
Now let’s see it in C++17

The point is that if you use “if constexpr” it doesn’t matter if there are compile
errors in the branch not taken



Summary

• C++17 makes real progress in
• Making templates work for you rather than against you

• Doing natural type inference while retaining static type safety

• Preparing your code for C++20 concepts

• Of course, the big win will be the introduction of Concepts in C++20, 
but hopefully this is more than enough to tide you over until then
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C++ Memory Management

• The first rules that every C++ programmer learns
• You create with (dynamic lifetime) by calling new

• When you are done with the object, you must release it by calling 
delete to avoid a memory leak

• Our first goal today will be to discard these rules
• And then things will get interesting



What's wrong with new & delete?

• Exceptions
• Exceptions make control flow unpredictable, so it is very difficult to 

know when to delete it
int f() {

try {

A *ap = new A;

g();

delete ap; // If g() throws exception, ap never deleted

} catch (...) {

cout << "Exception " << endl;

}

return 0;

}

• Threads 
• Which thread is the last to use an object likely will not be known 

until runtime



Can we ensure the delete is never skipped?

• A Java programmer would wonder why we didn′t 
just use finally

• Actually, they would wonder why we didn’t use GC, but more on 
that later

• int f() {

try {

• A *ap = new A;

g();

} catch (...) { cerr << "Exception\n“;}

} finally { delete ap; } // Whoops! Not C++

return 0;

}

• One big problem
• It’s not C++!



RAII

• Why doesn′t C++ have finally?
• Because it has something better
• Destructors of local variables are always called 

however you leave scope
• Using this to manage resources is called RAII

• Resource Acquisition Is Initialization



unique_ptr

• unique_ptr destructor deletes the object pointed to
• The memory leaked fixed:

int f() {

try {

unique_ptr<A> ap{new A};

g();

} catch (...) {

cout << "Exception " << endl;

}

return 0;

}



Variants

• unique_ptr<A[]> owns an array
• Destructor uses delete []

• Replaces C++98’s now deprecated auto_ptr

• shared_ptr<A> is a reference counted pointer to A
• The object is deleted when its last shared_ptr goes away

• Interestingly, there is no shared_ptr<A[]>

• This is a mistake and is corrected in the Library Fundamentals Technical 
Specification

• Until then, you can use a custom deleter (google it), Boost, your own 
class, etc.



Best practice

• Effective C++ item 17
• Store newed objects in smart pointers in standalone 

statements
• Gets rid of delete

• An interesting proposal to make this easier
• Walter Brown, N3418: A Proposal for the World’s Dumbest 

Smart Pointer, v3
• observer_ptr acts like a raw pointer, but reminds you that it 

doesn’t contribute to object ownership
• Included in Library Fundamentals TS on the way to a future 

C++ standard

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3840.pdf


Getting rid of new

• Why get rid of new?
• Even garbage collected languages like Java have it

• The problem is that new returns an owning raw pointer, in violation of 
the above best practice, which can get you into trouble:

void f()

{

// g is responsible for deleting

g(new A(), new A());

}

• What if the second time A’s constructor is called, an exception is 
thrown?

• The first one will be leaked



make_shared and make_unique

• make_shared<T> and make_unique<T> create an object 
and return an owning pointer

• The following two lines act the same
• auto ap { make_shared<T>(4, 7) };

• shared_ptr<T> ap { new T(4, 7) };

• make_unique wasn′t added until C++14
• Oops

• Now we can fix our previous example
void f()

{
auto a1 = make_unique<A>(), a2 = make_unique<A>();

// g is responsible for deleting

g(a1.release(), a2.release());

}

• Effective Modern C++ Item 21
• Prefer std::make_unique and std::make_shared to direct 

use of new



Some further improvements

• If we can modify g(), we should really change it to take 
unique_ptr<T> arguments because otherwise, we would have an 
owning raw pointer

• Remember, g() takes ownership

• g(unique_ptr<T>, unique_ptr<T>);

• Now we can call 
g(make_unique<T>(), make_unique<T>());

• Interestingly, the following does not work because ownership will no 
longer be unique

• auto p1 = g(make_unique<T>();

auto p2 = g(make_unique<T>();

g(p1, p2); // Illegal! unique_ptr not copyable

• To fix, we need to move from p1 and p2
• g(move(p1), move(p2)); // OK. unique_ptr is movable



Garbage Collection in C++

• C++ can be garbage collected
• There is some minimal support in the standard

• See Boehm, Spertus, “Garbage Collection in the 
Next C++ Standard”, ISMM 09

• To enable garbage collection, use a 3rd-party 
library like the Boehm collector

http://www.hpl.hp.com/techreports/2009/HPL-2009-360.html


The challenge of C++ garbage collection

• One needs to be careful because C++ types are not 
available at runtime

• RTTI is something else entirely

• Even if it were, C++ code often does things like store 
pointers in integers, xor pointers, etc. that could hide them 
from the garbage collector’s analysis of pointers leading to 
a premature free

• Most of these practices were turned into undefined behavior 
in C++11



Conservative collection

• Treat every word of an object as if it were a pointer
• "Garbage Collection in an Uncooperative Environment", 

Software Practice & Experience, September 1988, pp. 807-
820

• Amazingly, this is performant
• Computers are built to scan memory, and the vast majority of 

non-pointers can be rejected with one or two comparisons 
against the heap bounds

• Works amazingly well in practice

• See Why Conservative Collection?

• Try the Boehm collector on some of your code to see
• Precise (i.e., non-conservative) garbage collection 

approaches can be used with C++ as well

http://www.hboehm.info/spe_gc_paper
http://www.hboehm.info/gc/conservative.html


What is Memory 
in C++?



Overview

• Perhaps the biggest addition to C++11 is support 
for standardized concurrency

• Multithreading to run tasks in a process in parallel 
with each other

• Synchronization primitives and memory model to 
allow different threads to safely work with the 
same data

• WE WILL RETURN TO THE INTERACTION OF 
THREADS AND MEMORY MANAGEMENT 
AGAIN AND AGAIN



Why is this a big deal?

• Perhaps the biggest secret in computer progress 
is that computer cores have not gotten any faster 
in 10 years

• 2005’s Pentium 4 HT 571 ran at 3.8GHz, which is 
better than many high-end CPUs today

• The problem with increasing clock speeds is heat
• A high end CPU dissipates over 100 watts in about 1 

cubic centimeter
• A light bulb dissipates 100 watts in about 75 cubic 

centimeters



Why doesn't anyone know about this?

• Even though cores have not gotten faster, the 
continued progression of Moore's law means that 
computers today have many cores to run 
computations in parallel

• Even cell phones can have 4 cores
• 12 to 24 cores are not unusual on high-end 

workstations and servers
• 24 to 48 if you count hyperthreading



Back to C++

• Unfortunately, C++ did not have any notion of 
multithreading until C++11 came out

• C++ programmers used os-provided 
multithreading libraries like pthreads and win32 
threads

• But this is not acceptable
• Using these libraries are clunky, not well integrated 

with other language constructs, and not C++ like
• Even worse, Threads Cannot be Implemented as a 

Library (Hans Boehm, PLDI 2005)
• http://www.hpl.hp.com/techreports/2004/HPL-2004-

209.pdf 



References

• C++ Concurrency in Action Book
• http://www.manning.com/williams/

• If you buy from Manning rather than Amazon, you can 
download a preprint right now without waiting for the official 
publication

• The author Anthony Williams is one of the lead architects of 
C++11 threads, the maintainer of Boost::Thread, and the 
author of just::thread

• Anthony′s Multithreading in C++0x blog
• http://www.justsoftwaresolutions.co.uk/threading/multithrea

ding-in-c++0x-part-1-starting-threads.html
• Free with concise coverage of all the main constructs

• The standard, of course
• Also look at the papers on the WG21 site

http://www.manning.com/williams/
http://www.justsoftwaresolutions.co.uk/threading/multithreading-in-c++0x-part-1-starting-threads.html
http://www.open-std.org/jtc1/sc22/wg21/


WARNING!

• The next several slides are very confusing
• They are taken from Hans Boehm’s PLDI paper “Threads 

cannot be implemented as a library.”

• You do not need to learn them in detail (or at all) as C++11 
resolves these problems

• However, we give these slides for several reasons
• They motivate and clarify the memory model changes in 

C++11
• Without seeing such bizarre unexpected behavior, one might 

be tempted to continue using thread libraries
• They are very interesting

http://www.hpl.hp.com/techreports/2004/HPL-2004-209.pdf


What can r1 and r2 end up as before C++11? (Boehm)

Initially x = y = 0;

Thread 1

x = 1;

r1 = y;

Thread 2

y = 1;

r2 = x;



Answer: Any combinations of 0 and 1!

• Intuitively r1 == r2 == 0 impossible
• Practically, the compiler (or the hardware) may 

reorder the statements because it doesn’t matter 
within a given thread which order the assignments 
take place

• However, it does matter if the variables are used 
by another thread at the same time and we could 
end up with both r1 and r2 being 0

• Note: Under pthreads rules this is simply illegal



If q = 0, what can another thread see count 
as before C++11? (Boehm)

[count is global]

for (p = q; p!= 0; p = p->next) {

count++;

}

• Other threads may see count == 1!
• Compiler may rewrite code by speculatively 

incrementing count before the loop, and 
decrementing if necessary at the end!

• Even gcc –O2 does this.



Is this code correct?

class A {

public:

virtual void f();

};

A *a; // Global variable

Thread 1

a = new A;

Thread 2

if (a) a->f();



Not on modern multicore computers!

• Writes made on one processor may not be seen 
in the same order on another processor!

• Allows microprocessor designers to use write 
buffers, instruction execution overlap, out-of-order 
memory accesses, lockup-free caches, etc.

• Thread 2 may see the assignment to a before it 
sees the vtable of the new A object!

• If that happens, the a->f() call will crash!
• Modern processors use Weak Consistency



Weak memory consistency

In a multiprocessor system, storage accesses are weakly ordered if (1) 
accesses to global synchronizing variables are strongly ordered, (2) no 
access to a synchronizing variable is issued by a processor before all 
previous global data accesses have been globally performed, and if (3) 
no access to global data is issued by a processor before a previous 
access to a synchronizing variable has been performed.

—Dubois, Scheurich, Briggs (1986)

If the compiler does not have a notion of synchronizing variables, the 
above says nothing! Prior to C++11, this is addressed non-portably by 
vendor-specific synchronization extensions to C++.



C++11 Memory Model

• Sequential Consistency in the absence of race 
conditions

• This basically means that if data is shared between 
threads, you must use an atomic or lock

• Herb Sutter atomic<> Weapons
• http://channel9.msdn.com/Shows/Going+Deep/Cp

p-and-Beyond-2012-Herb-Sutter-atomic-
Weapons-1-of-2



Memory model best practices

• Here are the takeaways
• Try to avoid sharing data between threads except 

when necessary
• When you share data between threads, always use 

locks or atomics to ensure both threads have a 
coherent view of the shared data

• A good reference
• Boehm, Adve, “You Don’t Know Jack about 

Shared Variables of Memory Models: Data Races 
are Evil” Communications of the ACM 55, 2 Feb. 
2012

• http://queue.acm.org/detail.cfm?id=2088916



Cache-Conscious 
Programming



Cache effects

• Accessing main memory can take a processors 
hundreds of cycles

• Therefore, processors use high-speed caches to 
maintain local copies of data

• See
http://bucarotechelp.com/computers/anatomy/images/L3_ca
che.png

• If another processor needs to read/write that 
memory, it needs to force other processors to flush 
or invalidate any cached copies of the memory

• See http://en.wikipedia.org/wiki/Cache_coherency

http://bucarotechelp.com/computers/anatomy/images/L3_cache.png
http://en.wikipedia.org/wiki/Cache_coherency


Cache lines and false sharing

• When data is moved from main memory to cache, 
enough data is always moved to fill a ″cache line.”

• The size of a cache line varies by processor and needs 
to be looked up in the processor datasheet. A typical 
size would be 32 bytes, but it varies greatly.

• As a result, if two processors are modifying data 
within 32 bytes, they are constantly forcing each other 
to invalidate their cache (″false sharing″)



False sharing example

• Let us look at some code for a distributed method counter
• Looks good. What is the problem?
• Since all of the thread-specific counters are stored in an 

array, they pretty much all end up in the same cache line, 
which means updating a counter on one thread means 
that all of the other threads will have to reload their 
counters from main memory since they are in the same 
cache line

• This is very slow. Maybe 100x slower than accessing cache 
memory

• This kind of coupling of seemingly independent variables 
because they reside on the same cache line is known as 
false sharing



Eliminating the false sharing

• Lets see what happens if we add some padding to the counters so 
they all are far enough apart to fall in distinct cache lines

• On my dual socket workstation with 10 threads per CPU, the program 
gets ~15 times faster!

• However, on some single-socket laptops with a low number of cores, 
changing the amount of padding has no effect on performance!

• Since all of the cores use the same caches

• This is very insidious because code that performs well on dev laptops 
often performs very badly on multiprocessor servers!

• This is a good illustration of why following best practices like ″putting 
independent variables on distinct cache lines″ is important, even if you 
aren′t seeing it in your own benchmarking



Direct-Mapped Caches

• Often a single memory location can only be 
mapped to one or two possible cache lines

• See 
http://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Mem
ory/direct.html

• Not understanding direct-mapped caches can 
have dire consequences

• See next slide

http://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Memory/direct.html


Important real-world example 
of direct-mapped caches going haywire

• The popular postscript rendering program 
ghostscript was originally written by Peter 
Deutsch, who wrote a custom memory manager. 
It is certainly true that malloc()/free() performance 
is critical in postscript and Peter Deutsch was a 
memory management expert, having coauthored 
the first high-performance Smalltalk 
implementation.

• Peter Deutsch used a custom allocator along the 
lines we discussed last quarter, with a free pages 
stored in a linked list

• Tests 10 years later showed that ghostscript′s 
memory manager was actually slowing it down by 
30%



What went wrong?

• The custom allocator maintained a pool of free-
pages in a linked list, with the first word of each 
free page as a pointer to the next free page. As 
this code was developed on a machine without a 
direct-mapped cache, it ran fine. However, on 
machines with direct-mapped caches, all of the 
freelist pointers mapped to the same cache line 
causing a cache miss on each step of walking 
through the freelist. Ghostscript was spending 
about a third of its time in cache misses from 
walking through the page freelist. 

• Note: You don′t need to understand this as long 
as you understand the moral



Cache-conscious programming 
(Adapted from Herlihy&Shavit p. 477)

• Objects or fields that are accessed independently should be aligned 
and padded so they end up on different cache lines.

• Keep read-only data separate from data that is modified frequently.
• When possible, split an object into thread-local pieces. For example, a 

counter used for statistics could be split into an array of counters, one 
per thread, each one residing on a different cache line. While a shared 
counter would cause invalidation traffic, the split counter allows each 
thread to update its own replica without causing cache coherence 
traffic.

• If a lock protects data that is frequently modified, then keep the lock 
and the data on distinct cache lines, so that threads trying to acquire 
the lock do not interfere with the lock-holder′s access to the data.

• If a lock protects data that is frequently uncontended, then try to keep 
the lock and the data on the same cache lines, so that acquiring the 
lock will also load some of the data into the cache.

• If a class or struct contains a large chunk of data whose size is 
divisible by a high power of two, consider separating it out of the class 
and holding it with an auto_ptr to avoid the Ghostscript problem 
from lecture 5.

• Use a profiling tool like VTune to identify where your cache 
bottlenecks are



C++ support for cache-conscious programming

• C++17 adds 
std::hardware_destructive_interference_size and 
std::hardware_constructive_interference_size

giving the maximum and minimum expected cache 
line sizes

• hardware_destructive_interference_size tells you how 
far you need to keep objects used by different threads 
apart from each other

• hardware_constructive_interference_size tells you 
how close you need to keep objects for a single 
thread to get both of them with a single read of main 
memory

• By using these constructs, you can portably follow all 
of the cache-conscious programming Best Practices 
with ease



Case Study on the Risks
And Rewards of Trying
to (Over?) Optimize
Multithreaded Code



Background: How to quickly allocate objects of a 
fixed size?

• Say we′re allocating 32-byte objects from 4096-
byte pages

• Divide each page in our memory pool into 128 
objects in a linked list

• Now, allocate and deallocate 32-byte objects from 
the list by pushing and popping

• Fewer than a dozen instructions vs hundreds in a 
conventional allocator

• Make sure you lock for thread-safety

• You will implement such a lock-based stack as an 
exercise



Allocating an object

• Pop the first object off the list



A True Story with a Twist—The Bad Beginning

• A programmer released an application using a linked 
list allocator like in the previous slide

• It appeared to speed up his program considerably

• His customers reported that the application become 
slow as the number of threads increased into the 
hundreds

• Even though the lock only protects a few instructions, 
if a thread holding the lock loses its quantum, the list 
is unavailable until that thread gets another timeslice 
(perhaps hundreds of quanta later)

• Not acceptable



C++11 atomics

• Sometimes you just want a variable that you can 
read and update from multiple threads

• Using locks seems a little too complicated for that
• Fortunately, C++11 has a library of atomic types 

that can be shared between threads



An atomic counter

• You can read an atomic with its load() method, write it with its 
store() method and (usually) increment or decrement it with ++ or –
-

• Here′s how you′d allow a bunch of threads to increment a global task 
counter
atomic<unsigned> tasksCompleted;

void doTask() {

/* ... */

// Next line gives right result even if

// called from multiple threads simultaneously

tasksCompleted++; 

}

void reportsTasksCompleted() {

cout << tasksCompleted.load();

}



Can we make a thread-safe list without locks?

• To remove an element

• We need a lock because we need to both return A and 
update the head to point to B (i.e., A’s link) atomically 

• Or do we?
• C++11 has an atomic compare_and_exchange_weak

primitive that does a swap, but only if the target location 
has the value that we expect

• Then our update would fail if someone messed with the list 
in the critical section

• If so, just loop back and try again

B C

Head

A

A B

C

Head
B

B



Oops! Doesn′t quite work

• Some other thread could do two pops and one push during the critical 
section, leaving the head unchanged

• After the compare_and_exchange_weak, B is erroneously back on 
the list

B C

Head
A

A B
D

C

C

Head
A

A
D

C

?

Head
B

B



We can fix this

• Add a ″list operation counter″ to the head
• Update with 64-bit compare and exchange (on a 

32-bit program), which C++ conveniently provides 
(and maps onto a single x86 instruction provided 
for just this reason)

• Now the compare and swap fails if intervening list 
ops happened

B C

Head
1

A B
D

C

C

Head
4

A
D

C

A

A



What′s the point?

• This is much better
• No need for memory barrier
• Only one atomic operation instead of two
• If thread loses its quantum while doing the list 

operation, other threads are free to manipulate 
the list

• This is the big one

• Works on x86-32, x86-64, and Sparc



How is this implemented in C++?

• See lockFreeStack.h in chalk
• Let′s look at it now



What about PPC and Itanium?

• Even better, PPC and Itanium have Linked Load 
and Store Conditional (LLSC)

• lwarx instruction loads from a memory address 
and ″reserves″ that address

• stwcx instruction only does a store if no 
intervening writes have been made to that 
address since the reservation

• Exactly what we want



What about push?

• The same techniques work for pushing onto 
the list

• Exercise to see if you understand

• Not just restricted to lists
• Many other lock-free data structures are 

known
• See the references



A True Story with a Twist—A Happy Ending?

• The programmer switched to using 
Compare and Exchange-based atomic lists 
on Sparc

• The customers were happy with the 
performance

• But wait…



No happy ending?

• The customers started to experience extremely 
intermittent list corruption

• Virtually impossible to debug
• He ran 100 threads doing only list operations for hours 

between failures

• The problem was that Solaris interrupt handlers only 
saved the bottom 32-bits of some registers

• Timer interrupts in the critical section corrupted the 
compare and exchange

• Fix: Restrict list pointers to specific registers

• Moral: The first rule of optimization is ″Don′t!″
• These techniques are powerful but only used where 

justified



But wait, there′s more

• Later, the program started being used on massively 
SMP systems, and it started to exhibit performance 
problems

• The Compare and Exchange locked the bus to be 
thread-safe but that is expensive as the number of 
processors went up (this results in a surprising 
implementation of the Windows Interlocked exchange 
primitive).

• Since they no longer needed many more threads than 
processors, they went back to a lock-based



So should you do a class-specific allocator?

• Do you really want to pollute your class with 
deep assumptions about the HW and OS?

• Do you want to update it everytime there is 
a new OS rev?

• Early version of this before threading 
inadvertently made classes thread unsafe

• The answer is almost always, ″No,″ but…



No way! Except…

• My friend′s product wouldn′t have  been usable without a 
custom memory manager

• He wouldn′t have sold his company for a large sum of 
money without usable products

• Use it when necessary, but only if you can justify the costs 
of maintaining your code over every present and future 
OS/hardware revision

• This story illustrates the real power and danger of using 
C++

• Know the difference between “use” and “abuse”



Transactional Memory

• Can we generalize the lock-free stack above to 
create a new simple and general paradigm for 
lock-free coding?

• Since locks don′t work well with templates (C++) 
or modular coding (all languages), people have 
been looking at other paradigms for concurrent 
programming that are ″compositional″ (meaning 
that combining components, either through 
templates or modular design will not cause 
deadlocks)



Transactional Memory

• ″Transactional memory″ is an alternative to locks that is compositional
• Basically, a thread works lock-free with its own view of shared 

memory and then “commits” its work as a transaction when it is 
done. If another conflicting transaction was made by another 
thread, there is an exception so you can try again.

• See the following references
• Gottschlich, Boehm, “Generic Programming Needs Transactional 

Memory”
• http://transact2013.cse.lehigh.edu/gottschlich.pdf

• Wong, “What did C++ do for transactional memory?”
• https://github.com/CppCon/CppCon2014/blob/master/Presentations/

What%20did%20C%2B%2B%20do%20for%20Transactional%20Memory
/What%20did%20C%2B%2B%20do%20for%20Transactional%20Memor
y%20-%20Michael%20Wong%20-%20CppCon%202014.pdf

• Also on chalk

• The C++ committee has released a Preliminary Draft Technical 
Specification to add transactional memory to C++

• http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2014/n4302.pdf

http://transact2013.cse.lehigh.edu/gottschlich.pdf
https://github.com/CppCon/CppCon2014/blob/master/Presentations/What did C++ do for Transactional Memory/What did C++ do for Transactional Memory - Michael Wong - CppCon 2014.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4302.pdf


How to think about transactional memory

• The linked list allocator above was too low 
level

• The programmer needs to keep retrying 
until the compare_and_swap succeeds

• On a PPC, which doesn’t have hardware 
compare_and_swap, the code would need 
to be rewritten to avoid locks

• Transactional memory allows you to state 
the high-level requirements and the 
compiler can figure out the best way to 
meet those requirements



Transactional Memory in C++ proposal

• synchronized { /* code */ }
• All such synchronized regions are executed as if 

they are protected by a single global lock

• atomic_cancel { /* code */ }
• The code appears to all other threads as if it runs 

atomically
• If the code throws an exception, the transaction is 

canceled and all the modifications to memory are 
rolled back

• Sounds inefficient, but modern compilers and 
processors have many techniques, like 
speculative execution, hardware and software 
transactional memory, etc.



shared_ptr

• Since shared_ptrs delete their target whenever 
the reference count goes to zero, it is very difficult 
to know what locks will be held when the target 
classes destructor is called.

• Great care (or even handle/proxy classes that 
schedule destruction in a different thread) may be 
necessary to avoid violating lock ordering.

• When possible, avoid this complexity by not 
locking in destructors of class that may be 
managed by shared_ptrs.



Questions?
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Overview 

 Programming embedded systems is a very large topic. 

 This presentation is intended to illustrate some of the challenges 
that embedded developers face through a few key examples. 

 It will show how you can use the features of C++ to overcome 
those challenges. 

 The goal is to help you think about how to craft objects that 
accurately model hardware. 

 

 craft (verb): 

 “to make or manufacture (an object, objects, product, etc.) with 
skill and careful attention to detail.” 
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Overview 

 In many ways, embedded systems programming is just plain 
programming. 

 However, embedded systems programming is a bit different. 

 Embedded systems often have stricter resource limitations: 

 run time 

 memory space 

 communication bandwidth 

 power consumption 

 Embedded systems often control hardware directly. 
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Your Choice 

 You can write very simple declarations to model devices. 

 This is common practice. 

 It’s less work up front, but then… 

 Code that accesses devices will be tedious and error-prone. 

 You can write more detailed and accurate declarations to model 
devices. 

 This is what I’m about to show you to how to do. 

 It’s more work up front, but then… 

 Code that accesses devices will be easier to write and more 
robust. 

4 



Your Choice 

 You define the representation of each device at most once. 

 However, you probably access each device many times. 

 

 As Scott Meyers advises: 

Make interfaces: 

 easy to use correctly 

hard to use incorrectly. 

5 



Sample Hardware 

 This talk uses examples based on ARM E7T (Evaluator-7T) single 
board computer. 

 Programs running on the E7T communicate with devices via 
memory-mapped locations known as the device registers: 

 a 64KB (16K word) region in the memory address space, 

 beginning at address 0x03FF0000. 

 The device registers are grouped. 

 Each group communicates with a single device or small set of 
devices. 

6 



Device Registers 

 For example, the UART 0 group consists of six device registers: 
 
Offset   Register  Description 
0xD000  ULCON  line control register 
0xD004  UCON   control register 
0xD008  USTAT   status register 
0xD00C  UTXBUF  transmit buffer register 
0xD010  URXBUF  receive buffer register 
0xD014  UBRDIV  baud rate divisor register 
 

 The UART 1 group consists of another set of these same registers, 
but beginning at offset 0xE000. 

 By the way, UART stands for “Universal Asynchronous 
Receiver/Transmitter”. 
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Choosing the Right Integer Type 

 You can declare a device register using the appropriately sized 
and signed integer type. 

 For example: 

 A one-byte data register might be a plain char. 

 A two-byte status register might be an unsigned short. 

 Each device register in these examples occupies a four-byte 
word. 

 Declaring each device register as uint32_t seems to work well. 

 Using a meaningful typedef is even better: 
 
typedef uint32_t device_register; 
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Placing Memory-Mapped Objects 

 Normally, you don’t choose the memory locations where program 
objects reside. 

 The compiler does, often with substantial help from the linker. 

 For an object declaration at global scope, the compiler sets aside 
memory within a particular code segment. 

 For an object declaration at local scope, the compiler sets aside 
memory within the stack frame of the function containing the 
declaration. 
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Placing Memory-Mapped Objects 

 For an object representing memory-mapped device registers, the 
compiler doesn’t get to choose where the object resides. 

 The hardware has already chosen. 

 We need to craft declarations for objects that let us access the 
hardware that fit with the memory-mapped locations chosen by 
hardware designer. 
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Locating Device Registers 

 You can access a device register through a pointer whose value is 
the specified address. 

 You can use pointer-placement to cast an integer value 
representing the address into a pointer value. 

 You can encapsulate the cast-expression in a macro, as in: 
 
#define UTXBUF0 ((device_register *)0x03FFD00C) 
 

 Alternatively, you can use the cast-expression to initialize a 
pointer, as in: 
 
device_register *UTXBUF0 
    = (device_register *)(0x03FFD00C); 
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Placing Memory-Mapped Objects 

 Once you’ve got the pointer initialized, you can manipulate the 
device register via the pointer. 

 For example: 
 
*UTXBUF0 = c;   // OK: send the value of c out the port 
 
writes the value of character c to the UART 0’s transmit buffer, 
sending the character value out the port. 
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Placing Memory-Mapped Objects 

 Device registers typically have fixed locations. 

 UTXBUF0’s pointer value shouldn’t change during run time. 

 The compiler should reject any attempt to modify the value of 
UTXBUF0, as in: 
 
UTXBUF0 = UTXBUF1;  // should not compile 
++UTXBUF0;          // should not compile 
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Locating Device Registers 

 If you declare UTXBUF0 as a pointer object, then you can modify 
the pointer’s value. 

 You should declare UTXBUF0 as a const pointer: 
 
device_register *const UTXBUF0 
    = ((device_register *)0x03FFD00C); 
 

 Using a const pointer allows things that should work to still 
work, but rejects things that shouldn’t work: 
 
*UTXBUF0 = c;       // still OK 
UTXBUF0 = UTXBUF1;  // now a compile error - good 
++UTXBUF0;          // now a compile error - good 
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Reference-Placement 

 In C++, you can use reference-placement as an alternative to 
pointer-placement: 
 
device_register &UTXBUF0 
    = *(device_register *)0x03FFD00C; 
 

 A reference refers to an object. 

 Here, you must initialize UTXBUF0 to refer to a device_register. 

 However, the cast above yields a “pointer to device_register”, 
not a device_register. 

 You must dereference the result of the cast to obtain an object to 
which the reference can bind. 
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Reference-Placement 

 Using reference-placement, you can treat UTXBUF0 as the register 
itself, not a pointer to the register, as in: 
 
UTXBUF0 = c;    // OK: send the value of c out the port 
 

 A reference acts like a const pointer in that: 

 You must bind the reference to an object at initialization. 

 After that, you can’t rebind it to another object. 
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New-Style Casts 

 C++ provides an alternative notation that distinguishes portable 
casts from potentially non-portable ones: 
 
                          // behavior: 
static_cast<T>(e)         //     explicitly specified 
reinterpret_cast<T>(e)    //     implementation-defined 
const_cast<T>(e)          //     const only 
 

 These “new-style” casts don’t provide any additional 
functionality beyond the “old-style” casts. 

 They just offer a chance to write code that reveals its intent more 
clearly. 
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New-Style Casts 

 In general, you should avoid using casts. 

 If you must use a cast in C++, use a new-style cast. 

 These new-style casts are easier to spot in source code: 

 for humans and 

 for search tools such as grep. 

 This is good, because casts are hazardous. 

 A hazard that’s easier to spot is usually less of a hazard. 
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New-Style Casts 

 Using a new-style cast, the definition for UART0 now looks like: 
 
UART *const UART0 = 
    reinterpret_cast<UART *>(0x03FFD000); 
 

 As a reference, it looks like: 
 
UART &UART0 = 
    *reinterpret_cast<UART *>(0x03FFD000); 
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Traditional Register Representation 

 C programs often define symbols for device register addresses as 
clusters of related macros: 
 
// timer registers 
#define TMOD   ((unsigned volatile *)0x3FF6000) 
#define TDATA  ((unsigned volatile *)0x3FF6004) 
~~~ 
 
// UART registers 
#define ULCON0 ((unsigned volatile *)0x3FFD000) 
#define UCON0  ((unsigned volatile *)0x3FFD004) 
~~~ 
 

 This approach has a couple of weaknesses… 
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Traditional Register Representation 

 It leads to awkward and inconvenient interfaces. 

 Many device operations involve more than one device register. 

 You either have to pass more than one register address, as in: 
 
UART_put(USTAT0, UTXBUF0, c); 

 

 Or worse, you must treat all device registers as global objects. 

 It leads to error-prone interfaces. 

 All device register addresses have the same pointer type. 

 Type checking can’t catch accidents such as: 
 
UART_put(USTAT0, TDATA, c);  // put c to a timer? 

21 



Using Structures and Classes 

Use structures in C and classes in C++ to implement abstract 
types. 

 A structure or class provides a more accurate declaration for the 
collection of registers for a given device: 
 
struct UART { 
    device_register ULCON; 
    device_register UCON; 
    device_register USTAT; 
    ~~~ 
}; 
 
void UART_put(UART *u, int c); 
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Using Structures and Classes 

 Each structure or class is a distinct type. 

 You can’t convert a pointer to one into a pointer to another 
without using a cast. 

 Type checking can now catch accidents such as: 
 
UART *const com0 = reinterpret_cast<UART *>(0x3FFD000); 
timer *const timer0 = 
    reinterpret_cast<timer *>(0x3FF6000); 
 
UART_put(timer0, c);    // put c to a timer?  no 
 

 Let’s apply this approach to the UART in greater detail… 
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Modeling Devices 

 As mentioned earlier, many UART operations involve accessing 
more than one UART register. 

 For example: 

 The TBE bit (Transmit Buffer Empty) in the USTAT register 
indicates whether the UTXBUF register is ready for use. 

 You shouldn’t store a character into UTXBUF until the TBE bit 
is set to 1. 

 Storing a character into UTXBUF initiates output to the port 
and clears the TBE bit. 

 The TBE bit goes back to 1 when the output operation 
completes. 
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Modeling Devices 

 Here’s code that waits for UART 0’s transmit buffer to empty 
before sending it a character: 
 
while ((USTAT0 & TBE) == 0) 
    ; 
UTXBUF0 = c; 
 

 The sample hardware has two UARTs — any UART operation that 
works on one UART works on the other. 

 Again, you shouldn’t pass UART registers (such as USTAT and 
UTXBUF) as separate function arguments. 

 Rather, collect all the UART registers into a single structure and 
pass a pointer or reference to that structure… 
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Modeling Devices 

 Here’s a structure representing the UART registers: 
 
struct UART { 
    device_register ULCON; 
    device_register UCON; 
    device_register USTAT; 
    device_register UTXBUF; 
    device_register URXBUF; 
    device_register UBRDIV; 
}; 
 
enum { TBE = 0x40 };  // mask for TBE bit in USTAT 
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Modeling Devices 

 Now you can define the two UARTs as: 
 
UART *const UART0 = reinterpret_cast<UART *>(0x03FFD000); 
UART *const UART1 = reinterpret_cast<UART *>(0x03FFE000); 
 

 You can pass either UART0 or UART1 to a function that sends 
characters from a null-terminated character sequence to a UART: 
 
UART_put(UART0, "hello, world\n"); 
UART_put(UART1, "goodnight, moon\n"); 
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Modeling Devices 

 Here’s that function: 
 
void put(UART *u, char const *s) { 
    for (; *s != '\0'; ++s) { 
        while ((u->USTAT & TBE) == 0) 
            ; 
        u->UTXBUF = *s; 
    } 
} 
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Modeling Devices 

 Here’s it is again using a reference parameter in C++: 
 
void put(UART &u, char const *s) { 
    for (; *s != '\0'; ++s) { 
        while ((u.USTAT & TBE) == 0) 
            ; 
        u.UTXBUF = *s; 
    } 
} 
 

 These functions might work. 

 Then again, they might not… 
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Overly Aggressive Optimization 

 It might not work properly if the compiler’s optimizer is too 
aggressive. 

 Ordinarily, an object’s value doesn’t change unless the program 
changes it. 

 The compiler uses this knowledge when optimizing code. 

 Hardware registers aren’t ordinary objects. 

 The value of u.USTAT can change due to external hardware 
events. 

 The compiler doesn’t know this. 

 How can we tell it? 
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The Volatile Qualifier 

 Declaring an object volatile informs the compiler that the 
object may change state even though the program didn’t change 
it. 

 Specifically, declaring an object volatile: 

 tells the compiler to treat each access (read or write) to that 
object literally 

 prevents the compiler from “optimizing away” accesses to that 
object, even when it seems safe to do so 
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The Right Dose of Volatility 

 This declares UART0 as a “const pointer to a volatile UART”: 
 
UART volatile *const UART0 = 
    reinterpret_cast<UART *>(0x03FFD000); 
 

 This declares UART1 as a “reference to a volatile UART”. 
 
UART volatile &UART1 = 
    *reinterpret_cast<UART *>(0x03FFE000); 
 

 In these declarations, volatile isn’t part of the UART type. 

 This is appropriate only if some UARTs aren’t volatile. 

 If volatility is inherent in every UART, volatile should be part of 
the UART type… 
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The Right Dose of Volatility 

 You could try declaring the entire UART type volatile, as in: 
 
volatile struct UART { 
    ~~~ 
};  // error: missing declarator 
 

 It won’t compile because the compiler wants to apply the 
volatile keyword to a UART object, as in: 
 
volatile struct UART {  // type UART isn't volatile... 
    ~~~ 
} u;                    // but object u is 
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The Right Dose of Volatility 

 The compiler would also be happy applying volatile to a 
typedef name, as in either: 
 
typedef volatile struct { // no struct tag 
    ~~~ 
} UART; 
 
typedef struct {        // no struct tag 
    ~~~ 
} volatile UART; 
 

 Either way, UART is now a volatile type, which could be what we 
want. 

 But maybe not… 
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The Right Dose of Volatility 

 Typically, all device registers (not just those in UARTs) are volatile. 

 In that case, you should define device_register as a volatile 
type: 
 
typedef uint32_t volatile device_register; 
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The Right Dose of Volatility 

 If device_register is a volatile type, then you can revert to the 
original definition for UART: 
 
struct UART { 
    device_register ULCON; 
    device_register UCON; 
    device_register USTAT; 
    ~~~ 
}; 
 

 This UART isn’t a volatile type; however… 
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The Right Dose of Volatility 

 Although UART isn’t volatile, every non-static UART data member is 
volatile, which is really what we need. 

 This actually simplifies using the UART type. 

 For example, you’ll never need to declare a pointer or 
reference to a UART as a pointer or reference to a volatile UART. 

 This form works fine in C: 
 
UART *const UART0 = (UART *)0x03FFD000; 
 

 This form is also just fine in C++: 
 
UART &UART0 = *reinterpret_cast<UART *>(0x03FFD000); 
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Controlling a UART 

 You can use a C++ class to package the UARTs as a abstract type. 

 Our basic UART supports the following operations: 

 enable the UART 

 disable the UART 

 receive data from the UART 

 ask if the UART is ready to send data 

 send data to the UART 
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