
Huijun Wu
2017.12

Self Regulating Stream
Processing in Heron

Huijun Wu
Twitter, Inc.

Infrastructure, Data Platform, Real-Time Compute

Recent Improvements

Self Regulating Challenges

Dhalion Framework

Heron Overview

Case Study

Heron Overview
Data model: user/developer perspective

Topology(DAG)
• Vertex

Spout
Bolt

• Edge: Stream
Tuple

Compatible with Apache Storm data model

What is Heron?
A real-time, distributed, fault-tolerant stream processing engine from Twitter

Heron Overview
Runtime architecture: data center with multiple topologies

Topology shared services:
• Scheduler
• Uploader
• State manager: zookeeper

Tools:
• Tracker
• UI

Heron Overview
Runtime architecture: one particular topology

Shared between containers:
• State manager: zookeeper

Type 1: container 0
• Topology master
• Metrics cache

Type 2: container x (x>0)
• Stream manager
• Heron instance
• Metrics manager

Heron Overview
Runtime rate control: backpressure

Health metrics:
● Metrics/counters

○ Backpressure
● Exceptions

Backpressure example: B3 in the
container A triggers backpressure,
which is broadcasted to all Stream
managers to stop local Spouts.

Recent Major Improvements (2016-2017)
Self Regulating Challenges

Dhalion Framework

Heron Overview

Case Study

Recent Improvements
Performance improvement

https://blog.twitter.com/engineering/en_us/topics/open-source/2017/optimizing-twitter-heron.html

Recent Improvements
Resource managers

Service Provider Interface (SPI)
• Modular plugins
• https://github.com/twitter/heron/tree/master/heron/spi
• Scheduler implementation vs. delegation

Supported resource pools
• Mesos/Aurora/Marathon
• Yarn
• Kubernetes
• Slurm
• Local

http://2015.qconshanghai.com/presentation/2792

Recent Improvements
Elastic runtime scaling

● Update parallelism at runtime
● Adapt to stream traffic load
● `heron update` command
● Minimize impact to running

topology
● Intelligent packing algorithm

http://2015.qconshanghai.com/presentation/2792

Recent Improvements
Stateful processing: effectively once

Delivery semantics:
● At most once
● At least once
● Effectively once

○ Distributed snapshot/state checkpointing
○ At-least-once event delivery plus roll back

● Exactly once

http://2015.qconshanghai.com/presentation/2792

Recent Improvements
High level DSL: functional API

Domain Original topology API Heron Functional API

Programming
style

Procedural,
processing
component based

Functional

Abstraction
level

Low level.
Developers must
think in terms of
"physical" spout and
bolt implementation
logic.

High level. Developers
can write processing logic
in an idiomatic fashion in
the language of their
choice, without needing to
write and connect spouts
and bolts.

Processing
model

Spout and bolt logic
must be created
explicitly, and
connecting spouts
and bolts is the
responsibility of the
developer

Spouts and bolts are
created for you
automatically on the basis
of the processing graph
that you build

http://2015.qconshanghai.com/presentation/2792

● Same data model with Java
● Python:

○ Document https://twitter.github.io/heron/docs/developers/python/topologies/

○ API https://twitter.github.io/heron/api/python/

○ Example https://github.com/twitter/heron/tree/master/examples/src/python

○ Code repositoty https://github.com/twitter/heron/tree/master/heronpy

● C++:
○ Code repository https://github.com/twitter/heron/tree/master/heron/api/src/cpp

Recent Improvements
Multiple languages support

http://2015.qconshanghai.com/presentation/2792

Recent Improvements
Self regulating: health mgr/dhalion

Motivation:
➢ the manual, time-consuming and error-prone tasks of tuning various

configuration knobs to achieve service level objectives (SLO) as well
as the maintenance of SLOs in the face of sudden, unpredictable
load variation and hardware or software performance degradation

What is Dhalion:
➢ a system that provides self-regulation capabilities to underlying

streaming systems

http://2015.qconshanghai.com/presentation/2792
Floratou, Avrilia, et al. "Dhalion: self-regulating stream processing in heron." Proceedings of the VLDB Endowment 10.12 (2017): 1825-1836.

Recent Improvements

Self Regulating Challenges
Dhalion Framework

Heron Overview

Case Study

Self-Regulating Streaming Systems

Manual, time-consuming and error-prone
task of tuning various system knobs to

achieve SLOs

Maintenance of SLOs in the face of
unpredictable load variation and hardware

or software performance degradation

Self-Regulating Streaming Systems

Self-tuning Self-stabilizing Self-healing

Self Regulating Challenges
Self-tuning

● Various tuning knobs
● Time consuming tuning phase
● The system should take as input as SLO and

automatically configure the knobs.

Self Regulating Challenges
Self-stabilizing

● Streaming applications are long running
● Load variations are observed
● The system should react to external shocks and

automatically reconfigure itself.

Self Regulating Challenges
Self-healing

● System performance can be affected by hardware or
software delivering degraded quality of service

● The system should identify internal faults and attempt to
recover from them.

Recent Improvements

Self Regulating Challenges

Dhalion Framework

Heron Overview

Case Study

Feedback Cycle

● Passive cycle
○ start backpressure(stream manager) -> cease spout(heron

instance) -> stop backpressure(stream manager)

● Proactive cycle
○ [metrics -> metrics manager] -> metrics cache -> health manager

-> [container/stream manager/spout/bolt -> metrics]

Dhalion terminology
● Policy: Dhalion periodically invokes a policy which evaluates the status of the

topology, identifies potential problems and takes appropriate actions to
resolve them.

● Detection: Dhalion observes the system state by collecting various metrics
from the underlying streaming system.
○ Symptom: Based on the metrics collected, Dhalion attempts to identify

symptoms that can potentially denote that the health of the streaming
application has been compromised.

● Diagnosis: After collecting various symptoms, Dhalion attempts to find one or
more diagnoses that explain them.

● Resolution: Once a set of diagnoses has been found, the system evaluates
them and explores the possible actions that can be taken to resolve
the problem.

Dhalion policy phases

HealMgr workflow

● Data flow
○ metrics -> component metrics
○ component metrics -> symptom
○ symptom -> diagnosis
○ diagnosis -> action

● Control flow
○ policy -> detector/diagnoser/resolver
○ detector -> sensor/metrics provider

Dhalion in HealthMgr

Dhalion from Microsoft https://github.com/Microsoft/Dhalion

Action log and blacklist

● It is possible that a diagnosis produced by Dhalion is erroneous and
thus, an incorrect action is performed that will not eventually resolve
the problem.

● For this reason, after every action is performed, Dhalion evaluates
whether the action was able to resolve the problem or brought the
system to a healthier state.

● If an action does not produce the expected outcome then it is
blacklisted and it is not repeated again.

Recent Improvements

Self Regulating Challenges

Dhalion Framework

Heron Overview

Case Study

Dynamic Resource Provisioning
The major goal is

to scale up and down topology resources as needed
while still keeping the topology in a steady state
where backpressure is not observed.

Dynamic Resource Provisioning
Symptom detection phase
● The Pending Packets Detector focuses on the Stream Manager queue corresponding

to each Heron Instance. Each Stream Manager queue temporarily stores packets that
are pending for processing by the corresponding Heron Instance. This Symptom
Detector examines the number of pending packets in the queues of the Heron
Instances that belong to the same bolt, and denotes whether these Heron Instances
have similar queue sizes or whether outliers are observed.

● The Backpressure Detector examines whether the topology experiences backpressure
by evaluating the appropriate Stream Manager metrics. The existence of backpressure
shows that the system is not able to achieve maximum throughput.

● The Processing Rate Skew Detector examines the number of tuples processed by
each Heron Instance during the measurement period (processing rate). It then
identifies whether skew in the processing rates is observed at each topology stage.

Dynamic Resource Provisioning
Diagnosis generation phase

h: heron instance

r: processing rate

p: pending packets

B: subset of H

Dynamic Resource Provisioning
Resolution phase

● Restart Instances Resolver: moves the slow Heron Instances to new
containers

● Data Skew Resolver: adjusts the hash function used to distribute the
data to the bolts

● Bolt Scale Up Resolver:
○ To determine the scale up factor, the Resolver computes the percentage

of the total amount of time that the Heron Instances spent suspending
the input data over the amount of time where backpressure was not
observed. This percentage essentially denotes the portion of the input
load that the Heron Instances could not handle.

Dynamic Resource Provisioning
Evaluation

Satisfying Throughput SLOs
● Emit Count Detector: computes the total rate at which spouts emit

data
● Throughput SLO Violation Diagnoser
● Spout Scale Up Resolver: increases the number of Heron Instances

of the spout
○ In case the policy increases the spout parallelism, the topology might

experience backpressure due to the increase of the input load. In this
case, the Throughput SLO Policy employs the components used by the
Dynamic Resource Provisioning Policy to automatically adjust the
resources assigned to the bolts so that the topology is brought back to a
healthy state.

Satisfying Throughput SLOs
Evaluation

Curious to know more
● Floratou, Avrilia, et al. "Dhalion: self-regulating stream processing in

heron." Proceedings of the VLDB Endowment 10.12 (2017):
1825-1836.

● Kulkarni, Sanjeev, et al. "Twitter heron: Stream processing at scale."
Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data. ACM, 2015.

● Fu, Maosong, et al. "Twitter Heron: Towards Extensible Streaming
Engines." Data Engineering (ICDE), 2017 IEEE 33rd International
Conference on. IEEE, 2017.

● Fu, Maosong, et al. "Streaming@ Twitter." IEEE Data Eng. Bull. 38.4
(2015): 15-27.

Open Source

● Webpage https://twitter.github.io/heron/
● Github https://github.com/twitter/heron

