
Blitz Brigade: Rival Tactics

What is DynaMix?

• Not a physics library

• Not even a game library

• A new take on polymorphism

Compose and modify polymorphic
objects at run time

Some Inspirational Ruby

module FlyingCreature
def move_to(target)
puts can_move_to?(target) ?
"flying to #{target}"
: "can't fly to #{target}"

end
def can_move_to?(target)
true # flying creatures don't care

end
end
module AfraidOfEvens
def can_move_to?(target)
return target%2 != 0

end
end
a = Object.new
a.extend(FlyingCreature)
a.move_to(10)
a.extend(AfraidOfEvens)
a.move_to(10)

DynaMix means “Dynamic Mixins”

Static (CRTP) Mixins

struct cd_reader {
string get_sound() const {

return cd.empty() ? "silence" : ("cd: " + cd);
}
string cd;

};
template <typename Self>
struct headphones {

const Self* self() const {
return static_cast<const Self*>(this);

}
void play() {

cout << "Playing " << self()->get_sound()
<< " through headphones\n";

}
};
struct diskman : public cd_reader, public headphones<diskman> {};
struct boombox : public cd_reader, public speakers<boombox> {};
struct ipod : public mp3_reader, public headphones<ipod> {};

Static Polymorphism with Mixins

template <typename Player>
void use_player(Player& player) {

player.play();
}

int main() {
diskman dm;
dm.cd = "Led Zeppelin IV (1971)";
use_player(dm);

ipod ip;
ip.mp3 = "Led Zeppelin - Black Dog.mp3";
use_player(ip);

}

DynaMix: The Gist

• Building blocks
• dynamix::object – just an empty object

• Mixins – classes that you've written which
actually implement messages

• Messages – function-like pieces of interface,
that an object might implement

• Usage
• Mutation – the process of adding and removing

mixins from objects

• Calling messages – like calling methods, this
is where the actual business logic lies

DynaMix Sound Player

dynamix::object sound_player; // just an empty dynamix::object

dynamix::mutate(sound_player)
.add<cd_reader>()
.add<headphones_output>();

sound_player.get<cd_reader>()->insert("Led Zeppelin IV (1971)");

// play is a message
play(sound_player); // cant have sound_player.play() :(
// -> Playing CD "Led Zeppelin IV (1971)" through headphones

dynamix::mutate(sound_player)
.remove<headphones_output>()
.add<speakers_output>();

play(sound_player);
// -> Playing CD "Led Zeppelin IV (1971)" THROUGH SPEAKERS

Inevitable Boilerplate

Messages:

// In some header:
DYNAMIX_MESSAGE_0(string, get_sound);
DYNAMIX_MESSAGE_0(void, play);
DYNAMIX_MESSAGE_2(int, foo, float, f, string, s);

// In some compilation unit (.cpp):
DYNAMIX_DEFINE_MESSAGE(get_sound);
DYNAMIX_DEFINE_MESSAGE(play);
DYNAMIX_DEFINE_MESSAGE(foo);

We fully separate the interface from the
implementation

Message vs Method

Late binding and Smalltalk

Boilerplate Continued

DYNAMIX_DECLARE_MIXIN(cd_reader);
DYNAMIX_DECLARE_MIXIN(headphones_output);
// That’s all we need to mutate

class cd_reader {
public:

string get_sound() {
return cd.empty() ? "silence" : ("CD " + cd);

}
void insert(const string& cd) {

_cd = cd;
}
string _cd;

};
DYNAMIX_DEFINE_MIXIN(cd_reader, get_sound_msg);
// ...
DYNAMIX_DEFINE_MIXIN(mp3_reader, get_sound_msg);

Referring to the owning object

class headphones_output {
public:

void play() {
cout << "Playing " << get_sound(dm_this)

<< " through headphones\n";
}

};

DYNAMIX_DEFINE_MIXIN(headphones_output, play_msg);

• dm_this is like self: the owning object

• No inheritance. The library is non-intrusive

DEMO TIME

When to Use DynaMix

• When you're writing software with complex
polymorphic objects

• When you have subsystems which care about
interface (rather than data. Otherwise use an
ECS)

• When you want plugins which enable various
aspects of your objects

• Such types of projects include
• Most CAD systems

• Some games: especially RPGs and strategies

• Some enterprise systems

When NOT to Use DynaMix

• DynaMix is a means to create a project's
architecture rather than achieve its purpose

• Small scale projects

• Projects which have little use of polymorphism

• Existing large projects

• In performance critical code

Recap

• Compose and mutate objects from mixins

• Have uni- and multicast messages

• Manage message execution with priorities

• Easily have hot-swappable or even releasable
plugins

• There was no time for:
• Custom allocators

• Message bids

• Multicast result combinators

• Implementation details

Thank you!
Questions?

DynaMix is here: github.com/iboB/dynamix

Interface to Component

Object:

class object {
reader* _reader = nullptr;
player* _player = nullptr;
// ...

};
// compose
object sound_player;
auto r = new cd_reader;
r->cd = "Led Zeppelin IV (1971)";
sound_player.set_reader(r);
sound_player.set_player(new headphones);
// modify
sound_player.set_player(new speakers);
// use
sound_player.get_player()->play();

Interface to Component cont…

Component:

class component {
object* self;

};

class player : public component {
virtual void play() = 0;

};

struct headphones : public player {
virtual void play() override {

cout << "Playing " << self->get_reader()->get_sound()
<< " through headphones\n";

}
};

Interface to Component cont…

• A pretty decent solution

• Not to be confused with entity-component-
system

• Many games and CAD systems use it

• You can recreate almost every feature of
DynaMix. But:

• In a concrete and nonreusable way

• Every new type of interface needs to be
explicitly added to the huge object class

• Interfaces are limiting

• No new interfaces in plugins

In C++17, templates just got a
whole lot easier
(and a little bit harder)
Michael Spertus

Templates are the heart of C++

• Templates have always been one of the defining features of C++
• They offer power unmatched by any language to avoid writing

boilerplate, making compile-time decisions, implementing
metaprogrammed design patterns, etc.

• Look at Modern C++ Design by 2016 keynoter Alex Alexandrescu
for an idea of just how powerful this can be (Note that you will
want to adapt the code for more modern language versions)

• Unfortunately, they are a big part of why C++ is regarded as
complicated to use

• A major strain in C++ design has been “How do we make templates
easier to use”?

• In C++20, we are expecting Concepts, which is a new framework that
will radically simplify templates

• But there are still some goodies in C++17 to simplify templates and
help prepare your code for concepts in C++20

• Let’s get started

My passion: Constructor Template Argument Deduction

• “CTAD? Sounds complicated!
What does it mean in simple terms?”

Wow! That looks useful and cool! How does it work?

Lessons from the standard library

• Whenever we do a new C++ language feature, we should check how it
affects the library

• CTAD creates many opportunities for the standard library, so we spent
a lot of time integrating it with all of the standard library classes

• This was helpful for the users of the standard library
• But it was at least as useful to us!

• In the course of doing this, we found some flaws in the language
feature that we were able to fix in C++17

• By getting a lot of hands-on experience with using CTAD with a
complex library, we were able to develop a set of best practices for
using Constructor Template Argument Deduction that I can share
with you today

• They will also make their way to the C++ best practices repository
that Kate Gregory will tell you about in her talk

First, a word about the standard process

• The German leader Otto von Bismarck once said about sausages and
laws, that it’s “best not to know how they’re made”!!

• Well, that applies to standards processes too
• So I will not be insulted if you cover your eyes on this slide

• CTAD went through at least 14 papers over 10 years before it got into
the language!!

• That’s a whole lot of sausage making!
• While it might have been nice to get out earlier, the benefit to you is

that it is much more mature, comprehensive, and better understood
feature that is deeply integrated into the standard library than any of
the earlier versions

• In fact, we had to rush to get things done even in the final C++17
meeting, where I made presentations to all 4 major working groups
(Evolution, Core, Library, and Library Evolution)

• So maybe there is something to say for the process ☺

Best Practices

• In this presentation, I will share some of the Best Practices we learned
to make the most of this feature

• The good news is that if you are just using someone else’ class
templates, it should pretty much just work for you

• However, if you are designing your own classes, they may work out of
the box, but sometimes you can make things easier for the user by
thinking about CTAD when designing your constructors and by
customizing them with deduction guides.

• First there will be a set of Basic Best Practices that class template
authors should learn

• Then there will be some more Advanced Best Practices for the
interested

Basic Best Practice 1: When to use CTAD

Basic Best Practice 2: Copying vs Wrapping

Basic Best Practice 3: Parameter Packs

Advanced Best Practice: Deducible Constructors

Deducible Constructors (cont)

Advanced Best Practice: Pass by value

Coolest Best Practice: Prepare for Concepts

• While this Best Practice is a little more abstract than the previous ones, it is
my favorite because it is a new Best Practice that is showing up in multiple
language features, suggesting a deeper unifying meaning that tells you that
you are on the right track. More concretely, we had to put many constrained
deduction guides in unordered_set to avoid constructor ambiguity.
For example, it is unclear in an expression like unordered_set(5, x)
whether you mean to invoke unordered_set(size_type, Hash) or
unordered_set(size_type, Allocator).

• Reflecting on the ambiguity, the real point here is that since Hash and
Allocator are not constrained, they are just names. If only the
compiler understood that Allocator is an allocator and Hash is a
hashing function, there would be no ambiguity. But this is also one of
the main ideas behind Concepts!

Preparing for Concepts (cont)

template<auto>

• C++ has another great template feature that is as simple as CTAD is
intricate

• Non-type template parameters can now be auto, just like you would
expect

• Suppose we wanted to create a constant template that subsumes
integer_constant, bool_constant, etc.

• It’s as simple as
template <auto x> constexpr auto constant = x;

auto ci = constant<5>; // constant<int>

auto cd = constant<'c’>; // constant<char>

• It even handles cases which were impossible in C++14 where you can’t write
down the type of an object, like a lambda

Variadic folding

• Working with template parameter packs can be a mess in C++14,
because it is awkward to expand them

• That got a whole lot better in C++17 (and should get even better in
C++20)

• C++17 allows folding of parameter packs with binary operators
• This is easier to look at an example (from cppreference) and

understand than explain the technicalities

If constexpr

• In C++14, one often as to write many auxiliary functions to dispatch at
compile-time

• Consider the famous optimized_copy example

	7.1.Mike 第一场 模板在 C++ 17 中的发展与进化
	7.2.Mike 第二场 Modern C++ 内存管理解析

