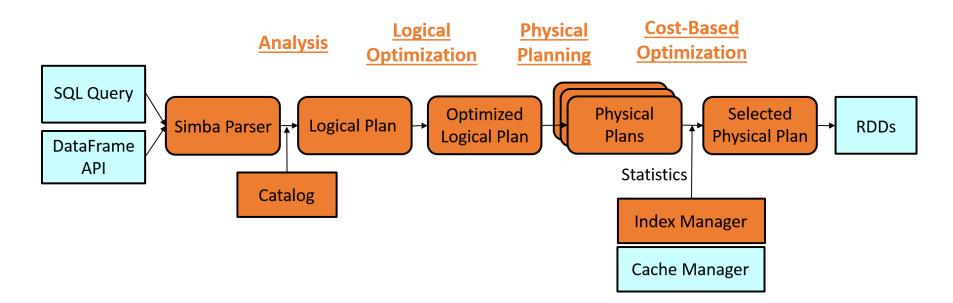
Simba is an extension of Spark SQL across the system stack!

CLI		JDBC Scala/Python Program								
Simba S	QL Pars	ser	Extended DataFrame API							
Extended Query Optimizer										
Cache Manager	Index N	dex Manager Physical Plan (with Spatial Operations								
Table	Table Caching Table Indexing									
	Apache Spark									
RDBMS		Hive	HDFS		Native RDD					

- 1. Programming Interface
- 2. Table Indexing
- 3. Efficient Spatial Operators
- 4. New Query Optimizations

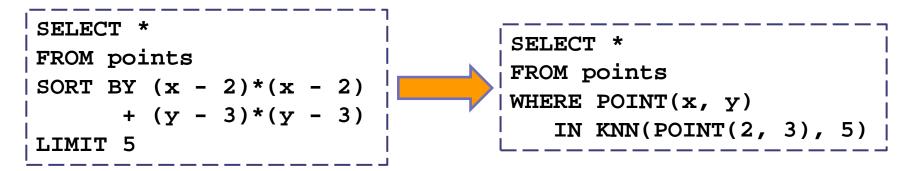
Query Workload in Simba

Life of a query in Simba



Programming Interfaces

- Extends both SQL Parser and DataFrame API of Spark SQL
- Make spatial queries more natural



Achieve something that is impossible in Spark SQL.

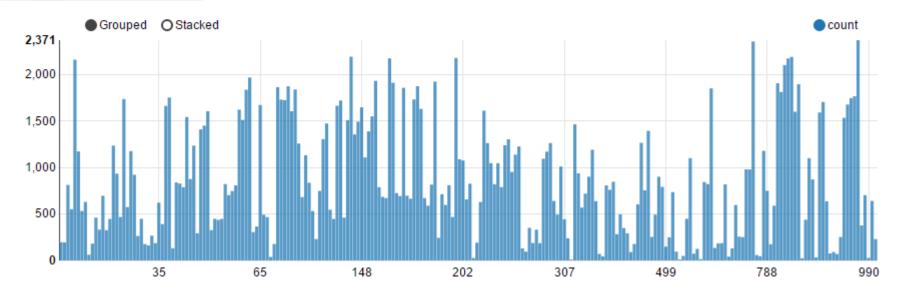
```
SELECT *
FROM queries q KNN JOIN pois p
ON POINT(p.x, p.y) IN KNN(POINT(q.x, q.y), 3)
```

Zeppelin integration

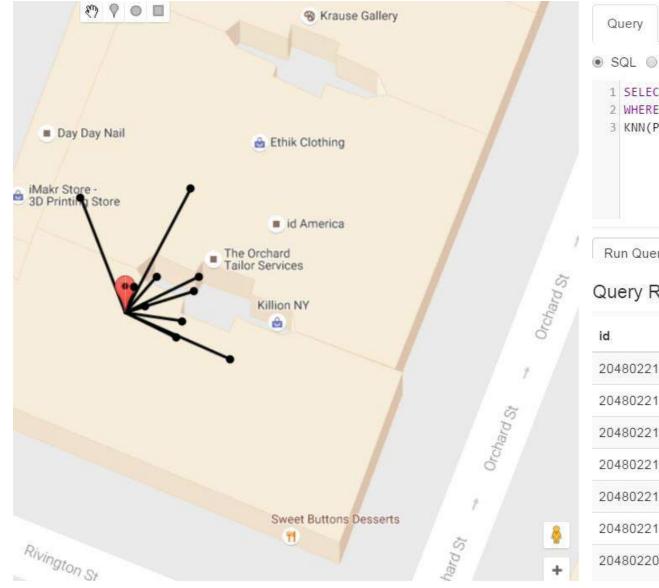
"A web-based notebook that enables interactive data analytics."

FINISHED 🗅 💥 🗐 🐵

%sql SELECT poi.id, count(*) as count FROM poi DISTANCE JOIN data ON POINT(data.lat, data.long) IN CIRCLERANGE(POINT(poi.lat, poi.long), 3) WHERE POINT(data.lat, data.long) IN RANGE(POINT(24.39, 66.88), POINT(49.38, 124.84)) GROUP BY poi.id ORDER BY poi.id



Query and Analytical Interface



) SQL 🔘 Da	taFrame		Random Samples
	FROM data	ectory matter	
	INT(lat, lon	g) IN -73.98932), 1	(0)
Run Querv	Analyze Que	rv	
Query Res	ult		
	ult _{lat}	long	tags
Query Res id 2048022149	lat	long -73.9892652	tags
id	lat 40.7205381		3998 - 920
id 2048022149 2048022152	lat 40.7205381 40.7205461	-73.9892652	0
id 2048022149 2048022152 2048022150	lat 40.7205381 40.7205461 40.7205404	-73.9892652 -73.9892921	0
id 2048022149 2048022152 2048022150 2048022163	lat 40.7205381 40.7205461 40.7205404 40.7205945	-73.9892652 -73.9892921 -73.9893086	0 0 0
id 2048022149	lat 40.7205381 40.7205461 40.7205404 40.7205945 40.7205009	-73.9892652 -73.9892921 -73.9893086 -73.9892674	0 0 0 0

Query optimization

Run Query Analyze Query

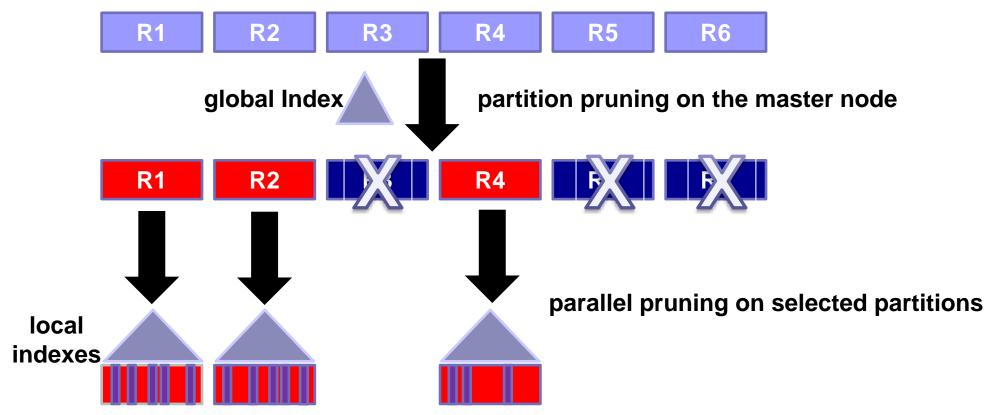
Query Result

```
== Analyzed Logical Plan ==
id: bigint, lat: double, long: double, tags: string
Project [id#4L,lat#5,long#6,tags#7]
+- Filter **(pointwrapperexpression(lat#5,long#6)) IN KN
N (POINT(40.72053, -73.98932)) within (10)
  +- Subquery data
     +- LogicalRDD [id#4L,lat#5,long#6,tags#7], MapParti
tionsRDD[11] at rddToDataFrameHolder at <console>:32
== Optimized Logical Plan ==
Filter **(pointwrapperexpression(lat#5,long#6)) IN KNN
(POINT(40.72053,-73.98932)) within (10)
+- RTreeIndexedRelation [id#4L,lat#5,long#6,tags#7], Scan
ExistingRDD[id#4L,lat#5,long#6,tags#7] , Some(data), [lat
#5,long#6], osm idx
== Physical Plan ==
IndexedRelationScan [id#4L,lat#5,long#6,tags#7], [ **(poi
ntwrapperexpression(lat#5,long#6)) IN KNN (POINT(40.7205
3,-73.98932)) within (10)], RTreeIndexedRelation [id#4L,1
at#5,long#6,tags#7], Scan ExistingRDD[id#4L,lat#5,long#6,
tags#7], Some(data), [lat#5,long#6], osm idx
```

•

Cost based query optimizations (CBO)

- Indexing support -> efficient algorithms
- Global Index: partition pruning
- Local Index: parallel pruning within selected partitions

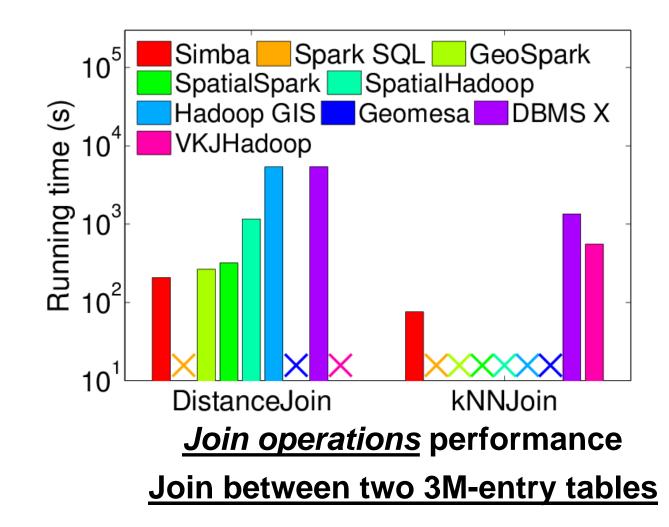


Experiments

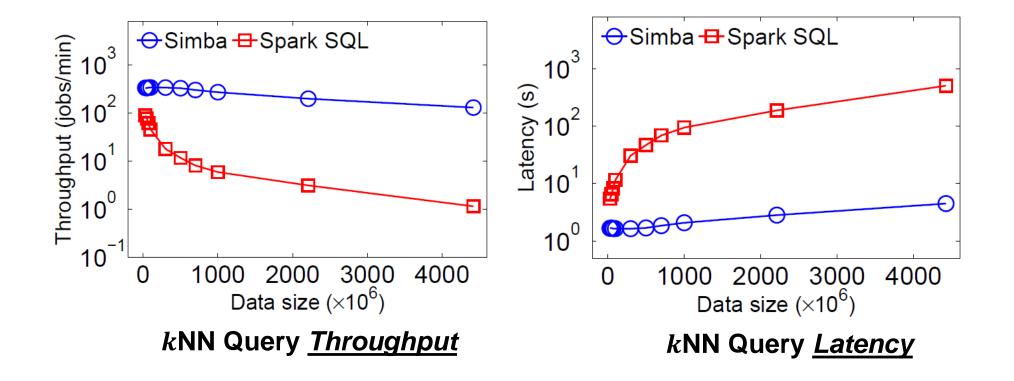
OpenstreetMap Data, 2.7 billion records in 132GB

- 10 nodes with two configurations:
 - 8 machines with a 6-core Intel Xeon E5-2603 v3 1.60GHz processor and 20GB RAM
 - 2 machines with a 6-core Intel Xeon E5-2620 2.00GHz processor and 56GB RAM.
- Other datasets are used in high dimensions
- Open sourced at Github: <u>https://github.com/InitialDLab/Simba</u>
 - currently being used/tested by Hortonworks, Uber, Huawei, ESRI, Alibaba, etc.

Comparison with Existing Systems (cont'd)

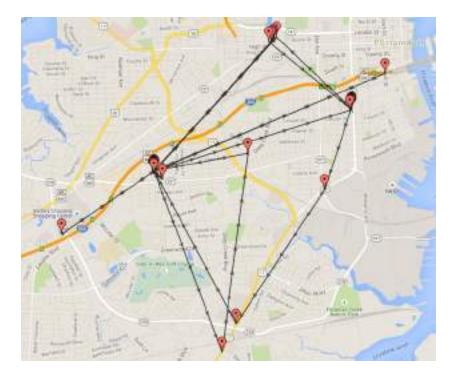


Performance against Spark SQL: Data Size



Extension: Trajectory Analysis (VLDB 2017)

- Trajectory Data Analysis
 - Massive trajectory retrieval
- Trajectory Similarity Search

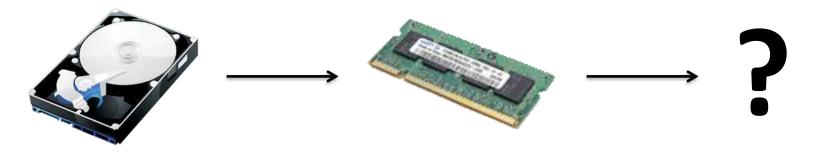


Interactive and Online Data Analytics Systems

- Key challenges and opportunities
 - Interactive: In-Memory Cluster Based Computation
 - Online: Accuracy vs. Efficiency Tradeoff: existing systems are binary, either no results or wait for unknown amount of time
 - Learning: Real-time Tracking, Monitoring and Prediction: analyzing incoming data in conjunction with historical data (using machine-learning based, data driven approach)

100 TB on 1000 machines

½ - 1 Hour1 - 5 Minutes1 second



Hard Disks Memory

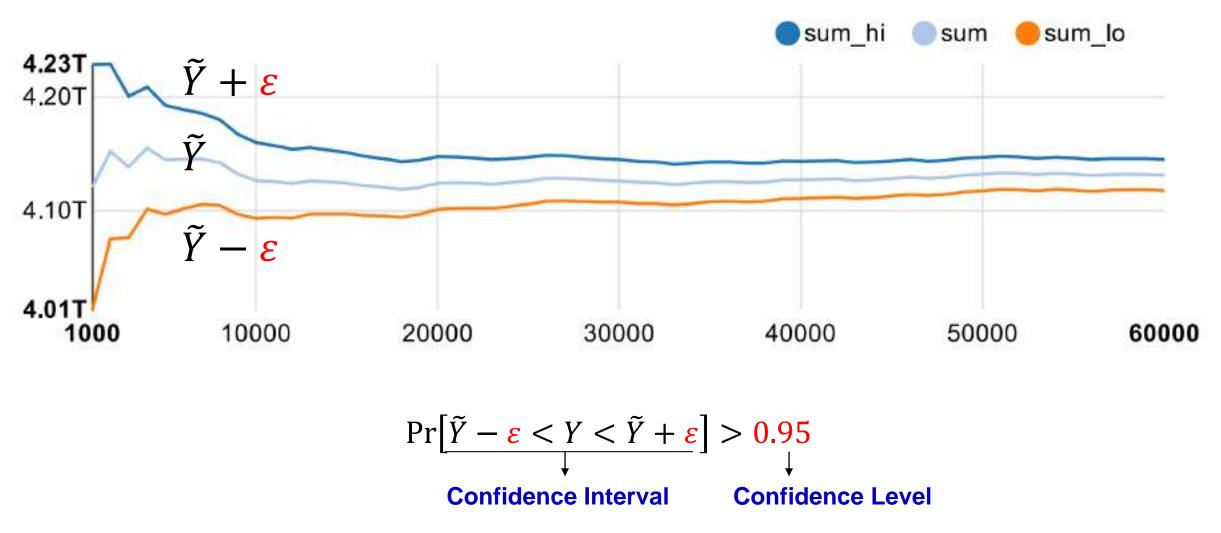
Query Execution on Samples

Complex Analytical Queries (TPC-H)

```
SELECT SUM(l_extendedprice * (1 - l_discount))
FROM customer, lineitem, orders, nation, region
WHERE c_custkey = o_custkey
AND l_orderkey = o_orderkey
AND l_returnflag = 'R'
AND c_nationkey = n_nationkey
AND n_regionkey = r_regionkey
AND r_name = 'ASIA'
```

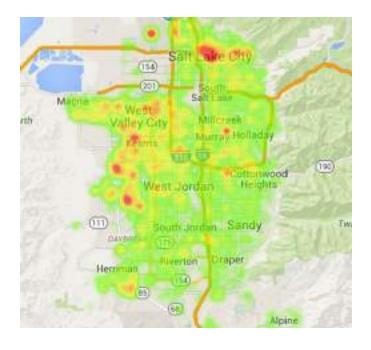
This query finds the total revenue loss due to returned orders in a given region.

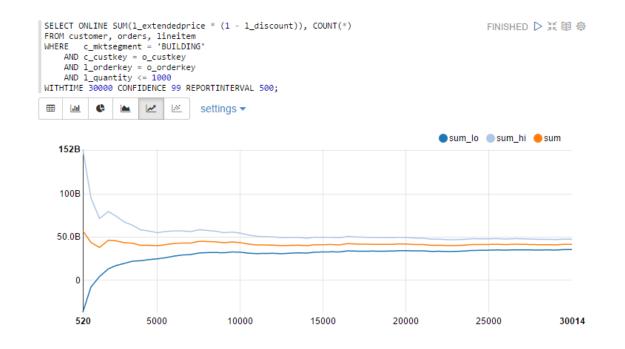
Online Aggregation [Haas, Hellerstein, Wang SIGMOD'97]



Online spatial and spatio-temporal sampling and analysis (SIGMOD 2015 Best Demo Award, VLDB 2016)

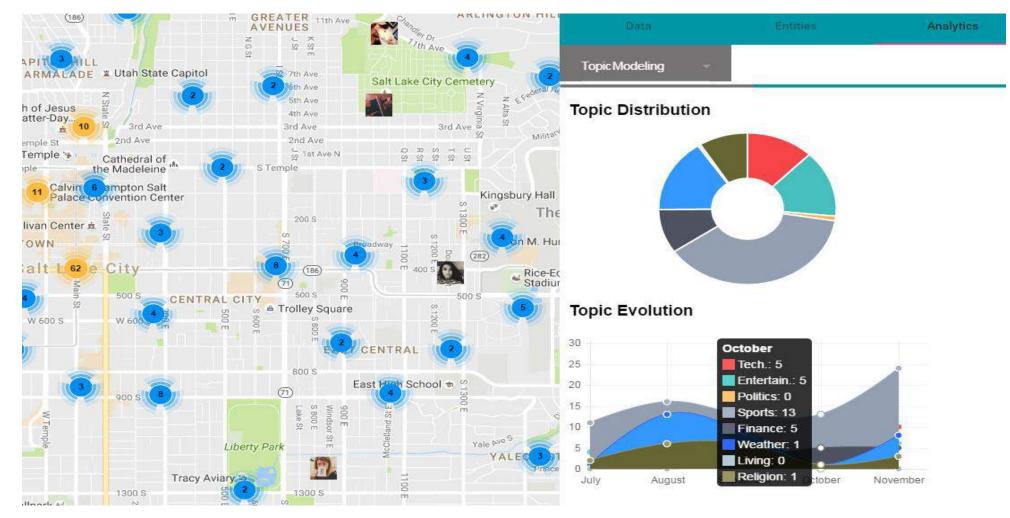
- Online sampling and aggregation support.
 - Integration with the XDB and STORM Projects (both are open sourced on Github)
 - Provides uniform random samples / approximate aggregation results in a online fashion.





Rich type of online analytics support

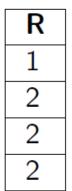
 More sophiscated analytics using online samples , e.g., learning, topic modeling, sentiment analysis

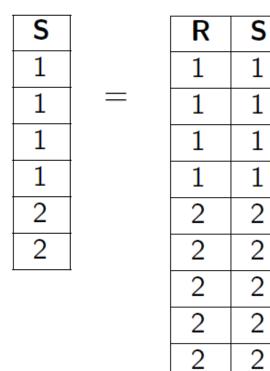


Join is even harder

 \bowtie

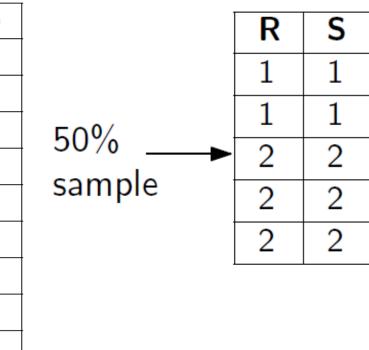
$$sample(R) \bowtie sample(S) \neq sample(R \bowtie S)$$





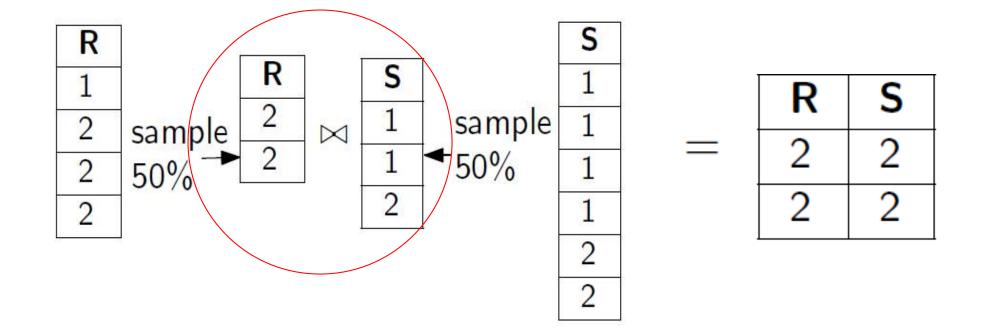
2

2



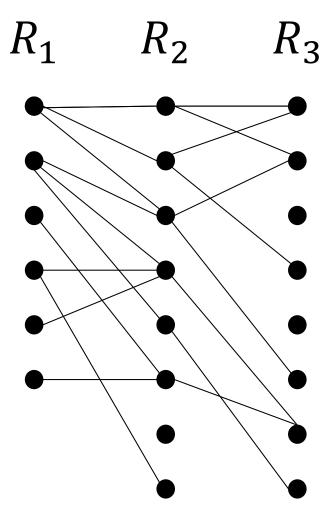
Join is even harder

$$\mathsf{sample}(\mathsf{R}) \bowtie \mathsf{sample}(\mathsf{S}) \neq \mathsf{sample}(\mathsf{R} \bowtie \mathsf{S})$$



Join as a Graph

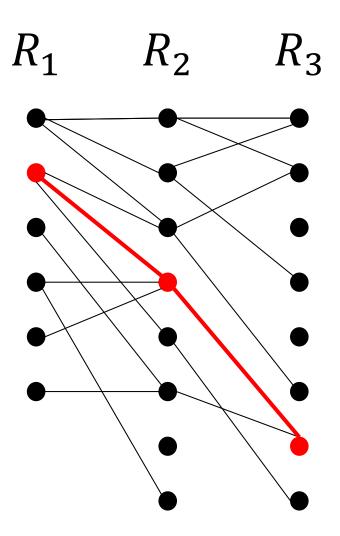
Conceptual only Never materialized



Join as a Graph – Random Walks: Wander Join (SIGMOD 2016 Best Paper Award)

Conceptual only Never materialized

Perform Random Walks over this graph

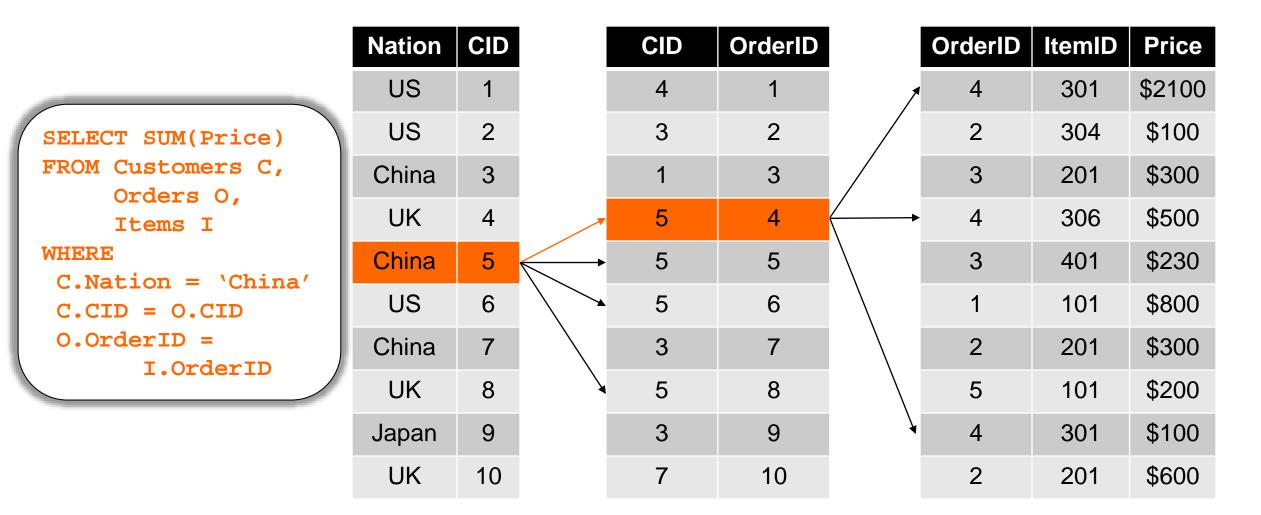


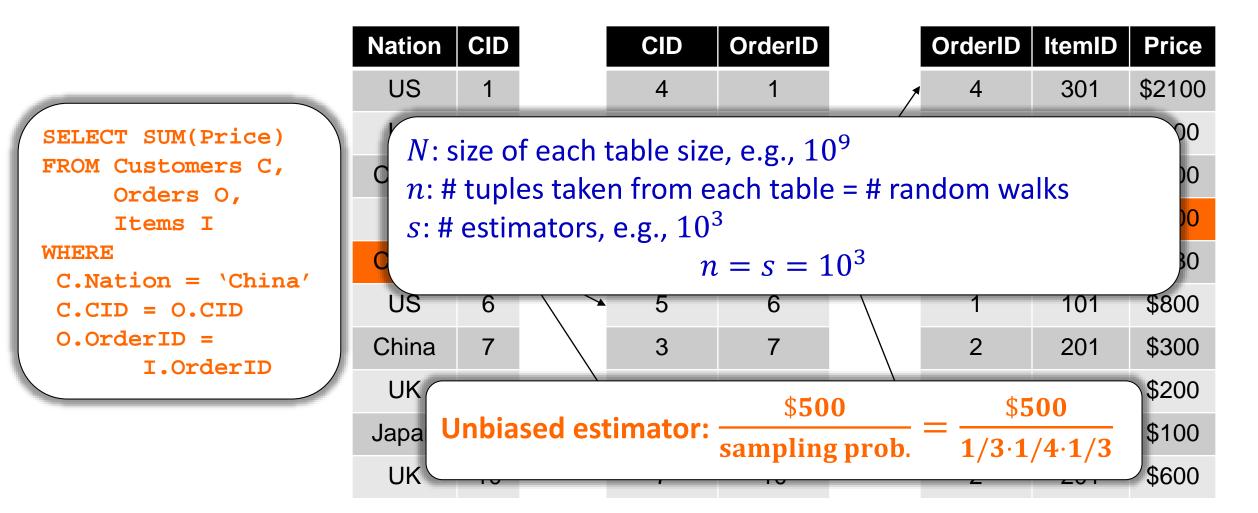
Join as a Graph

	Nation	CID	CID	OrderID		OrderID	ItemID	Price
	US	1	4	1		4	301	\$2100
SELECT SUM(Price)	US	2	3	2	\rightarrow	2	304	\$100
FROM Customers C, Orders O,	China	3	1	3	\mathbf{M}	3	201	\$300
Items I	UK	4	5	4	\land	4	306	\$500
WHERE C.Nation = 'China'	China	5	5	5	$\langle \rangle$	3	401	\$230
C.CID = O.CID	US	6	5	6		· 1	101	\$800
0.OrderID = I.OrderID	China	7	3	7	N j	2	201	\$300
1.order ib	UK	8	5	8		5	101	\$200
	Japan	9	3	9		4	301	\$100
	UK	10	7	10	1	2	201	\$600

	Nation	CID	CID	OrderID	OrderID	ItemID	Price
	US	1	4	1	4	301	\$2100
SELECT SUM(Price)	US	2	3	2	2	304	\$100
FROM Customers C, Orders O,	China	3	1	3	3	201	\$300
Items I	UK	4	5	4	4	306	\$500
WHERE C.Nation = `China'	China	5	5	5	3	401	\$230
C.CID = O.CID	US	6	5	6	1	101	\$800
0.OrderID = I.OrderID	China	7	3	7	2	201	\$300
	UK	8	5	8	5	101	\$200
	Japan	9	3	9	4	301	\$100
	UK	10	7	10	2	201	\$600

	Nation	CID		CID	OrderID	OrderID	ItemID	Price
	US	1		4	1	4	301	\$2100
SELECT SUM(Price)	US	2		3	2	2	304	\$100
FROM Customers C, Orders O,	China	3		1	3	3	201	\$300
Items I	UK	4	_	5	4	4	306	\$500
WHERE C.Nation = `China'	China	5	\leftarrow	5	5	3	401	\$230
C.CID = O.CID	US	6		5	6	1	101	\$800
0.OrderID = I.OrderID	China	7		3	7	2	201	\$300
1.0rderib	UK	8		5	8	5	101	\$200
	Japan	9		3	9	4	301	\$100
	UK	10		7	10	2	201	\$600

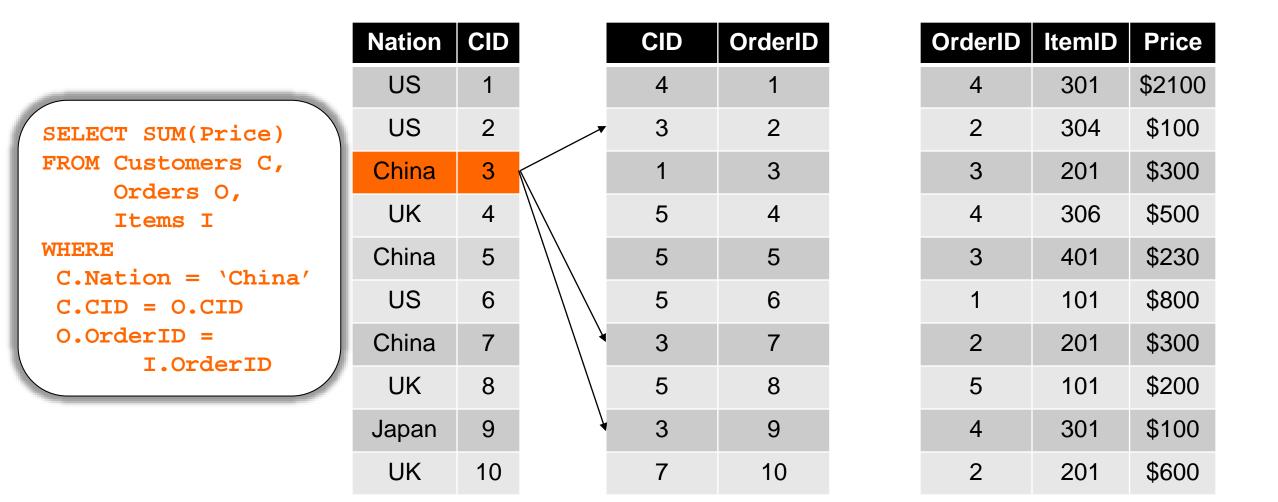




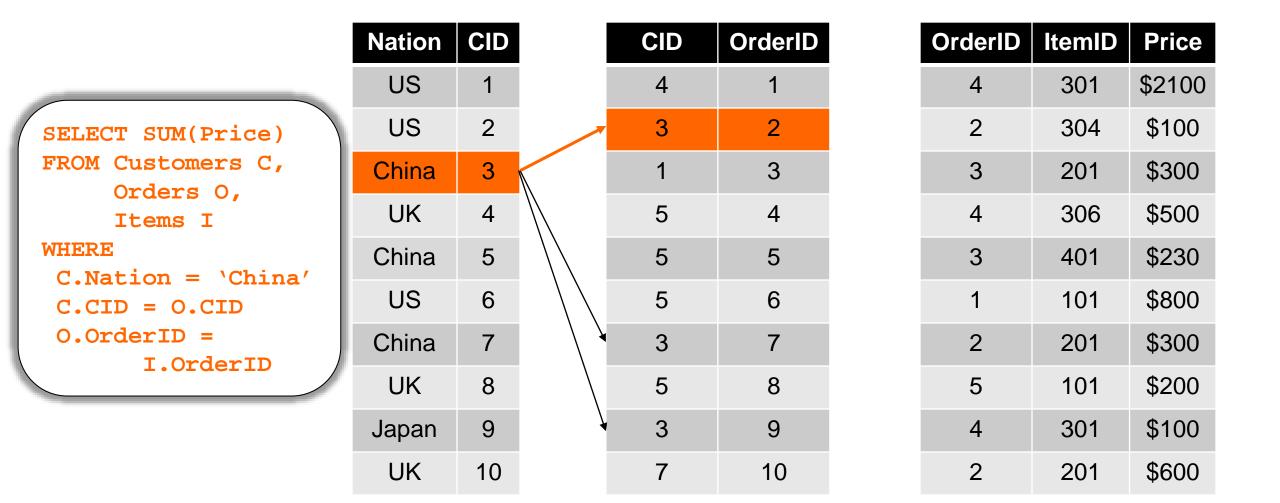
Sampling by Random Walks: Independent but not uniform!

	Nation	CID	CID	OrderID	OrderID	ItemID	Price
	US	1	4	1	4	301	\$2100
SELECT SUM(Price)	US	2	3	2	2	304	\$100
FROM Customers C, Orders O,	China	3	1	3	3	201	\$300
Items I	UK	4	5	4	4	306	\$500
WHERE C.Nation = `China'	China	5	5	5	3	401	\$230
C.CID = O.CID	US	6	5	6	1	101	\$800
0.OrderID = I.OrderID	China	7	3	7	2	201	\$300
1.0rderib	UK	8	5	8	5	101	\$200
	Japan	9	3	9	4	301	\$100
	UK	10	7	10	2	201	\$600

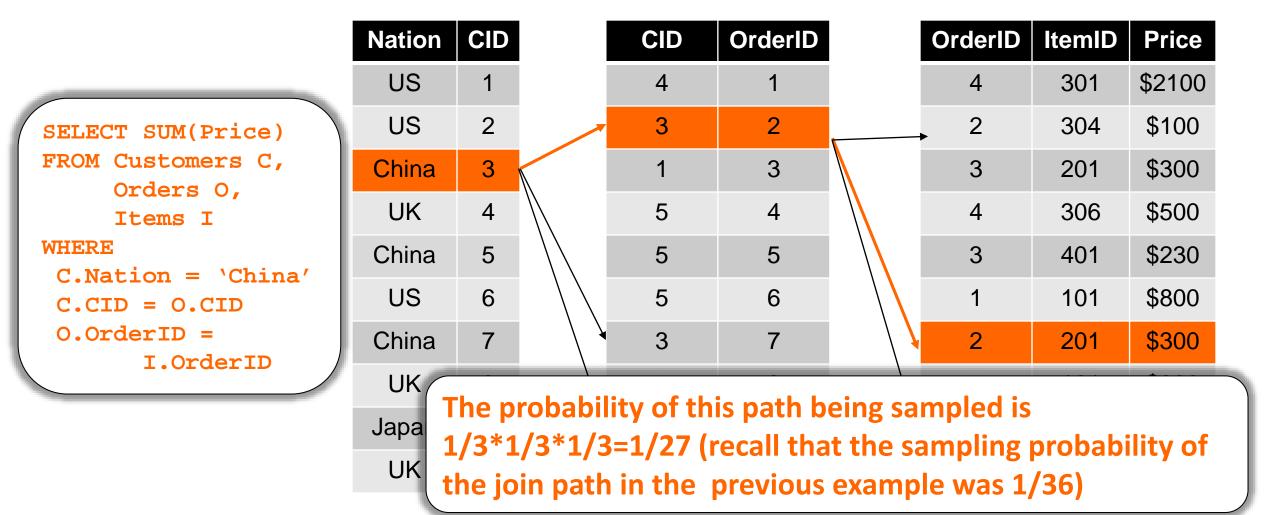
Sampling by Random Walks



Sampling by Random Walks



Sampling by Random Walks



Sampling by Random Walks: Failures are possible too!

	Nation	CID	CID	OrderID	OrderID	ItemID	
	US	1	4	1	4	301	İ
SELECT SUM(Price)	US	2	3	2	2	304	
FROM Customers C, Orders O,	China	3	1	3	3	201	
Items I	UK	4	5	4	4	306	
WHERE C.Nation = 'China'	China	5	5	5	3	401	
C.CID = O.CID	US	6	5	6	1	101	
0.OrderID = I.OrderID	China	7	3	7	2	201	ĺ
1.01del1D	UK	8	5	8	5	101	
	Japan	9	3	9	4	301	ĺ
	UK	10	7	10	2	201	ĺ

Sampling by Random Walks: Failures are possible too!

	Nation	CID		CID	OrderID		OrderID	ItemID	Price
	US	1		4	1		4	301	\$2100
SELECT SUM(Price)	US	2 3 2 a 3 1 3		2	304	\$100			
FROM Customers C, Orders O,	China			3	201	\$300			
Items I	UK 4		5	4		4	306	\$500	
WHERE C.Nation = 'China'	China	5	6 7 8 9	5	5		3	401	\$230
C.CID = O.CID	US	6		5	6		1	101	\$800
0.OrderID = I.OrderID	China	7		3	7		2	201	\$300
1.0rder1D	UK	8		5	8		5	101	\$200
	Japan	9		3	9		4	301	\$100
	UK	10		7	10		2	201	\$600

A quick demo with XDB

- Implemented with the latest version of PG
- Changes made to parser, query optimizer, and query evaluator
- TPC-H benchmark with roughly 100GB of data.
- Ongoing work of extending this to Spark SQL and a standalone plugin to other commercial DBs

XDB system (approximate DB)

- Two versions available:
 - Kernel version (based on PostgreSQL)
 - Plug-in version (for PG, Orcal, MySQl, Spark SQL)

```
SELECT ONLINE SUM(l_extendedprice * (1 - l_discount))
FROM customer, lineitem, orders, nation
WHERE c_custkey = o_custkey
AND l_orderkey = o_orderkey
AND l_orderkey = o_orderkey
AND l_returnflag = 'R'
WITHTIME 60000 CONFIDENCE 95 REPORTINTERVAL 1000;
```

XDB system (approximate DB)

time (m	e)	nsamples	nrejected	sun	Ţ	rel. CI	ļ	count	ļ	rel. CI
10	00	21393	10916	3569910642150.2490	T	0.019186	ī	97907946.705871429014	ī	0.016313
20	00	44416	22444	3586730855773.8836	T	0.013261	1	98730673.166257852229		0.011308
30	00	71109	35686	3600590499011.0183	I.	0.010486		98864069.377555128985		0.008938
40	00	98090	49172	3592717392203.4044	1	0.008927		98818827.069793972647		0.007612
50	00	125142	62772	3600391679526.0518	T	0.007896	Ĩ	98971635.208020690316	T	0.006736
60	00	152332	76343	3602864111868.8642	1	0.007154	1	99162996.448094457199		0.006105
70	00	179516	89998	3601934534121.5514	1	0.006591	I.	99110142.856252365369	1	0.005624
80	00	206594	103810	3598575888627.0625		0.006148	ſ	99044487.459001816987	Î	0.005244
90	00	233804	117554	3599326643982.6322	Í.	0.005780	Ĩ.	98993731.891574974812	Ĩ.	0.004931
100	00	261158	131192	3601211327922.6953	I.	0.005470	1	99109792.213686759271	Ĩ	0.004665
110	00	288386	144890	3597852843520.4237	1	0.005206	1	99056834.629677157285		0.004441
120	00	315496	158773	3595708335162.0462	I.	0.004976	Ĩ.	99035021.044580185507	Ì.	0.004245
130	00	342809	172341	3596327624352.1382	İ.	0.004773	Ĩ.	99061088.636552460448	Ĩ	0.004072
140	00	370149	185909	3596487834132.9988	Ĩ.	0.004593	i.	99082039.357131809991	Ĩ.	0.003919
150	00	397357	199575	3600190559271.9089	I.	0.004432	1	99132481.122499715210		0.003782
160	00	424643	213270	3599863349946.6727	i.	0.004287	Ĩ.	99115869.065430552442	Ì.	0.003658
170	00	451881	226987	3599727537973.7470	i.	0.004157	Ĩ	99124452.086438011513	1	0.003546
180	00	479178	240613	3601516118695.4163	Î	0.004037	Ì	99122019.790200210895	Ĩ.	0.003444
190	00	506337	254367	3599757927911.0626	İ	0.003927	Î	99093614.663269813226	I	0.003350
200	00	533554	268163	3599048511739.6974	i.	0.003826	i	99072461.742934227414	1	0.003264

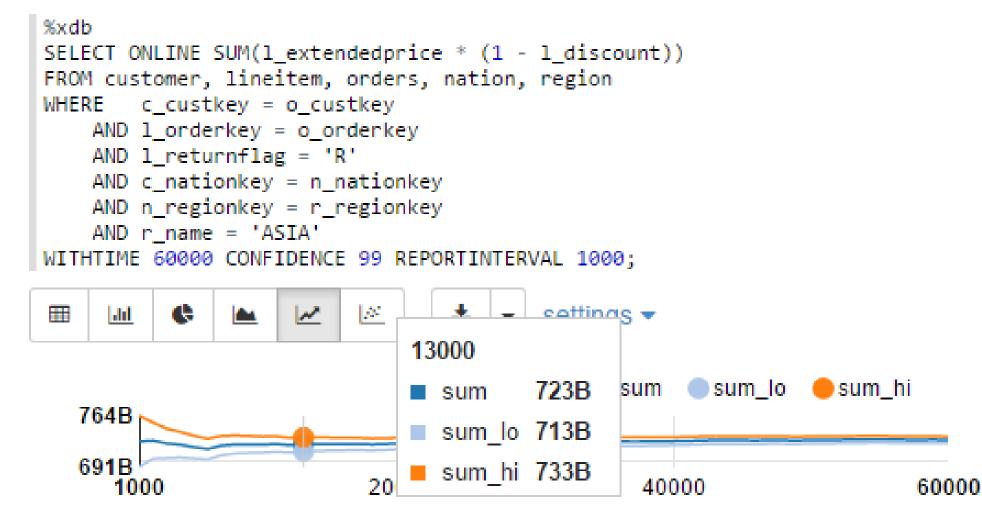
VS.

sum | count 3597407507883.3595 | 99118338 (1 row)

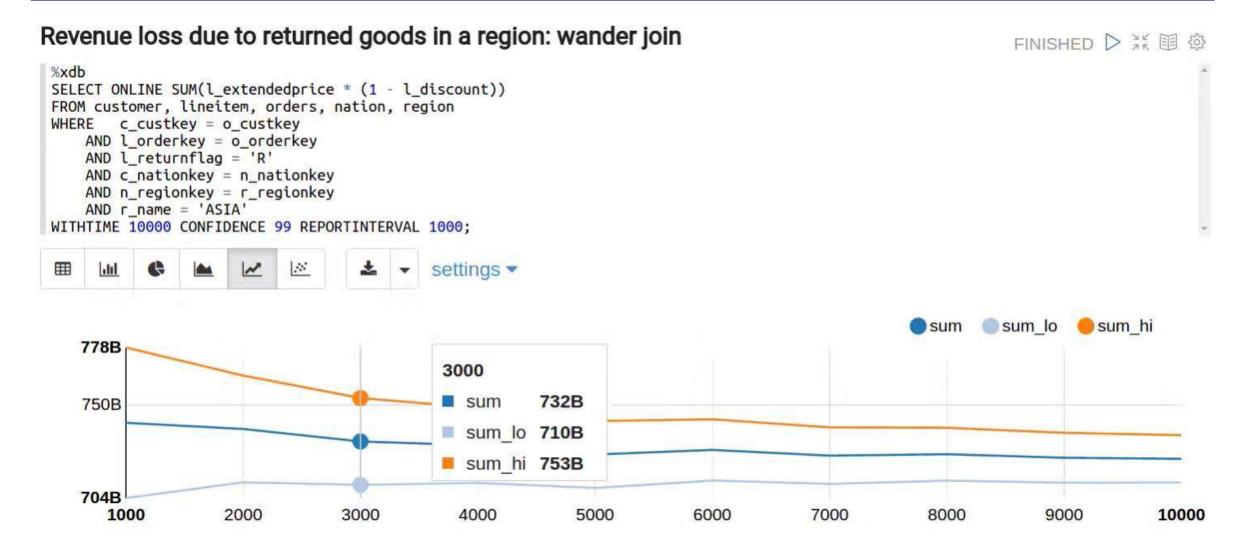
Time: 5987<u>4</u>.919 ms

Front-end GUI interface

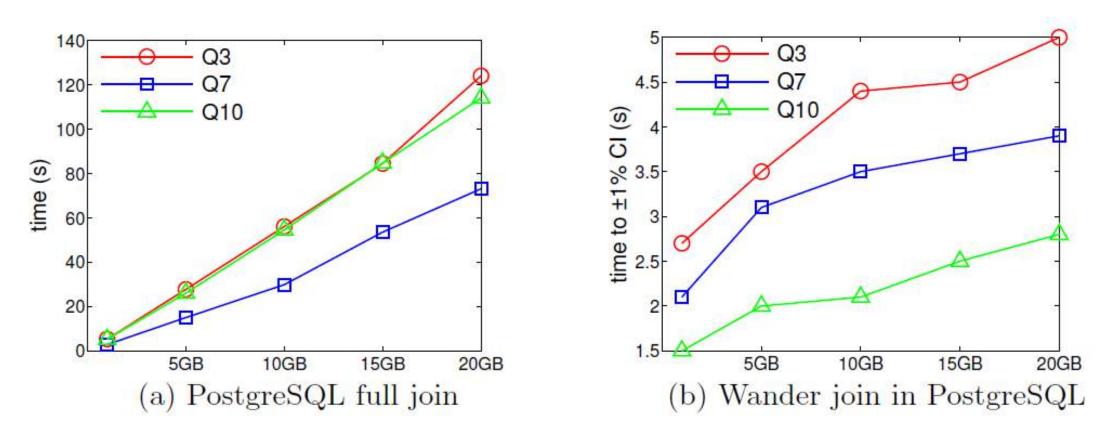
Revenue loss due to returned goods in a region: FINISHED > # III @ wander join



Front-end GUI interface



Wander Join in PostgreSQL



Logarithmic growth due to B-tree lookup to find random neighbours

Interactive and Online Data Analytics Systems

- Key challenges and opportunities
 - Interactive: In-Memory Cluster Based Computation
 - Online: Accuracy vs. Efficiency Tradeoff: existing systems are binary, either no results or wait for unknown amount of time
 - Learning: Real-time Tracking, Monitoring and Prediction: analyzing incoming data in conjunction with historical data (using machine-learning based, data driven approach)

Beyond aggregations: Integrating Learning Operators

• For Example:

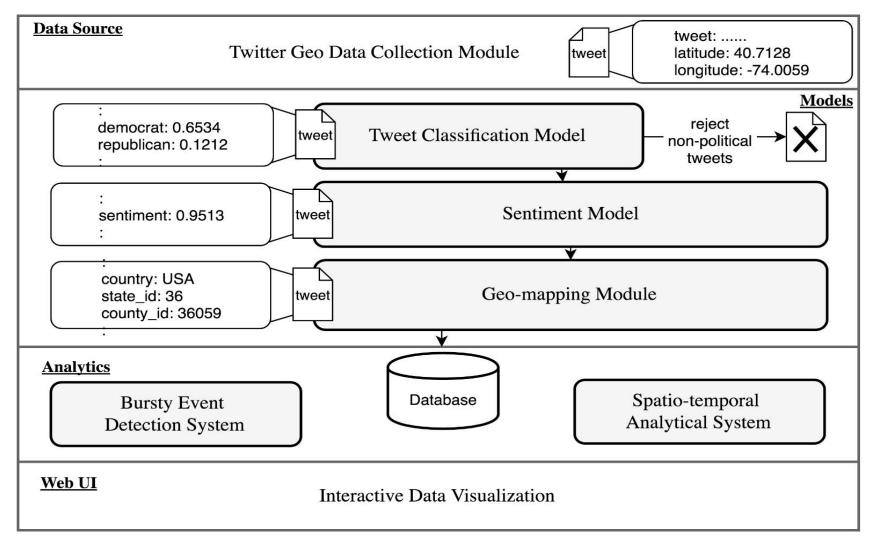
SELECT k-means from Population WHERE k=8 and feature=age and income >50,000 Group By city

What are the impacts to query evaluation and optimization modules?

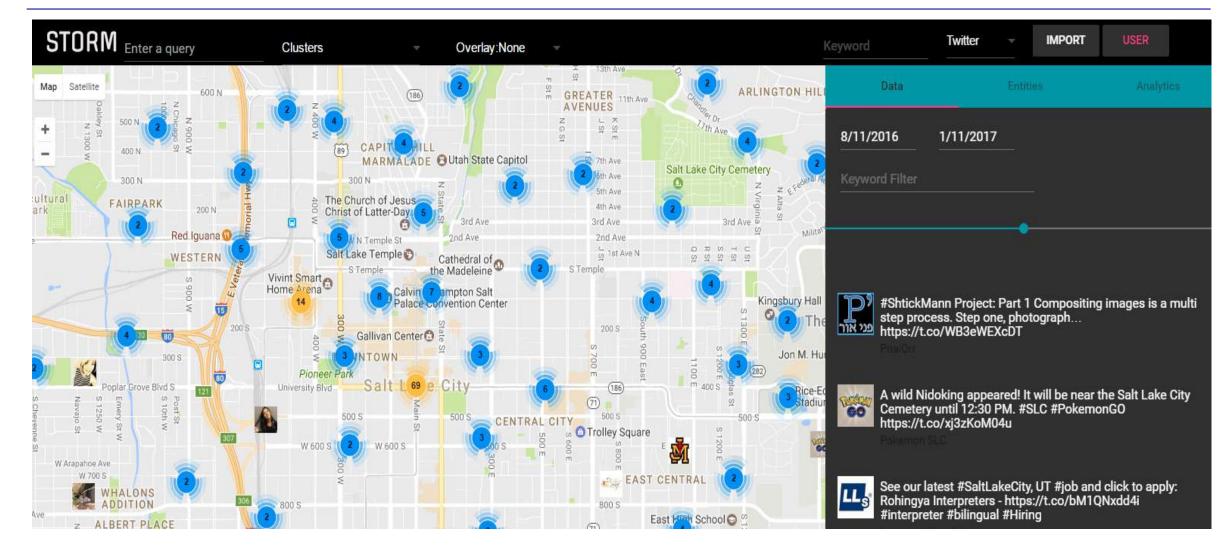
We need a random sample: uniform and independent samples to support "(arbitrary) learning operators over complex queries" (SIGMOD 2018)

Case Study: Large Scale Spatiotemporal Sentiment Analysis (US Election 2016, KDD 2017 Oral Presentation)

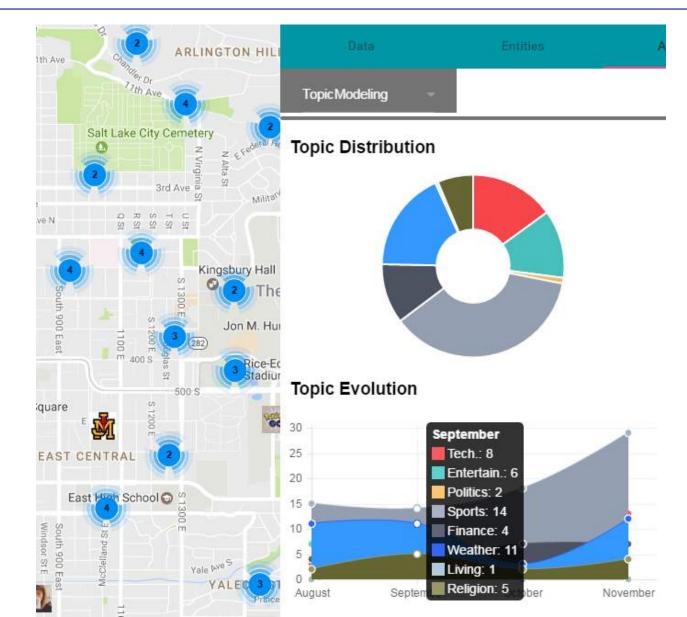
Compass: System Architecture



System Interface

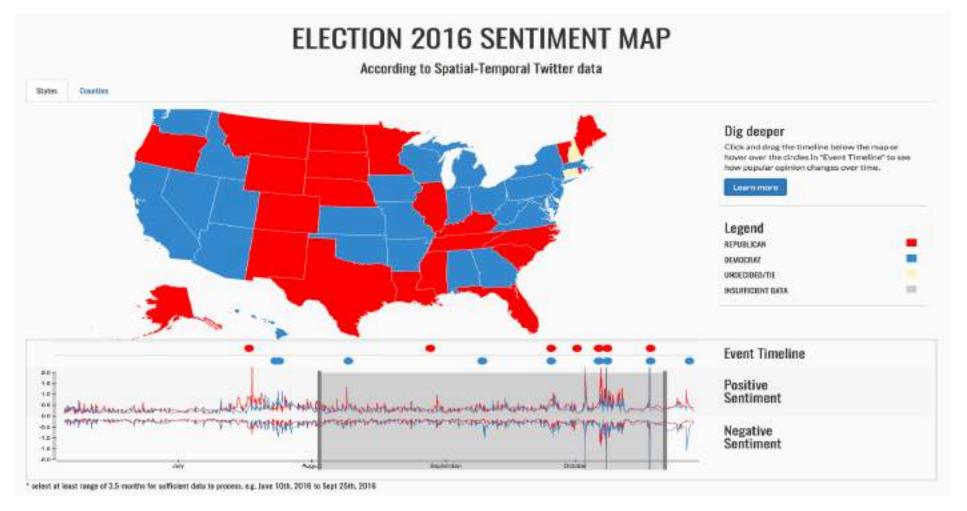


Spatial Temporal Topic Modeling (Google Faculty Award)



Spatio-temporal Sentiment Analysis (Google Faculty Award)

US Election Sentiment Analysis - <u>http://www.estorm.org</u>



County Level Analysis – Based on Simba

♥ What Twitter says!

States

Counties

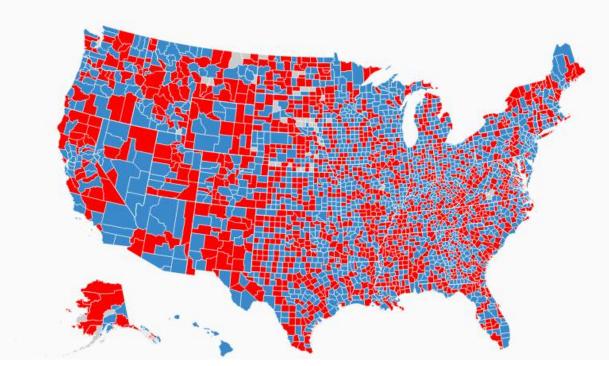
ELECTION 2016 SENTIMENT MAP

According to Spatial-Temporal Twitter data

Stone County, Arkansas

ID: 5137

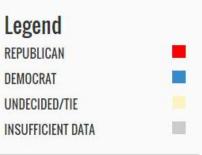
Winning: Republican Republican : 0.883938924 (sentiment score) Democrat : 0.5019163821 (sentiment score)



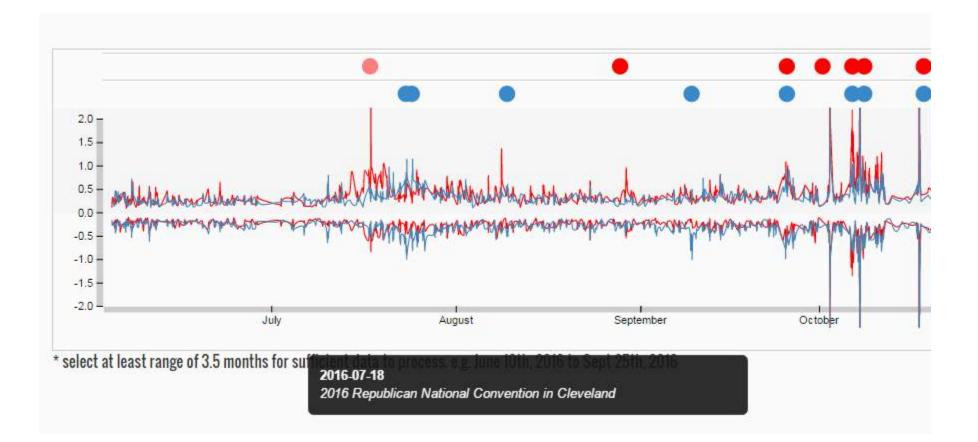
Dig deeper

Click and drag the timeline below the map or hover over the circles in "Event Timeline" to see how popular opinion changes over time.

Learn more

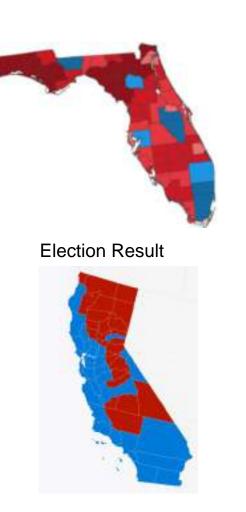


Sentiment Analysis



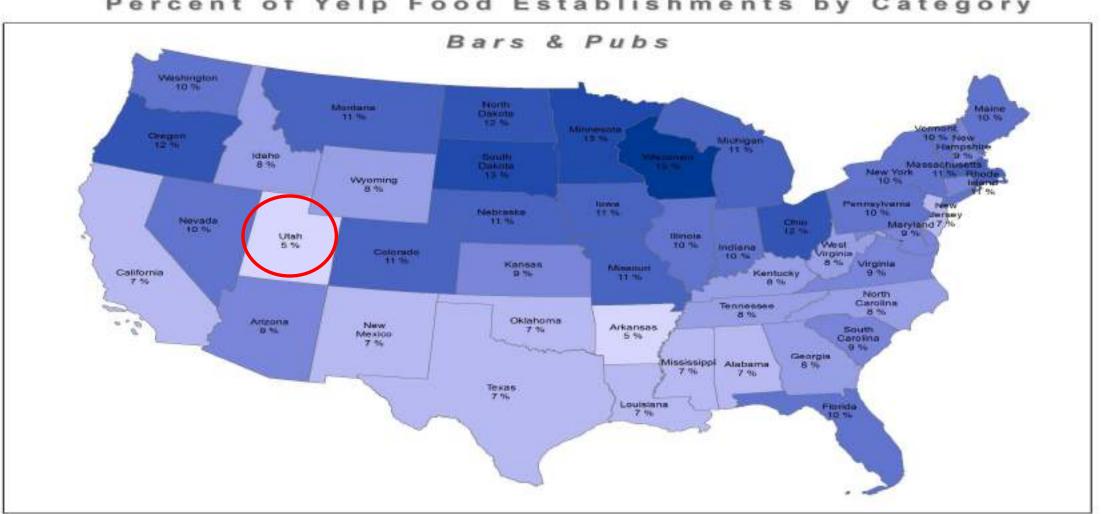
Geotagged based spatio-temporal sentiment analysis and actual result

California



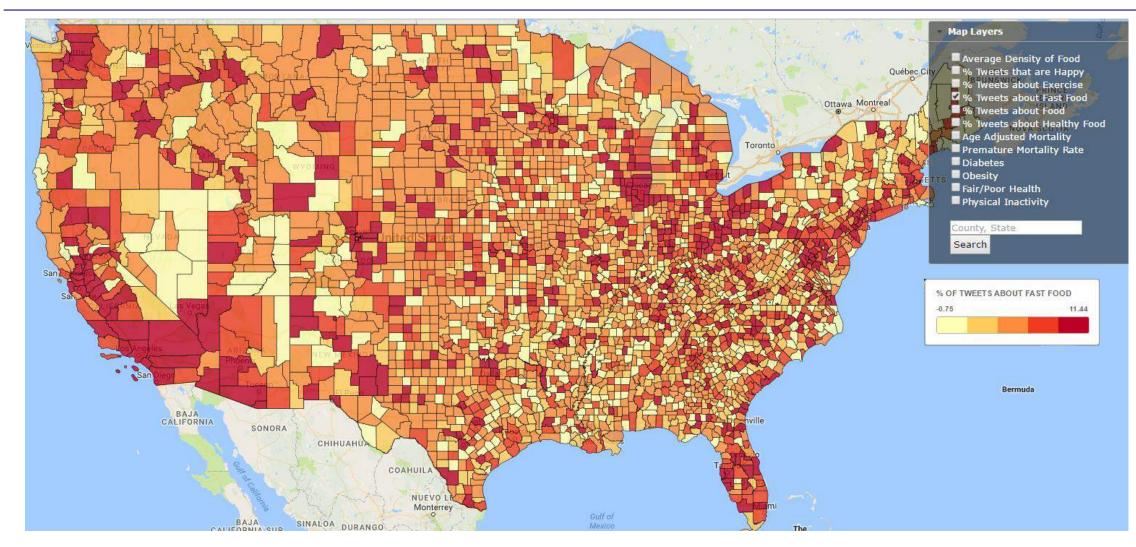
Geotagged based spatio-temporal Sentiment Analysis

Application 2: Neighborhood Health Indicator from Social Media Data



Percent of Yelp Food Establishments by Category

Neighborhood Health Indicator from Social Media



April 2015– March 2016. County summaries were derived from 80 million geotagged tweets from the contiguous United States. https://hashtaghealth.github.io/countymap/map.html