
SG1 Par/Con
TS

SG5
Transactional
Memory TS

SG14 Low
Latency

…

3

…
…

…

…

…

…

…

…

The Parallel and concurrency planets
of C++ today

C++1Y(1Y=17/20/22) SG1/SG5/SG14 Plan
red=C++17, blue=C++20? Black=future?
Parallelism
• Parallel Algorithms:
• Data-Based Parallelism.

(Vector, SIMD, ...)
• Task-based parallelism

(cilk, OpenMP, fork-join)
• Execution Agents
• Progress guarantees
• MapReduce
• Pipelines

Concurrency
• Future++ (then, wait_any, wait_all):
• Executors:
• Resumable Functions, await (with

futures)
• Lock free techniques/Transactions
• Synchronics
• Atomic Views
• Co-routines
• Counters/Queues
• Concurrent Vector/Unordered

Associative Containers
• Latches and Barriers
• upgrade_lock
• Atomic smart pointers

29

Agenda
• Use the Proper abstractions?

• Why the rush to Massive Parallelism

• What Now?

• Hello World from C++11/14/17 Parallelism

• SYCL: C++ Heterogeneous (GPU) Programming

• Bonus: Executors

•

“Hello World” with std::thread

30

#include <thread>
#include <iostream>

void func()
{

std::cout << "**Inside thread "
<< std::this_thread::get_id() << "!" << std::endl;

}

int main()
{

std::thread t;
t = std::thread(func);

t.join();
return 0;

}

A simple function for thread to do…

Create and schedule thread…

Wait for thread to finish…

Avoiding errors / program termination…

31

#include <thread>
#include <iostream>

void func()
{

std::cout << "**Hello world...\n";
}

int main()
{

std::thread t;
t = std::thread(func);

t.join();
return 0;

}

(1) Thread function must do exception handling;
unhandled exceptions ==> termination…

void func()
{
try
{

// computation:
}
catch(...)
{

// do something:
}

}

(2) Must join, otherwise termination…

NOTE: avoid use of detach() in C++11, difficult to
use safely. Going Parallel with C++11 by Joe Hummel

• Saxpy == Scalar Alpha X Plus Y
– Scalar multiplication and vector addition

32

Example: saxpy
x
y

z

for (int i=0; i<n; i++)
z[i] = a * x[i] + y[i];

int start = …;
int end = …;

for (int t=0; t<NumThreads; t++)
{

thread(
[&z,x,y,a,start,end]() -> void
{

for (int i = start; i < end; i++)
z[i] = a * x[i] + y[i];

}
);

start += …;
end += …;

}

Parallel

33

Sequential Matrix Multiplication
//
// Naïve, triply-nested sequential solution:
//
for (int i = 0; i < N; i++)

{

for (int j = 0; j < N; j++)

{

C[i][j] = 0.0;

for (int k = 0; k < N; k++)

C[i][j] += (A[i][k] * B[k][j]);

}

}

Going Parallel with C++11 by Joe Hummel

• A common pattern when creating multiple threads

34

Structured ("fork-join") parallelism

fork

join

Sequential

Sequential

Parallel

#include <vector>

std::vector<std::thread> threads;

int cores = std::thread::hardware_concurrency();

for (int i=0; i<cores; ++i) // 1 per core:

{
auto code = []() { DoSomeWork(); };
threads.push_back(thread(code));

}

for (std::thread& t : threads) // new range-based for:
t.join();

Going Parallel with C++11 by Joe Hummel

35

Parallel solution
int rows = N / numthreads;
int extra = N % numthreads;
int start = 0; // each thread does [start..end)
int end = rows;
vector<thread> workers;
for (int t = 1; t <= numthreads; t++)
{

if (t == numthreads) // last thread does extra rows:
end += extra;

workers.push_back(thread([start, end, N, &C, &A, &B]()
{
for (int i = start; i < end; i++)

for (int j = 0; j < N; j++)
{
C[i][j] = 0.0;
for (int k = 0; k < N; k++)

C[i][j] += (A[i][k] * B[k][j]);
}

}));

start = end;
end = start + rows;

}

for (thread& t : workers)
t.join();

// 1 thread per core:
numthreads = thread::hardware_concurrency();

Going Parallel with C++11 by Joe Hummel

• Parallelism alone is not enough for the future…

36

What does C++ Standard parallelism
still need?

HPC == Parallelism + Memory Hierarchy ─ Contention

Expose parallelism
Maximize data locality:
• network
• disk
• RAM
• cache
• core

Minimize interaction:
• false sharing
• locking
• synchronization

Going Parallel with C++11 by Joe Hummel

Asynchronous Calls

•Building blocks:
– std::async: Request asynchronous execution of a function.

– Future: token representing function’s result.

•Unlike raw use of std::thread objects:
– Allows values or exceptions to be returned.

• Just like “normal” function calls.

IBM 37

Asynchronous Computing in C++ by Hartmut Kaiser

Asynchronous Computing in C++ by Hartmut Kaiser

Standard Concurrency Interfaces

• std::async<>and std::future<>: concurrency as with sequential processing

– one location calls a concurrent task and dealing with the outcome is as simple as with local sub-
functions

• std: :thread: lOW-level approach
– one location calls a concurrent lask and has to provide low-level techniques to

handle the outcome

• std::promise<> and std::future<>: Simplify processing the
outcome

– one location calls a concurrent task but dealing with the outcome is simplified

• packaged_task<> : helper to separate task definition from call
– one location defines a task and provides a handle for the outcome

– another location decides when to call the task and the arguments

– the call must not necessarily happen in another thread

std::future Refresher

• std::future<T> -- a proxy for an eventual value of type T

• std::promise<T> -- a one-way channel to set the future.

future promise
shared

state<T>

42

• Use async to start asynchronous operation

• Use returned future to wait upon result / exception

43

std::async + std::future

#include <future>

std::future<int> f = std::async([]() -> int
{
int result = PerformLongRunningOperation();
return result;

}
);
.
.

try

{

int x = f.get(); // wait if necessary, harvest result:

cout << x << endl;

}

catch(exception &e)

{

cout << "**Exception: " << e.what() << endl;

}

START

WAIT

lambda return type…

Going Parallel with C++11 by Joe Hummel

• Run on current thread *or* a new thread

• By default, system decides…
– based on current load, available cores, etc.

44

Async operations

// runs on current thread when you “get” value (i.e. lazy execution):
future<T> f1 = std::async(std::launch::deferred, []() -> T {...});

// runs now on a new, dedicated thread:
future<T> f2 = std::async(std::launch::async, []() -> T {...});

// let system decide (e.g. maybe you created enough work to keep system busy?):
future<T> f3 = std::async([]() -> T {...});

optional argument missing

Going Parallel with C++11 by Joe Hummel

• Netflix data-mining…

45

Commercial application

Netflix
Movie

Reviews
(.txt)

Netflix Data
Mining App

Average rating…

Going Parallel with C++11 by Joe Hummel

46

Sequential solution
cin >> movieID;

vector<string> ratings = readFile("ratings.txt");

tuple<int,int> results = dataMine(ratings, movieID);

int numRatings = std::get<0>(results);

int sumRatings = std::get<1>(results);

double avgRating = double(numRatings) / double(sumRatings);

cout << numRatings << endl;

cout << avgRating << endl;

dataMine(vector<string> &ratings, int id)
{

foreach rating
if ids match num++, sum += rating;

return tuple<int,int>(num, sum);
}

Going Parallel with C++11 by Joe Hummel

47

Parallel solution
int chunksize = ratings.size() / numthreads;
int leftover = ratings.size() % numthreads;
int begin = 0; // each thread does [start..end)
int end = chunksize;

vector<future<tuple<int,int>>> futures;

for (int t = 1; t <= numthreads; t++)
{
if (t == numthreads) // last thread does extra rows:
end += leftover;

futures.push_back(
async([&ratings, movieID, begin, end]() ->

tuple<int,int>
{

return dataMine(ratings, movieID, begin, end);
})

);

begin = end;
end = begin + chunksize;

}

for (future<tuple<int,int>> &f: futures)
{

tuple<int, int> t = f.get();

numRatings += std::get<0>(t);

sumRatings += std::get<1>(t);
}

dataMine(..., int begin, int end)
{

foreach rating in begin..end
if ids match num++, sum += rating;

return tuple<int,int>(num, sum);
}

Going Parallel with C++11 by Joe Hummel

