视频推荐搜索中的用户兴趣

优酷 搜索、推荐、内容智能负责人 数据智能部总监 李玉

/ 上购票中,每张立减2040元 // 1/ 团购享受更多优惠

QCON 成为软件技术专家 全球软件开发大会 的必经之路

[北京站] 2018 2018年4月20-22日 北京·国际会议中心

识别二维码了解更多

2018.1.13 - 1.14 北京国际会议中心

助力人工智能落地

扫描关注大会官网

主办方

下载极客时间App 获取有声IT新闻、技术产品专栏,每日更新

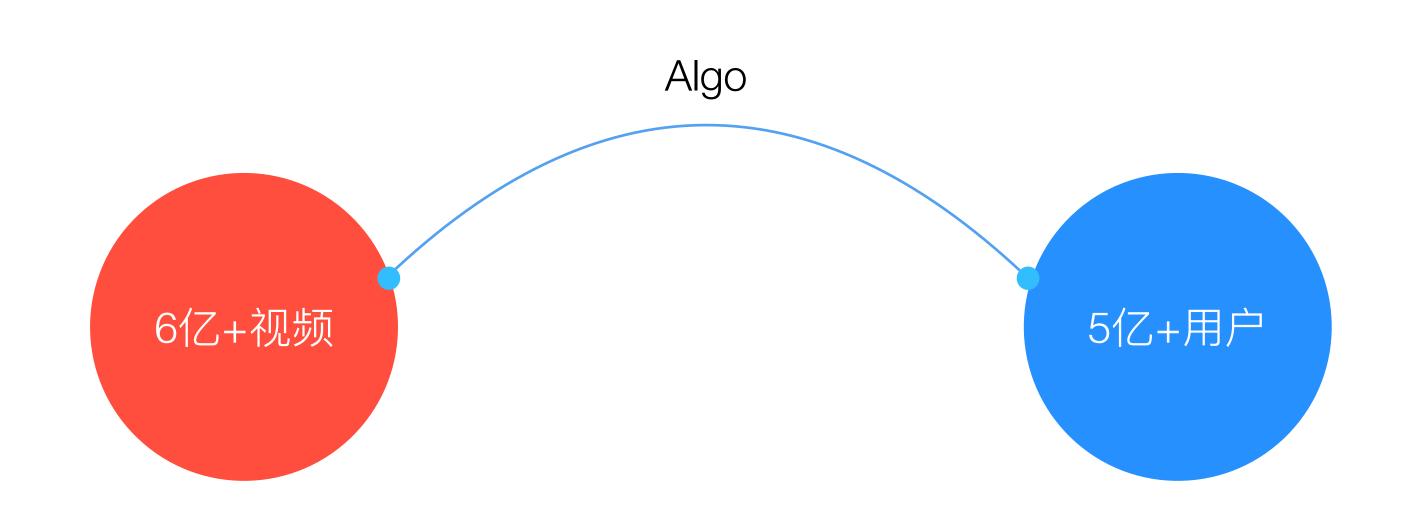
扫一扫下载极客时间App

Agenda

- 优酷视频个性化搜索推荐简介
- 视频个性化搜索推荐中的用户兴趣表达的挑战
- · 当前工业界常见方法的问题探讨
- 我们的尝试的方法

优酷个性化服务简介

Data...



· 一多半的视频播放通过个性化搜索推荐技术分发

- ・ 对于CTR、人均播放量、人均时长、留存率等均有显著提升
- ・帮助用户发现好内容,帮助高质量内容触达精准受众

视频推荐中用户兴趣表达的挑战

视频推荐的用户兴趣表达的挑战

- · 技术挑战:

 - 用户目的性强,发现、浏览、逛的心智低
 - · 长节目可选择空间有限
 - · 头部节目用户行为稀疏,大量用户每月只观看3个以下节目,对比:
 - · **短视频信息流场景**:通过数百个观看行为推荐30个
 - ·优酷头部节目:通过3、4个观看行为推荐30个

· **剧、综、影、漫**:用户选择成本高,用户追的剧、综艺少,推荐成功率低

• 数据噪声多、分布驱热、highly biased,常用推荐算法模型描述能力不足

视频推荐的用户兴趣表达的挑战 cont.

- · 技术挑战:
 - 多样性要求更高,对比:
 - **电商**: 兴趣明确: 想买4K电视、牛仔裤、连衣裙; 高度结构化, 类目体系清晰
 - 初频:

 - · 兴趣会进化、发展、细分,如:

 - · 兴趣体现的是用户的个人认同
 - · 兴趣多维度正交, 如:
 - · 只看"大制作"、美剧质感
 - 不喜欢重复,期待惊喜 (serendipity)

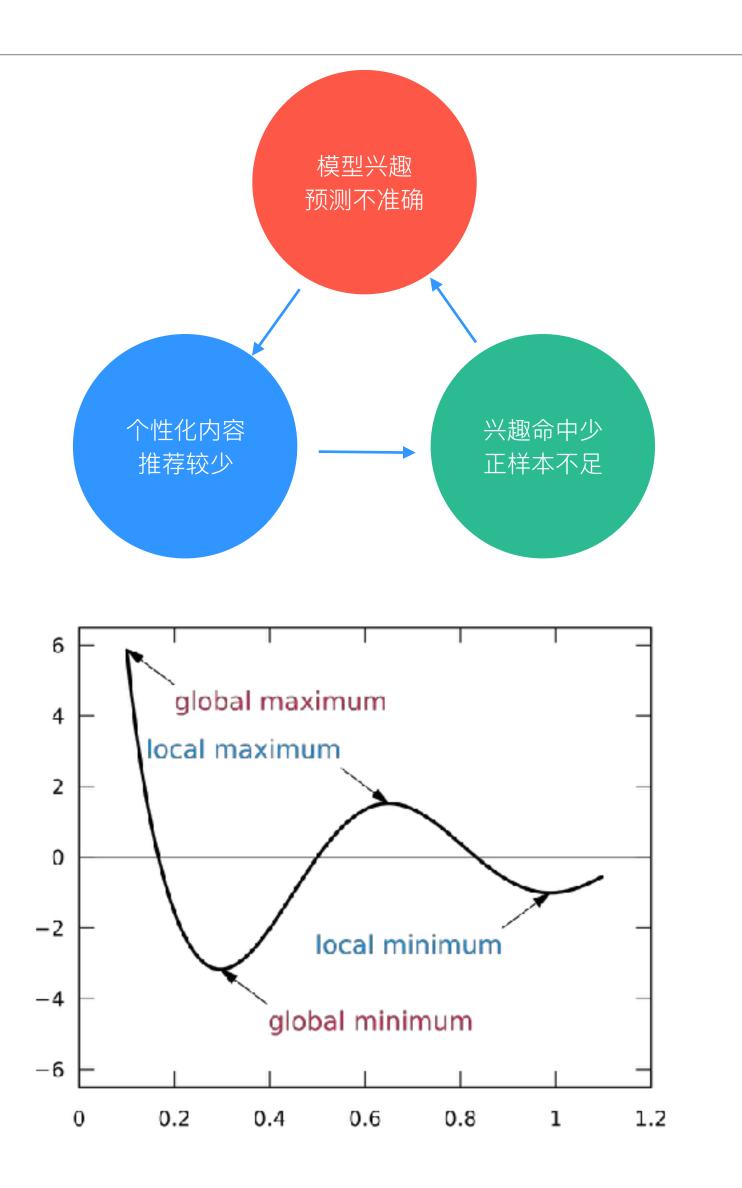
• 视频内容兴趣复杂,感性、微妙、亚文化细分多样,对于符合兴趣大方向的惊喜度(serendipity)与

・ 兴趣感性、微妙:喜欢香港武侠片但是讨厌成龙; 喜欢日本动漫, 今敏等、但讨厌宫崎骏;

・ 相声: 郭德纲 小岳岳-》方清平; 或者-》王玥波评书; 或者-》侯宝林 刘宝瑞 马三立 传统 • 科幻迷:从浅度:看星战、地心引力-》中度:星际穿越-》深度:银翼杀手、降临、三体; • 微妙的亚文化: 二次元、游戏、直播; 文艺青年; 腐、柜; 追剧族、韩剧迷、恐怖片迷

识别、表达用户兴趣的重要性

- Retargeting (看了又看):
 - · 推荐用户有过交互的内容(看了又看)
 - · 成功率高,长期价值低
 - · 局部提升非全局提升(抢其他渠道流量)
 - 成功率高因此ctr高
 - · 容易陷入局部最优
- 热点推荐
 - · 推荐近期热点
 - 容易陷入局部最优
- 个性化兴趣推荐
 - · 推荐符合每个用户兴趣的内容
 - 成功率低因此ctr偏低
 - · 更具长期价值
 - · 短期收益可能小,但容易长期收敛
- ・ **推荐命中成功率**: retargeting > 热点 > 个性化发现
- · 推荐命中(不命中)价值:个性化发现 > 推荐热点 > retargeting



当前工业界常见方法的问题探讨

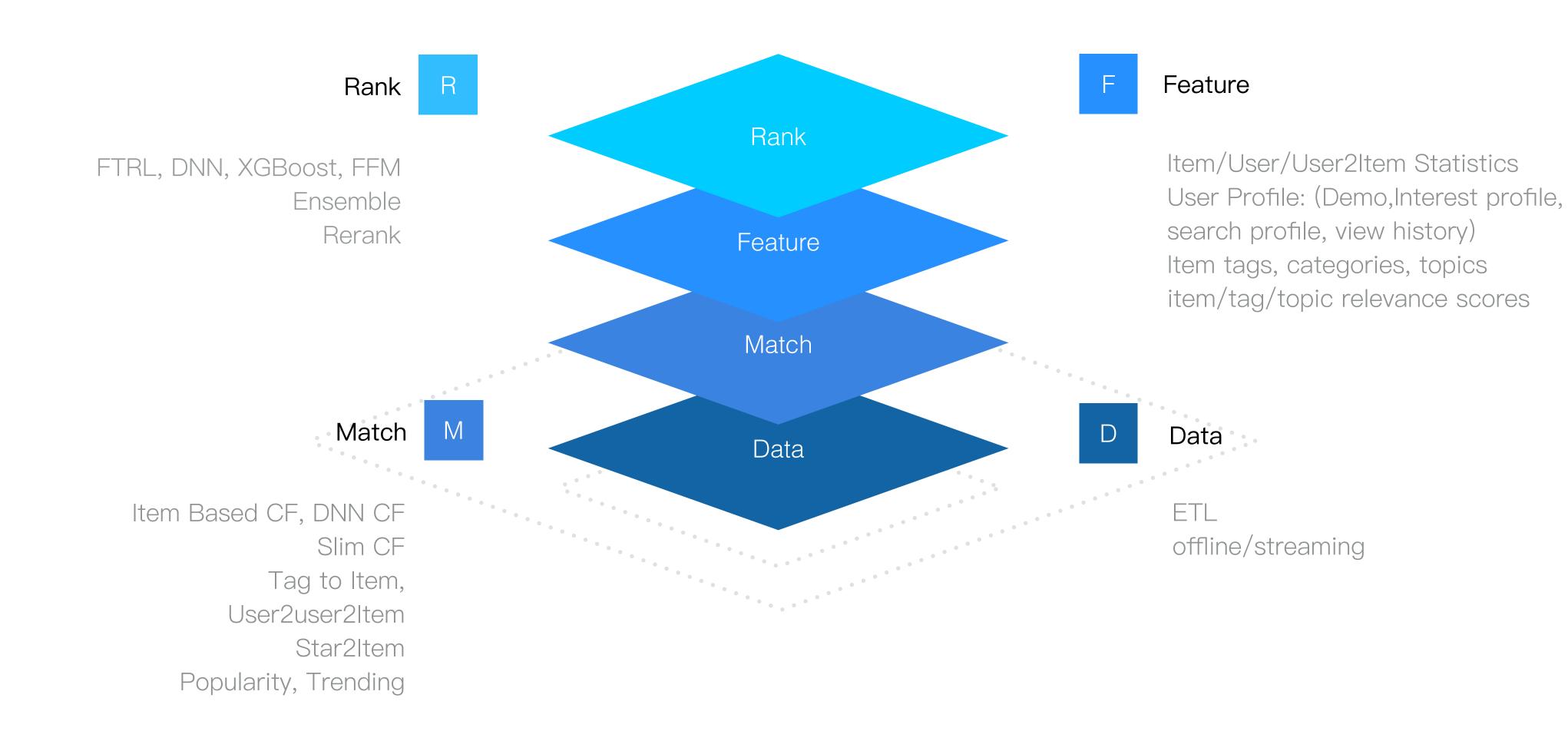
个性化推荐工业界常用方法

- · 流程: 召回、排序
- 特征:
 - 统计特征

 - · 高维组合特征
 - Item based similarity(i2i)

· 用户画像: DEMO、用户对于标签的frequency、recency

Common Algo Framework(对应的优酷的方法)



常用方法对于表达用户视频兴趣的问题

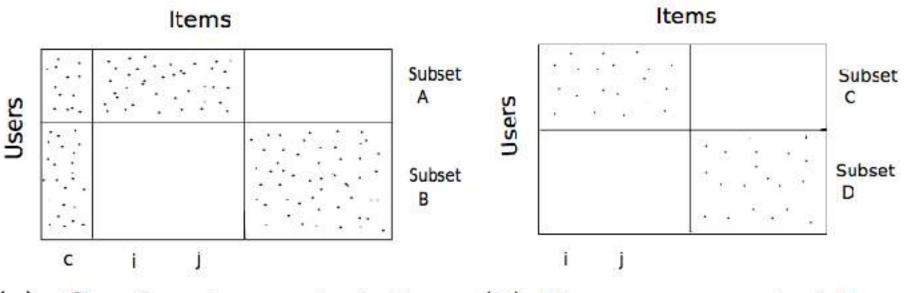
- · Demo(年龄、性别、地域),设备类型、城市...
 - · 问题: 用户的内容兴趣与以上信息相关性不大
 - · 问题: 三线城市50岁男性可能和一线城市30岁女性的观看习惯一致
- 基于内容标签的用户画像
 - 人工内容标签:恐怖片、动作片、搞笑、香港片、韩国片
 - Topic Modeling标签: LDA提取视频标题、描述的主题(内容数据噪声大)
 - · 基于统计的方法 (frequency、recency) 建立用户标签
 - · 问题:人工标签主观性大、噪声大
 - · 问题:人工标签粒度容易过于宽泛
 - · 问题: topic modeling标签噪声大、数据稀疏
 - 问题: 往往基于统计的方法, 很难精准描述用户的兴趣
 - 问题: 容易受到驱热的影响

常用方法对于表达用户兴趣的问题 cont.

- 高维组合特征 •
 - 通过组合以上各种特征,产生更丰富的信息 ٠
 - 问题: 容易受到噪声影响 •
 - · 问题: 计算量过大
- Item based similarity (i2i) •
 - CF similarity •
 - SVD++/MF
 - Slim •
 - DNN •
 - 简单高效 •

Problem of I2I

- ・ Item based CF是学术和工业界都最有效的方法之一
- · Item based方法比User based方法更有效。
 - 主要因为user 维度行为更稀疏,噪声更大。Item的维度积累历史行为更多,variance更小。
- 类型观看,有的用户因为主演、导演观看。
- · 问题2: 不同用户群体的不同喜好在全局Item similarity的计算过程中被平滑掉。
- · 问题3: 对于长尾item行为数据过于稀疏
- · 问题4: 粒度太细,数据稀疏,扩展能力弱
- · 问题5: 驱热、哈利波特现象

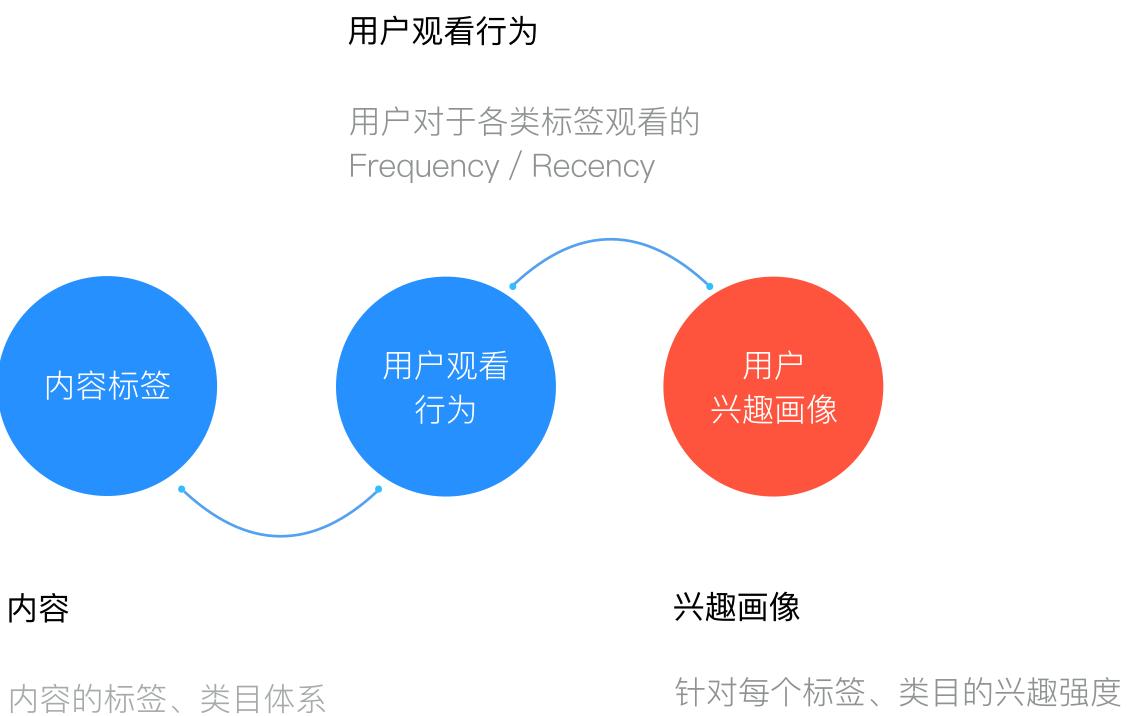


·问题1:由于基于item维度的全局统计,每个用户观看item的不同原因信息被平均掉。对于一个视频,有的用户因为热度观看,有的用户因为主题的

(a) Overlapping rated items(b) No common rated items between user subsets between user subsets

介绍我们的一些尝试

基础用户画像做法



内容的标签、类目体系 演员、导演等Metadata

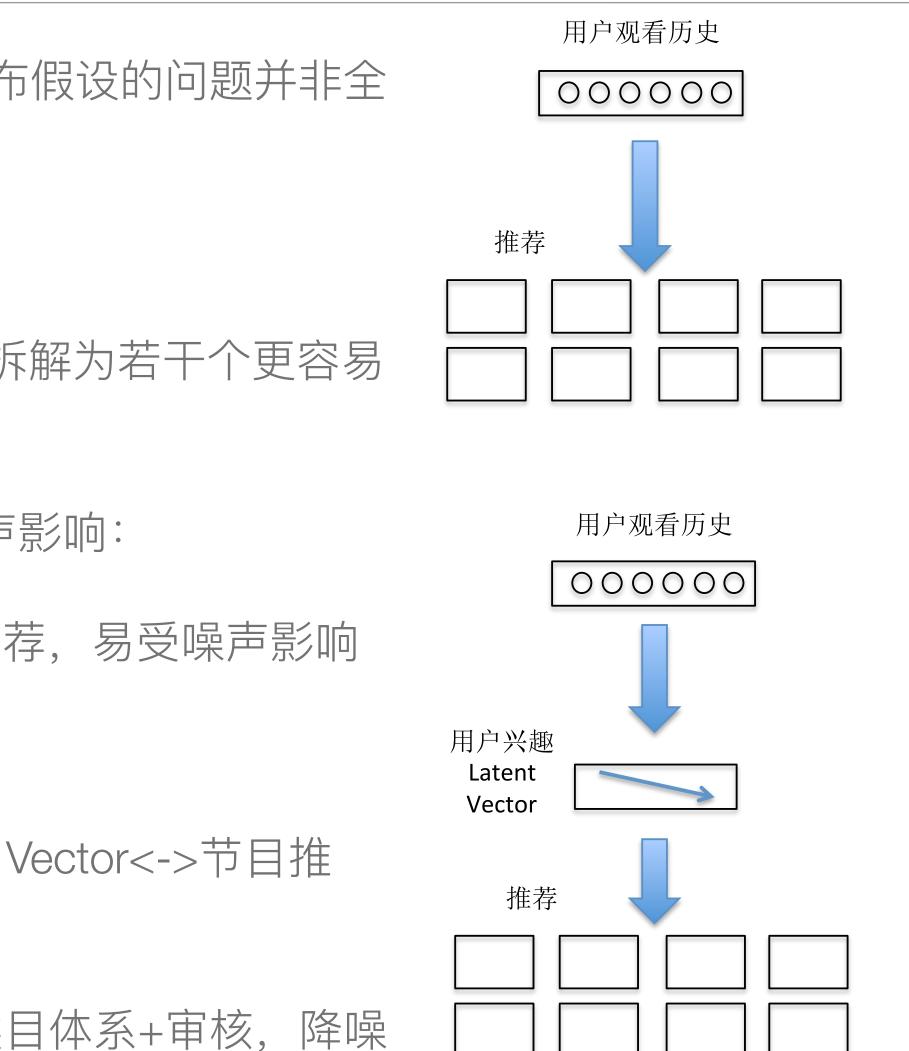
> **问题:**基于统计,无法区分驱热、类型、明星等信息 粒度过于粗

分

User Interest Latent Vector

- End2End 黑盒模型由于噪声与概率分布假设的问题并非全局收敛,需缩小搜索空间
 - · 拆解为多个更容易的子问题
 - ・机器学习解一个End2End大问题 < 拆解为若干个更容易 的小问题
- 传统End2End方法易受数据稀疏与噪声影响:
 - · End2End模型: 观看历史<->节目推荐, 易受噪声影响
 - · 拆解为子问题预测模型:
 - ・ 观看历史<->宽泛兴趣分类Latent Vector<->节目推

 荐,对于噪声更鲁邦
- 宽泛兴趣Latent vector——人工构建类目体系+审核,降噪

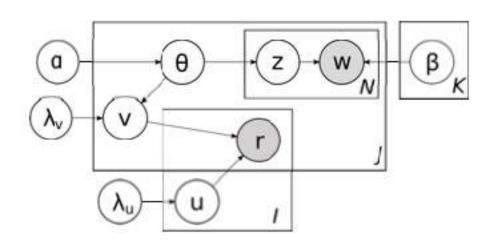


用户兴趣的建模的work - CTR

- Articles

 - 2. For each item j,

 - item latent vector as $v_j = \epsilon_j + \theta_j$.
 - (c) For each word w_{jn} ,
 - 3. For each user-item pair (i, j), draw the rating



Collaborative Topic Modeling for Recommending Scientific

```
1. For each user i, draw user latent vector u_i \sim \mathcal{N}(0, \lambda_u^{-1} I_K).
```

```
(a) Draw topic proportions \theta_j \sim \text{Dirichlet}(\alpha).
(b) Draw item latent offset \epsilon_j \sim \mathcal{N}(0, \lambda_v^{-1} I_K) and set the
         i. Draw topic assignment z_{jn} \sim \text{Mult}(\theta).
        ii. Draw word w_{jn} \sim \text{Mult}(\beta_{z_{jn}}).
                          r_{ij} \sim \mathcal{N}(u_i^T v_j, c_{ij}^{-1}).
                                                                                   (6)
```

用户兴趣的建模的work - CTPF

Content-based recommendations with Poisson factorization

1. Document model:

- (a) Draw topics $\beta_{vk} \sim \text{Gamma}(a, b)$
- (c) Draw word count $w_{dv} \sim \text{Poisson}(\theta_d^T \beta_v)$.

2. Recommendation model:

- (a) Draw user preferences $\eta_{uk} \sim \text{Gamma}(e, f)$
- (c) Draw $r_{ud} \sim \text{Poisson}(\eta_u^T(\theta_d + \epsilon_d)).$
- of Topic Models In Industrial Applications

```
(b) Draw document topic intensities \theta_{dk} \sim \text{Gamma}(c, d)
```

```
(b) Draw document topic offsets \epsilon_{dk} \sim \text{Gamma}(g, h)
```

A Practical Algorithm for Solving the Incoherence Problem

用户兴趣的建模的work - CTPF with popularity, stars tags and queries

- 实现性能优化, scalable to • internet scale
- 基于parameter server架构 的分布式实现
- EM不是全局收敛。针对每 • 个topic进行人工审核,再作 为初始值进行迭代。
- 扩展到文本+标签+meta+流 • 行度
- 基于兴趣向量的个性化I2I • similarity

1. Document model:

- (a) Draw topics β_{vk}
- (b) Draw document
- (c) Draw word cour

2. Document tag model:

3. Document search gueries model:

4. Attributes(popularity/stars) model:

5. Recommendation model:

CTPF with popularity, stars, tags and search queries

$$_{k} \sim Gamma(a, b)$$

t topic intensities $\theta_{dk} \sim Gamma(c, d)$
nt $\omega_{dv} \sim Poisson(\theta_{d}^{T}\beta_{v})$

(a) Draw tag topics $\varphi_{vk} \sim Gamma(i, j)$ (b) Draw tag count $\tau_{dv} \sim Poisson(\theta_d^T \varphi_v)$

(a) Draw search query topics $v_{vk} \sim Gamma(l, m)$ (b) Draw search query count $\rho_{dv} \sim Poisson(\theta_d^T v_v)$

(a) Define attributes(popularity and star) set of length s {popularity, star₀, star₁,... }

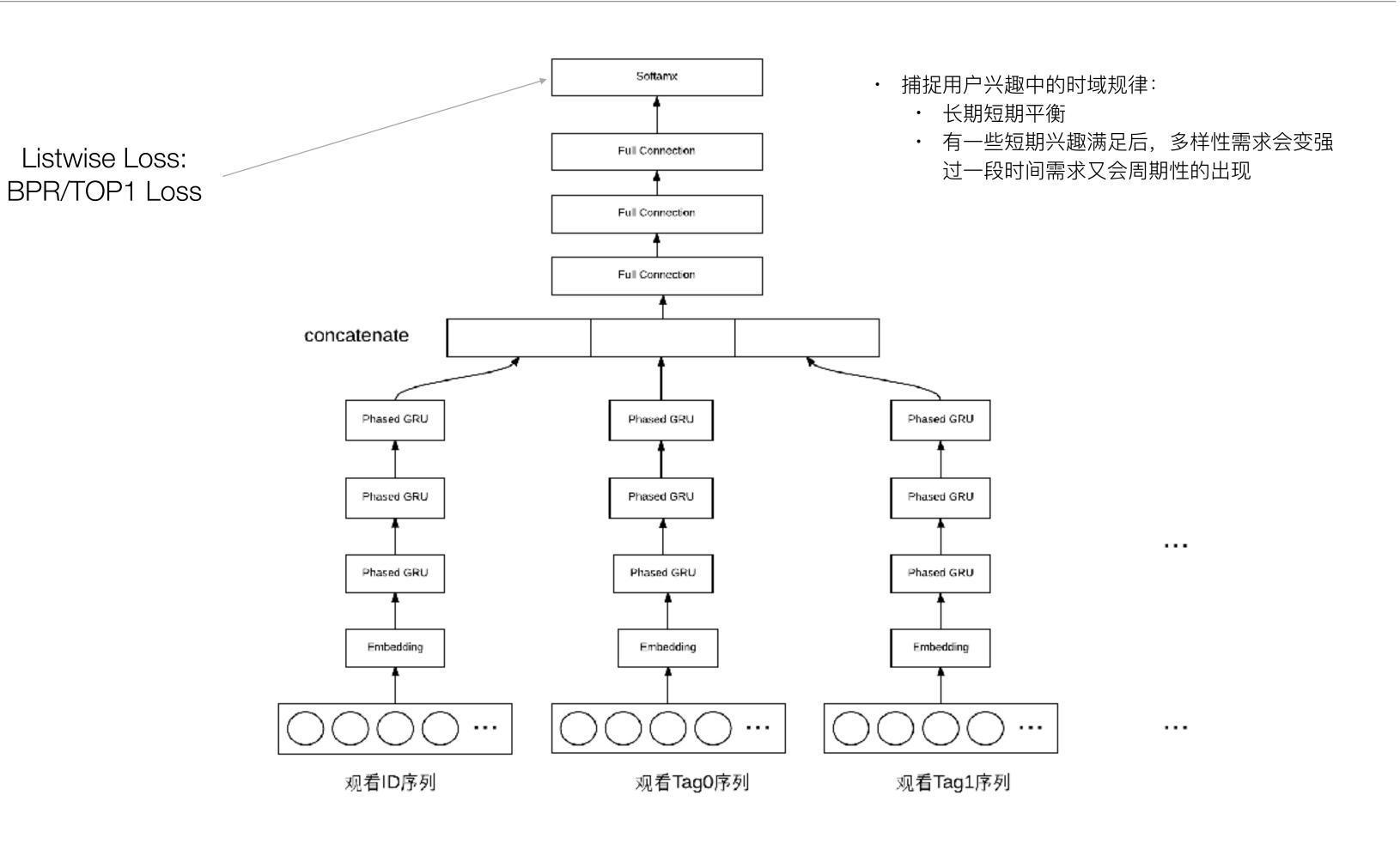
(b) Draw attributes(popularity and star) topics $\pi_{sk} \sim Gamma(l, m)$

(c) Draw attributes(popularity and star) count $\alpha_{dv} \sim Poisson(\theta_d^T \pi_s)$

(a) Draw user preferences $\eta_{uk} \sim Gamma(e, f)$ (b) Draw document topic offsets $\epsilon_{dk} \sim Gamma(g, h)$ (c) Draw $r_{ud} \sim Poisson(\eta_u^T(\theta_d + \epsilon_d))$

Topic488 va	lue:3.307159
喜剧 24.1236	3362
东北 23.6227	9569
低俗 18.7678	
二人转 15.72	
笑星 14.3499	465
搞笑 14.0937	2048
东北话 12.94	013481
开心麻花 10.2	20048983
客串 8.84240	383
热闹 7.77842	085
Topic433 val	.ue:2.875541
速度与激情 19	.19315398
飚车 15.48903	3876
刺激 14.2655:	3517
大片 13.99698	8715
震撼 12.60453	356
赛车 12.5436	7218
好莱坞 12.536	10959
肌肉男 10.769	38512
硬汉 10.73588	8267
极品飞车 10.7	1208749
Topic90 valu	1e:1.488183
好莱坞 8.8422	28278
大片 8.33831	162
震撼 7.04246	TE 7070
热血 5.70970	491
战斗 5.69004	143
军事 5.68351	27
特效 4.40256	621
主旋律 4.3812	28264
军旅 4.37505	014
科幻 4.35832	843
1141 4.00002	

长期兴趣与短期兴趣的平衡——Phased GRU RecNet



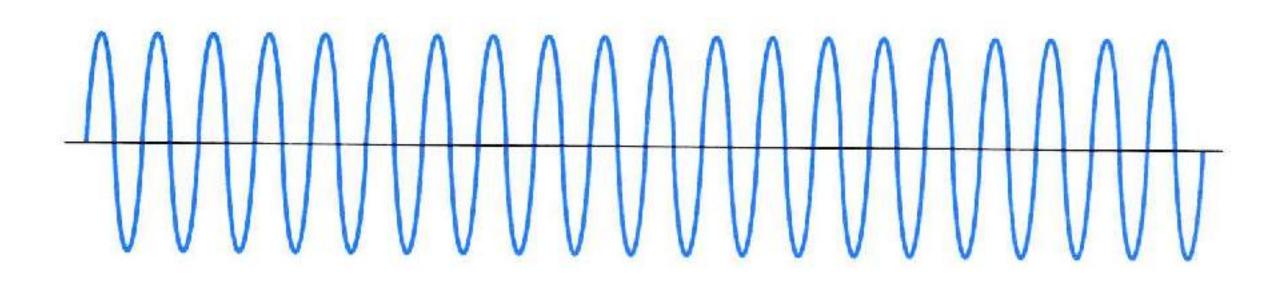
Based on: SESSION-BASED RECOMMEND ICLR2016

Based on: SESSION-BASED RECOMMENDATIONS WITH RECURRENT NEURAL NETWORKS -

长期兴趣与短期兴趣的平衡——Phased GRU RecNet cont.

- GRU: $\begin{aligned} \mathbf{h_t} &= g(W\mathbf{x_t} + U\mathbf{h_{t-1}}) \\ \mathbf{h_t} &= (1 - \mathbf{z_t})\mathbf{h_{t-1}} + \mathbf{z_t}\mathbf{\hat{h_t}} \\ \mathbf{z_t} &= \sigma(W_z\mathbf{x_t} + U_z\mathbf{h_{t-1}}) & \text{update gate} \\ \mathbf{\hat{h_t}} &= \tanh(W\mathbf{x_t} + U(\mathbf{r_t} \odot \mathbf{h_{t-1}})) \end{aligned}$
 - $\mathbf{r_t} = \sigma(W_r \mathbf{x_t} + U_r \mathbf{h_{t-1}})$ reset gate

• 默认的假设是等距采样:



长期兴趣与短期兴趣的平衡——Phased GRU RecNet cont.

用户session实际情况是有的session一天100个行为,有的session一个月只有一个行为

•

•

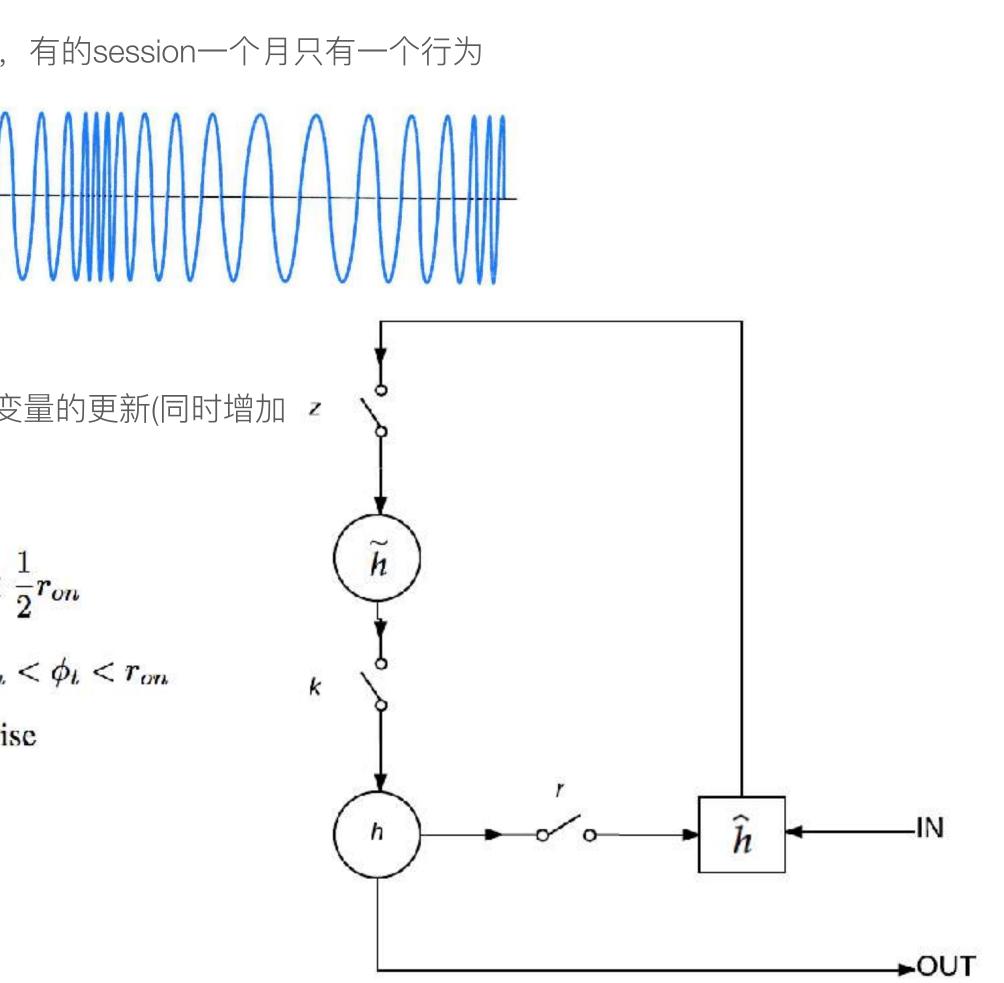
Phased GRU, 引入time gate k, 根据采样间隔控制变量的更新(同时增加 / 一定程度的采样间隔):

$$\phi_t = rac{(t-s) \mod au}{ au}, \qquad k_t = egin{cases} rac{2\phi_t}{r_{on}}, & ext{if } \phi_t < \ 2 - rac{2\phi_t}{r_{on}}, & ext{if } rac{1}{2}r_{on} \ lpha \phi_t, & ext{otherwith} \end{cases}$$

$$\widetilde{h}_{j} = (1 - z_{j})h_{j-1} + z_{j}\widehat{h}_{j}$$

$$h_t = k_t \odot \widetilde{h}_t + (1 - k_t) \odot \widetilde{h}_{t-1}$$

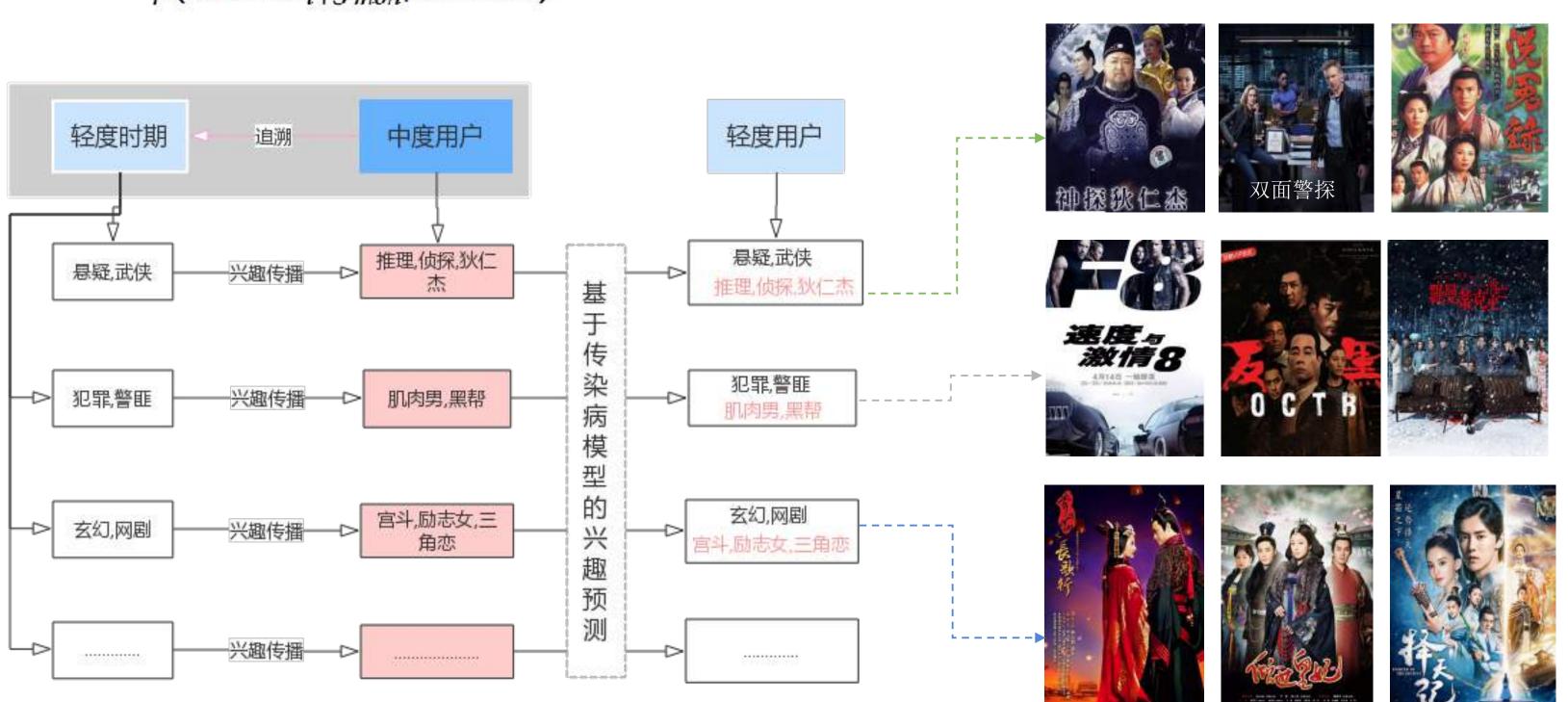
Based on: Phased LSTM: Accelerating Recurrent Network Training for Long or Event-based Sequences



基于传染病模型的有限行为用户兴趣预测

- ・大量用户行为非常稀疏,每月观看量不超过3次
- · 用户群体的兴趣演变遵循类似传染病传播的机制
- 预测:

$p(Interest_{t+3 mon}|Interest_t)$



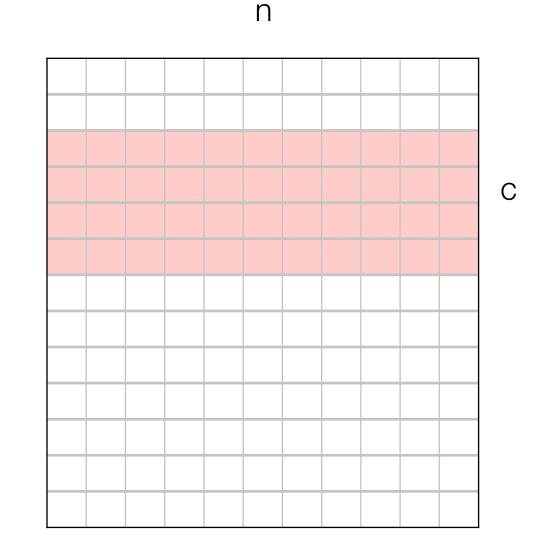
基于Nystrom CUR的exploration

- •
- Nystrom CUR:
- 可以用c个landmark item来代表整个I2I相似度矩阵
- 通过statistical leverage score选择c个item •
- 重点explore对于c个item有过观看的用户 •

NxN的I2I矩阵有很多元素很稀疏, explore收集数据需要很多流量, 代价很高

 $G \in \mathbb{R}^{n \times n}$ $\tilde{G}_k = CW_k^+ C^T$ $C \in \mathbb{R}^{n \times c}$ $W_k \in \mathbb{R}^{c \times c}$

n



基于HIN图、聚类等方法的兴趣识别

- 形成了各自所属的社区。
- ltem节点的权重为该节目观看人数的倒数 U-I连边的权重为该用户对该节目的观看完成率
 - 将全部用户划分为35830个类簇
 - Item在类簇中的挂载成功率为100%
 - 仅有单个Item挂载的类簇占99.48%,最多一个类簇内包含32个节目
 - 类簇内包含的用户个数的分布直方图如右所示,其中最大的类簇包含用户45313个

序号	节目ID	
1	323580	汽士
2	323577	汽车均
3	318953	和這
4	323581	汽车城
5	323573	汽车城
6	323571	汽车

典型CASE

算法思想

权重设定

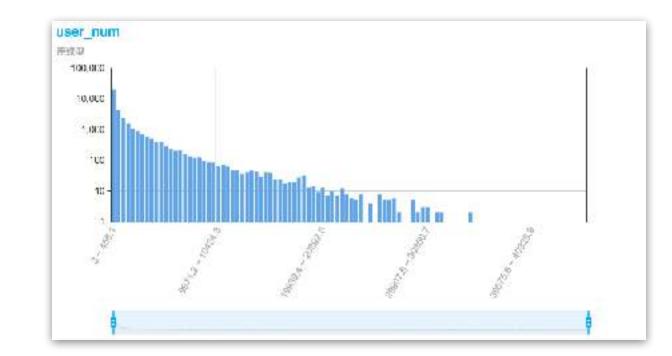
• 效果评估

•

•

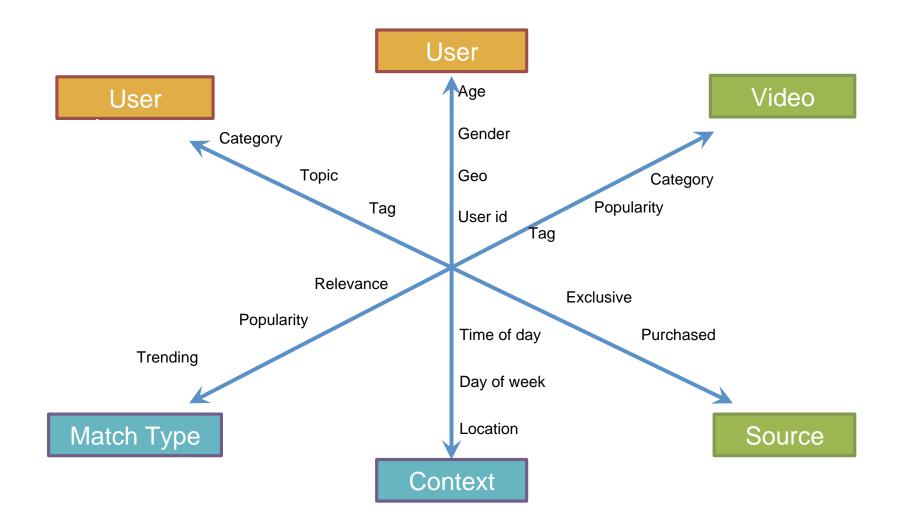
利用用户与节目的播放记录构建二部图,每个节点的标签按相似度传播给相邻节点,在节点传播的每一步,每个节点按照相邻节点的标签来 更新自己的标签。与该节点相似度越大,其相邻节点对其标注的影响权值也越大。当绝大多数节点的标签不再更新时,整个网络按照标签就

> User节点的权重为该用户观看节目数量的倒数 U-I连边的权重加入随机因子µ

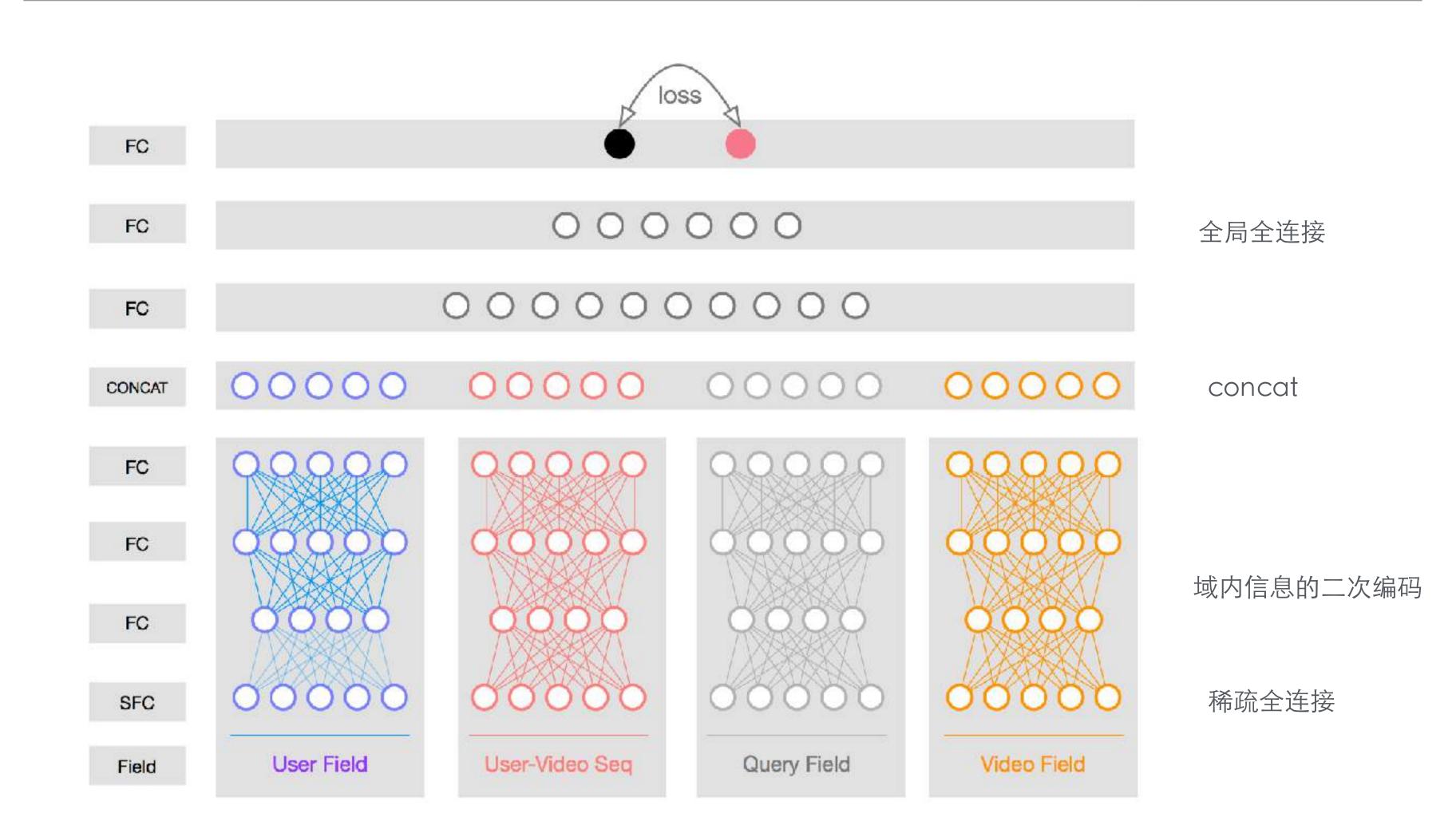


Hierarchical View Feedback Aggregation

- 算法模型能力有限, End2End模型精准capture个性化特征能力有限 •
- 最优解在非常高纬空间中,由于噪声与模型收敛能力问题,需人工辅助降低搜索空间维度 使用交叉特征的统计值,效果好于使用离散交叉裸id特征
- •
- 结合业务理解,辅助模型更好capture个性化特征 •
- 结合统计量的variance进行噪声过滤 •
- 交叉统计:更好capture不同用户群体对于不同视频类型的兴趣,如:
 - 爱看韩剧的人群对于台湾偶像剧的人均vv; •
 - 爱看日本恐怖片的人群对于美国恐怖片的人均vv; •
 - 20岁一线城市女性看游戏人均vv •

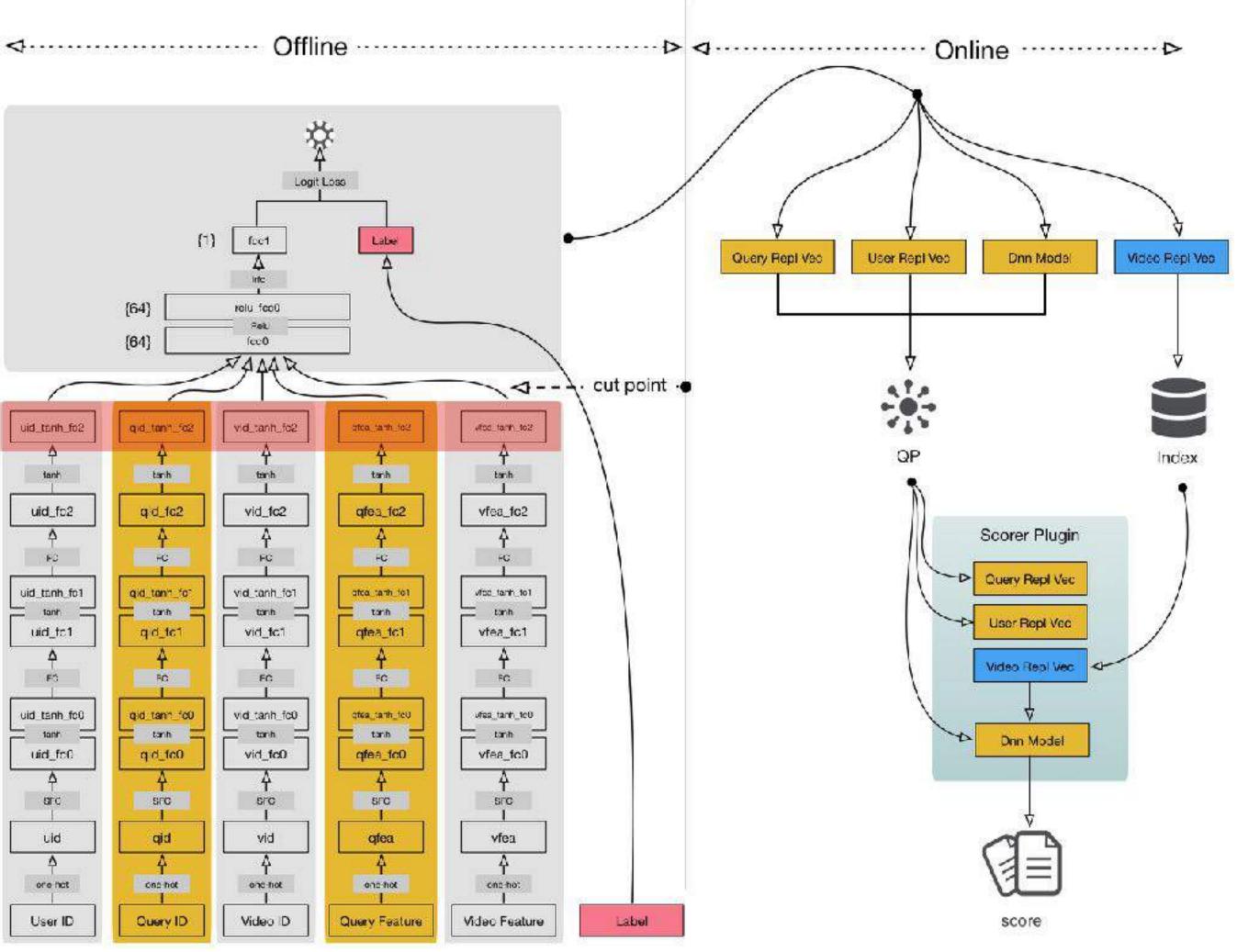


个性化排序在优酷视频搜索



个性化排序在优酷视频搜索-特征域划分及编码

- (1) [64] [64] {64} uid_tanh_fo2 qid_tanh_fc2 tanh {64} q d_fc2 uid_fc2 FC : {64} uid_tanh_fo1 gid_tanh_for tanh {64} uid_tc1 q d_tc1 FC . {16} uid_tanh_fc0 gid tann fe0 tanh {16} uid_fc0 q d_fc0 STC SFC uid qid Δ one hot one hot Query ID User ID
- query user video id域 统计域 用户观看序列 标签兴趣文本
- 超高维的稀疏编码来表征独立个体
- 利用神经网络来拟合个体共性
- 视频表达是基础
- 按特征的重要度和关联性分域
- 亿级参数
- 挑战:特征维度高模型存储空间大,离线训 练计算时间成本高,在线实现资源占用高, 前向网络计算不能满足RT要求
 - 特征分域 •
 - 随机编码 •
 - 挂靠编码 •
 - 抽样技术 •



We Are Hiring ly136216@alibaba-inc.com

