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C++ 17 approved in Kona



C++11,14,17“No more Raw Food”
• Don’t use raw numbers, do type-rich programming with 

UDL

• Don’t declare, use auto whenever possible

• Don’t use raw NULL or (void *) 0, use nullptr

• Don’t use raw new and delete, use unique_ptr/shared_ptr

• Don’t use heap-allocated arrays, use std::vector and 
std::string, or the new VLA, then dynarray<>

• Don’t use functors, use lambdas

• Don’t use raw loops; use STL algorithms, ranged-based for 
loops, and lambdas

• Rule of Three? Rule of Zero or Rule of Five.



C++ Std Timeline/status
https://isocpp.org/std/status
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•static_assert(condition) without a message

•Allowing auto var{expr};

•Writing a template template parameter as template <…> 
typename Name

•Removing trigraphs

•Folding expressions

•std::uncaught_exceptions()

•Attributes for namespaces and enumerators

•Shorthand syntax for nested namespace definitions

•u8 character literals

•Allowing full constant expressions in non-type template 
parameters

•Removing the register keyword, while keeping it reserved 
for future use

•Removing operator++ for bool

•Making exception specifications part of the type system.

•__has_include(),

•Choosing an official name for what are commonly called 
“non-static data member initializers” or NSDMIs. The 
official name is “default member initializers”.

•A minor change to the semantics of inheriting 
constructors

• The [[fallthrough]] attribute, 

• The [[nodiscard]] attribute, 

• The [[maybe_unused]] attribute

• Extending aggregate initialization to allow 
initializing base subobjects. 

• Lambdas in constexpr contexts

• Disallowing unary folds of some operators over 
an empty parameter pack

• Generalizing the range-based for loop

• Lambda capture of *this by value

• Relaxing the initialization rules for scoped enum 
types. 

• Hexadecimal floating-point literals

C++ 17 Language features

http://wg21.link/n3928
http://wg21.link/n3912
http://wg21.link/n4051
http://wg21.link/n4086
http://wg21.link/n4191
http://wg21.link/n4152
http://wg21.link/n4196
http://wg21.link/n4230
http://wg21.link/n4197
http://wg21.link/n4198
http://wg21.link/p0001r0
http://wg21.link/p0002r0
http://wg21.link/p0012r0
http://wg21.link/p0061r0
http://wg21.link/p0134r0
http://wg21.link/p0136r0
http://wg21.link/p0188
http://wg21.link/p0189
http://wg21.link/p0212
http://wg21.link/p0017
http://wg21.link/p0170
http://wg21.link/p0036
http://wg21.link/p0184
http://wg21.link/p0018
http://wg21.link/p0138
http://wg21.link/p0245


if constexpr (formerly known as constexpr_if, and before 
that, static_if)

Template parameter deduction for constructors

template <auto N>

Inline variables

Guaranteed copy elision

Guarantees on expression evaluation order

Dynamic memory allocation for over-aligned data

is_contiguous_layout (really a library feature, but it 
needs compiler support)

Removing exception specifications

Using attribute namespaces without repetition

Replacement of class objects containing reference members

Standard and non-standard attributes

Forward progress guarantees: Base definitions

Forward progress guarantees for the Parallelism TS 
features

• Introducing the term 'templated 
entity‘

• Proposed wording for structured 
bindings

• Selection statements with initializer

• Explicit default constructors and 
copy-list-initialization

• Not in C++17 
• Default comparisons

• For/against/neutral: 16/31/20 

• Operator dot
• Not moved as CWG discovered a flaw

C++17 Language features

http://wg21.link/p0292
http://wg21.link/p0091
http://wg21.link/p0127
http://wg21.link/P0386
http://wg21.link/p0135
http://wg21.link/p0145
http://wg21.link/p0035
http://wg21.link/p0258
http://wg21.link/p0003
http://wg21.link/p0028
http://wg21.link/P0137
http://wg21.link/P0283
http://wg21.link/p0296
http://wg21.link/p0299
http://wg21.link/p0391
http://wg21.link/p0217
http://wg21.link/p0305
http://wg21.link/p0398
http://wg21.link/p0221
http://wg21.link/p0252


•Removing some legacy library components

•Contiguous iterators

•Safe conversions in unique_ptr<T[]>

•Making std::reference_wrapper trivially copyable

•Cleaning up noexcept in containers

•Improved insertion interface for unique-key maps

•void_t alias template

•invoke function template

•Non-member size(), empty(), and data() functions

•Improvements to pair and tuple

•bool_constant

•shared_mutex

•Incomplete type support for standard containers

•Type traits variable templates.

•as_const()

•Removing deprecated iostreams aliases

•Making std::owner_less more flexible

•Polishing <chrono>

•Variadic lock_guard

•Logical type traits.

• Re-enabling shared_from_this

• not_fn

• constexpr atomic::is_always_lock_free

• Nothrow-swappable traits

• Fixing a design mistake in the searchers 
interface

• An algorithm to clamp a value between a pair 
of boundary values

• constexpr
std::hardware_{constructive,destructive}_inter
ference_size

• A 3-argument overload of std::hypot

• Adding constexpr modifiers

• Giving std::string a non-const data() member 
function

• is_callable, the missing INVOKE-related trait

C++17 Library Features

http://wg21.link/n4190
http://wg21.link/n4132
http://wg21.link/n4089
http://wg21.link/n4277
http://wg21.link/n4258
http://wg21.link/n4279
http://wg21.link/n3911
http://wg21.link/n4169
http://wg21.link/n4280
http://wg21.link/n4387
http://wg21.link/n4389
http://wg21.link/n4508
http://wg21.link/n4510
http://wg21.link/p0006r0
http://wg21.link/p0007r0
http://wg21.link/p0004r0
http://wg21.link/p0074r0
http://wg21.link/p0092r0
http://wg21.link/n4498
http://wg21.link/p0013r0
http://wg21.link/p0033
http://wg21.link/p0005
http://wg21.link/p0152
http://wg21.link/p0185
http://wg21.link/p0253
http://wg21.link/p0025
http://wg21.link/p0154
http://wg21.link/p0030
http://wg21.link/p0031
http://wg21.link/p0272
http://wg21.link/p0077


•High-performance, locale-independent number 
<-> string conversions

•make_from_tuple() (like apply(), but for 
constructors)

•Letting folks define a default_order<> 
without defining std::less<>

•Splicing between associative containers
•Relative paths
•C11 libraries
•shared_ptr::weak_type
•gcd() and lcm()  from LF TS 2
•Deprecating std::iterator, redundant 
members of std::allocator, and is_literal

•Reserve a namespace for STL v2
•std::variant<>
•Better Names for Parallel Execution 
Policies in C++17 

•Temporarily discourage memory_order_consume
•A <random> Nomenclature Tweak 

• Synopses for the C library 

• Making Optional Greater Equal Again 

• Making Variant Greater Equal 

• Homogeneous interface for variant, any and 
optional 

• Elementary string conversions 

• Integrating std::string_view and std::string 

• has_unique_object_representations

• Extending memory management tools 

• Emplace Return Type 

• Removing Allocator Support in std::function 

• make_from_tuple: apply for construction

• Delete operator= for polymorphic_allocator

• Fixes for not_fn

• Adapting string_view by filesystem paths 

• Hotel Parallelifornia: terminate() for Parallel 
Algorithms Exception Handling

C++17 Library features

http://wg21.link/p0067
http://wg21.link/p0209
http://wg21.link/p0181
http://wg21.link/p0083
http://wg21.link/p0219
http://wg21.link/p0063
http://wg21.link/p0163
http://wg21.link/p0295
http://wg21.link/p0174
http://wg21.link/p0180
http://wg21.link/p0088
http://wg21.link/P0336
http://wg21.link/P0371
http://wg21.link/P0346
http://wg21.link/p0175
http://wg21.link/p0307
http://wg21.link/p0393
http://wg21.link/p0032
http://wg21.link/p0067
http://wg21.link/p0254
http://wg21.link/p0258
http://wg21.link/p0040
http://wg21.link/p0084
http://wg21.link/p0302
http://wg21.link/p0209
http://wg21.link/P0337
http://wg21.link/P0358
http://wg21.link/P0392
http://wg21.link/P0394


No Concepts

No Unified Call Syntax

No Default Comparison

No operator dot

• Inline variable stays

What is not in C++ 17



Fixes to C+17 • https://isocpp.org/std/s
tanding-documents/sd-
6-sg10-feature-test-
recommendations#recs
.cpp17

Changes voted in the last minute

• Removing Deprecated 
Exception 
Specifications from 
C++17

• Added Elementary 
string conversions

• Std::byte was added



•C++11 Std is
– 1353 pages compared to 817 

pages in C++03

•C++14 Std is
– 1373 pages (N3937), n3972 

(free)

•The new C++17 CD is
– N4606:  1572 pages

•C99
• 550 pages

•C11 is 
– 701 pages compared to 550 

pages in C99

• OpenMP 3.1 is

– 160 pages and growing

• OpenMP 4.0 is 

– 320 pages 

• OpenMP 4.5 is 

– 359 pages

• OpenCL 2.0

• 288 pages

• OpenCL 2.1

• 300 pages

• OpenCL 2.2

• 304 pages

By the number of pages 



• Each round of 
international 
comment ballots 
generates bugs, 
tweaks, and 
requests

C++11/14/17: Stability



• Spain

• US

• Great Britain

• Russia

• Japan

• Canada

• Finland

• Switzerland

• Late

C++ 17: by Country



• Evolution

• Core

• Library Evolution

• Library

• Parallel/Concurrenc
y

C++ 17: by EWG, CWG, LEWG, LWG, SG1

# Comments to address in ballot resolution# Comments to address in ballot resolution



C++ 18 Goals



Improve support for large-scale dependable software

• Modules
• to improve locality and improve compile time; n4465 and n4466

• Contracts
• for improved specification; n4378 and n4415

• A type-safe union
• probably functional-programming style pattern matching; something based 

on my Urbana presentation, which relied on the Mach7 library: Yuriy 
Solodkyy, Gabriel Dos Reis and Bjarne Stroustrup: Open Pattern Matching 
for C++. ACM GPCE'13.

20

http://www.stroustrup.com/OpenPatternMatching.pdf


Provide support for higher-level concurrency models

• Basic networking 
• asio n4478

• A SIMD vector
• to better utilize modern high-performance hardware; e.g., n4454 but I’d like a real vector rather than just a way of writing 

parallelizable loops

• Improved futures
• e.g., n3857 and n3865

• Co-routines
• finally, again for the first time since 1990; N4402, N4403, and n4398

• Transactional memory
• n4302

• Parallel algorithms (incl. parallel versions of some of the STL)
• n4409
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Simplify core language use and address major sources of errors
• Concepts (n3701 and n4361)

• concepts in the standard library
• based on the work done in Origin, The Palo Alto TR, and Ranges n4263, n4128 and n4382

• default comparisons
• to complete the support for fundamental operations; n4475 and n4476

• uniform call syntax
• among other things: it helps concepts and STL style library use; n4474

• operator dot
• to finally get proxies and smart references; n4477

• array_view and string_view
• better range checking, DMR wanted those: "fat pointers"; n4480

• arrays on the stack 
• "stack_array" anyone? But we need to find a safe way of dealing with stack overflow; n4294

• optional
• unless it is subsumed by pattern matching, and I think not in time for C++17, n4480
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C++ 17 Report Card



Improve support for large-scale dependable software

• Modules
• to improve locality and improve compile time; n4465 and n4466

• Contracts
• for improved specification; n4378 and n4415

• A type-safe union
• functional-programming style pattern matching; something based on my 

Urbana presentation, which relied on the Mach7 library: Yuriy Solodkyy, 
Gabriel Dos Reis and Bjarne Stroustrup: Open Pattern Matching for C++. 
ACM GPCE'13.

24

http://www.stroustrup.com/OpenPatternMatching.pdf


Provide support for higher-level concurrency models

• Basic networking 
• asio n4478

• A SIMD vector
• to better utilize modern high-performance hardware; e.g., n4454 but I’d like a real vector rather than just a way of writing parallelizable 

loops

• Improved futures
• e.g., n3857 and n3865

• Co-routines
• finally, again for the first time since 1990; N4402, N4403, and n4398

• Transactional memory
• n4302

• Parallel algorithms (incl. parallel versions of some of the STL

• n4409
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Simplify core language use and address major sources of errors
• Concepts (n3701 and n4361)

• concepts in the standard library
• based on the work done in Origin, The Palo Alto TR, and Ranges n4263, n4128 and n4382

• default comparisons
• to complete the support for fundamental operations; n4475 and n4476

• uniform call syntax
• among other things: it helps concepts and STL style library use; n4474

• operator dot
• to finally get proxies and smart references; n4477

• array_view and string_view
• better range checking, DMR wanted those: "fat pointers"; n4480

• arrays on the stack 
• "stack_array" anyone? But we need to find a safe way of dealing with stack overflow; n4294

• optional
• unless it is subsumed by pattern matching, and I think not in time for C++17, n4480

26

May come back in 
limited form with 

National Body 
comment

May come back in 
limited form with 

National Body 
comment



•You blew it

•Not a Major release

•No risk, no gain

•Nobody implement TSs

•Tethering tower of Babel 
of TSs

• Did a nice job

• But not Minor either

• Safe and conservative 
wins 

• TSs are implemented

• Followed the rules of a 
bus train model, how to 
get 110 people to work 
together

The Verdict on C++17? (from reddit)

A Medium/OK 
Release



Agenda
• A recap, C++17, the final report card. Is it great or 

just OK?

• C++20 and the future of C++

• Networking

• Concepts

• … more



Overall direction 
plan:

• Concepts

• Modules

• Ranges

• Networking

• Pack expansions in using-declarations

• Lifting Restrictions on requires-
Expressions

• Allowing attributes on template 
instantiations.

• Simplifying implicit lambda capture.

• Consistent comparisons.

• Static reflection.

• Implicit moving from rvalue references 
in return statements

• Contracts.

C++20 new features Kona

short float. 

http://wg21.link/p0537r0
http://wg21.link/p0588r0
http://wg21.link/p0515r0
http://wg21.link/p0194r3
http://wg21.link/p0527r0
http://wg21.link/p0542r0
http://wg21.link/p0192r2


C++17 DIS
• In Kona 

• Address additional returned comments in February Kona

• Issue  DIS after Kona, Feb 2017, send it to National Body for final approval ballot; this is 
just an up/down vote, no comments

• Will not be approved in time for July 2017 Toronto Meeting due to translation time

• Then send it to ISO Geneva for publication, likely by EOY 2017



• Template parameter lists for 
generic lambdas.

• Designated initializers.

• Default member initializers 
for bitfields

• tweak to C++17’s constructor 
template argument deduction 
rules

• Lambda capture [=, *this]
• Fixing const-qualified pointers to members

• __VA_OPT__ macro
• language defect related to 

defaulted copy constructors.

• allowing the template keyword in unqualified-ids

• attribute to mark unreachable code

• Down with typename!

• Removing throw(). 
• Ranged-based for statement with initializer. 
• changes to the Modules TS and 

Concepts

• detecting endianness 
programmatically

• Repairing elementary 
string conversions

• Extending make_shared to support arrays

• Improvements to the 
integration of C++17 class 
template argument deduction 
into the standard library

C++20 features Toronto

http://wg21.link/p0428
http://wg21.link/p0329
http://wg21.link/p0683
http://wg21.link/p0702
http://wg21.link/p0409
http://wg21.link/p0704
http://wg21.link/p0306
http://wg21.link/p0641r0
http://wg21.link/p0389r0
http://wg21.link/p0627
http://wg21.link/p0634r0
http://wg21.link/p0691r1
http://wg21.link/p0614r0
http://wg21.link/p0463
http://wg21.link/p0682
http://wg21.link/p0674
http://wg21.link/p0739


• All Modules PDTS comment 
processed

• Range based for 

• Simplify implicit lambda 
capture

• Spaceship operator for 
consistent comparison

• C++ ostream synchronized 
buffer

• Atomic<Shared_ptr>

• Floating point atomics

• Memory order is an 
enumeration

• After C++17
• Default is 3 yr cycle: C++20, 23

• C++20 prediction
• Concepts, ranges, Concurrency TS1/TS2, Parallelism 

TS2, Executor TS1, Reflection TS1, Coroutine TS1, 
Networking TS1, Modules TS1, Transactional Memory 
TS1, Numerics TS1, Heterogeneous TS1

C++ 20 Features just added in ABQC++ 20 Features just added in ABQ



Pre-C++11 projects
ISO number Name Status What is it? C++17?

ISO/IEC TR 18015:2006
Technical Report on C++ 
Performance

Published 2006 (ISO store)
Draft: TR18015 (2006-02-
15)

C++ Performance report No

ISO/IEC TR 19768:2007
Technical Report on C++ 
Library Extensions

Published 2007-11-15 (ISO 
store)
Draft: n1745 (2005-01-17)
TR 29124 split off, the rest 
merged into C++11

Has 14 Boost libraries, 13 
of which was added to 
C++11.

N/A (mostly already 
included into C++11)

ISO/IEC TR 29124:2010

Extensions to the C++ 
Library to support 
mathematical special 
functions

Published 2010-09-03 (ISO 
Store)
Final draft: n3060 (2010-
03-06). Under 
consideration to merge 
into C++17 by p0226
(2016-02-10)

Really, ORDINARY math 
today with a Boost and 
Dinkumware
Implementation

YES

ISO/IEC TR 24733:2011

Extensions for the 
programming language 
C++ to support decimal 
floating-point arithmetic

Published 2011-10-25 (ISO 
Store)
Draft: n2849 (2009-03-06)
May be superseded by a 
future Decimal TS or 
merged into C++ by n3871

Decimal Floating Point
decimal32
decimal64
decimal128

No. Ongoing work in SG6

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=43351
http://www.open-std.org/jtc1/sc22/wg21/docs/TR18015.pdf
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=43289
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1745.pdf
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=50511
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3060.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0226r0.pdf
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=38843
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2849.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3871.html


Status after Nov ABQ C++ Meeting
ISO number Name Status links C++17?

ISO/IEC TS 18822:2015
C++ File System Technical 
Specification

Published 2015-06-18. 
(ISO store). Final draft: 
n4100 (2014-07-04)

Standardize Linux and 
Windows file system 
interface

YES

ISO/IEC TS 19570:2015
C++ Extensions for 
Parallelism

Published 2015-06-24. 
(ISO Store). Final draft: 
n4507 (2015-05-05)

Parallel STL algorithms.

YES but removed 
dynamic  execution 
policy, exception_lists, 
changed some names

ISO/IEC TS 19841:2015 Transactional Memory TS
Published 2015-09-16, 
(ISO Store). Final draft: 
n4514 (2015-05-08)

Composable lock-free 
programming that scales

No. Already in GCC 6 
release and waiting for 
subsequent usage 
experience.

ISO/IEC TS 19568:2015
C++ Extensions for 
Library Fundamentals

Published 2015-09-30, 
(ISO Store). Final draft: 
n4480 (2015-04-07)

optional, any, 
string_view and more 

YES but moved 
Invocation Traits and 
Polymorphic allocators 
into LF TS2

ISO/IEC TS 19217:2015
C++ Extensions for 
Concepts

Published 2015-11-13. 
(ISO Store). Final draft: 
n4553 (2015-10-02)

Constrained templates 

Merged into C++20 
without terse syntax. . 
Already in GCC 6 release 
and and waiting for 
subsequent usage 
experience.

http://www.iso.org/iso/catalogue_detail.htm?csnumber=63483
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4100.pdf
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=65241
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=66343
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4514.pdf
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=65238
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4480.html
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=64031
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4553.pdf


Status after Nov ABQ C++ Meeting
ISO number Name Status What is it? C++17?

ISO/IEC TS 19571:2016
C++ Extensions for 
Concurrency

Published 2016-01-19. 
(ISO Store) Final draft: 
p0159r0 (2015-10-22)

improvements to future, 
latches and barriers, 
atomic smart pointers 

Latches, 
atomic<shared_ptr<t>>
headed into C++20. 
Already in Visual Studio 
release and Anthony 
Williams Just Threads!  
and waiting for 
subsequent usage 
experience.

ISO/IEC TS 19568:2017 
C++ Extensions for Library 
Fundamentals, Version 2

Published 2017-03-30. 
(ISO Store) Draft: n4617
(2016-11-28) 

source code information 
capture and various 
utilities

No. 

ISO/IEC DTS 21425:xxxx Ranges TS
PDTS, Draft n4651 (2017-
03-15) 

Range-based algorithms 
and views

No. Resolution of 
comments on Preliminary 
Draft in progress

ISO/IEC DTS 19216:xxxx Networking TS
PDTS, Draft n4656 (2017-
03-17) 

Sockets library based on 
Boost.ASIO

No. Resolution of 
comments on Preliminary 
Draft in progress

ISO/IEC DTS 21544:xxxx Modules

Proposed  Draft n4689
(2017-07-31) out for 
ballot 

A component system to 
supersede the textual 
header file inclusion 
model

No. First version based 
largely on Microsoft’s 
design; hope to vote out 
Preliminary Draft at next 
meeting.

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=65242
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0159r0.html
https://www.iso.org/standard/70587.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4617.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4651.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4656.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4647.pdf
http://wg21.link/n4647


Status after Nov ABQ C++ Meeting
ISO number Name Status What is it? C++17?

Numerics TS
Early development. Draft 
p0101 (2015-09-27)

Various numerical 
facilities

No. Under active 
development

ISO/IEC DTS 19571:xxxx Concurrency TS 2 Early development

Exploring , lock-free, 
hazard pointers, RCU, 
atomic views, concurrent 
data structures

No. Under active 
development

ISO/IEC DTS 19570:xxxx Parallelism TS 2
Early development. Draft 
n4578 (2016-02-22)

Exploring task blocks, 
progress guarantees, 
SIMD.

No. Under active 
development

ISO/IEC DTS 19841:xxxx
Transactional Memory TS 
2

Early development
Exploring on_commit, 
in_transaction.

No. Under active 
development.

Graphics TS
Early development. Draft 
p0267r0 (2016-02-12)

2D drawing API using 
Cairo interface, adding 
stateless interfacec

No. Wording review of 
the spec in progress

ISO/IEC DTS 19569:xxxx Array Extensions TS
Under overhaul. 
Abandoned draft: n3820
(2013-10-10)

Stack arrays whose size is 
not known at compile 
time

No. Withdrawn; any 
future proposals will 
target a different vehicle

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0101r0.html
https://isocpp.org/files/papers/N4578.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0267r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3820.html


Status after Nov ABQ C++ Meeting
ISO number Name Status What is it? C++17?

ISO/IEC DTS 22277:xxxx Coroutine TS PDTS. Draft n4663 (2017-03-25) 
Resumable functions, based on 
Microsoft’s await design

Preliminary Draft voted out for 
balloting by national standards 
bodies

Reflection TS

Early development. Draft 
p0194r2 (2016-10-15) with 
rationale in p0385r2 (2017-02-
06). Alternative: p0590r0 (2017-
02-05) 

Code introspection and (later) 
reification mechanisms

No. Introspection proposal
passed core language design 
review; next stop is design 
review of the library 
components. Targeting a 
Reflection TS.

Contracts TS
Unified proposal reviewed 
favourably. )

Preconditions, postconditions, 
etc.

No. Proposal passed core 
language design review; next 
stop is design review of the 
library components. Targeting 
C++20.

Executor TS
Separated from Concurrency 
TS. have a unified proposal .

Describes how, where, when of 
execution. Enables distributed 
and heterogeneous computing.

No. bi-weekly calls

Heterogeneous Device TS
Managed_ptr and Channels 
proposal.

Support Hetereogeneous
Devices

No. Under active development.

C++17
Draft International Standard 
published; on track for final 
publication by end of 2017

Filesystem TS, Parallelism TS, 
Library Fundamentals TS I, if 
constexpr, and various other 
enhancements are in. See slide 
44-47 for details.

YES

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4663.pdf
http://wg21.link/n4649
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0194r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0385r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0590r0.pdf
http://wg21.link/p0194r3
http://wg21.link/p0542r0
http://wg21.link/p0433r1
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• A recap, C++17, the final report card. Is it great or 

just OK?

• C++20 and the future of C++

• Networking

• Concepts

• … more



Run a function asynchronously. #include <experimental/executor>

using std::experimental::post;

int main()

{

post([]{

// ...

});

}

1. Using the executors library: a two minute introduction
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Run a function asynchronously on 
your own thread pool

#include <experimental/executor>

#include <experimental/thread_pool>

using std::experimental::post;

using std::experimental::thread_pool;

int main()

{

thread_pool pool;

post(pool, []{

// ...

});

pool.join();

}

Using the executors library: a two minute introduction
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Run a function asynchronously.

Wait for the result.

#include <experimental/executor>

#include <experimental/future>

#include <iostream>

using std::experimental::post;

using std::experimental::package;

int main()

{

std::future<int> f =
post(package([]{

// ...
return 42;

}));
std::cout << f.get() << std::endl;

}

Using the executors library: a two minute introduction
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Run a function asynchronously on 
your own thread pool.

Wait for the result.

#include <experimental/executor>

#include <experimental/future>

#include <experimental/thread_pool>

#include <iostream>

using std::experimental::post;

using std::experimental::package;

using std::experimental::thread_pool;

int main()

{

thread_pool pool;

std::future<int> f =

post(pool, package([]{

// ...

return 42;

}));

std::cout << f.get() << std::endl;

}

Using the executors library: a two minute introduction
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Run a function in the future.

Wait for the result.

#include <experimental/executor>

#include <experimental/future>

#include <experimental/timer>

#include <iostream>

using std::experimental::post_after;

using std::experimental::package;

int main()

{

std::future<int> f =
post_after(

std::chrono::seconds(1),
package([]{

// ...
return 42;

}));
std::cout << f.get() << std::endl;

}

Using the executors library: a two minute introduction
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Networking Executor

• Executors are to function execution as allocators are to memory 
allocation

• An executor is a set of rules governing where, when and how to run a 
function object.

• Like allocators, executors are lightweight and cheap to copy.

• Examples:
• The system executor

• A strand
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Execution Context

• An execution context is a place where function objects are executed.

• Examples:
• A fixed-size thread pool

• A loop scheduler

• An asio::io_service

• The set of all threads in the process
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Example: a thread pool

• A thread pool is an execution context.

• A thread pool has an executor.

• A thread pool’s executor embodies this rule:
• Run function objects in the pool and nowhere else.
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Example: a strand

• A strand is an executor.

• A strand is an adapter for an underlying executor.

• A strand embodies this rule:
• Run function objects according to the underlying executor’s rules, but also run them in FIFO order and 

not concurrently.
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Execution contexts and executors
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Execution contexts and executors

Execution Contexts Executors

• Usually long lived.

• Non-copyable.

• May contain additional state.

• Timer queues.

• Socket reactors.

• Hidden threads to 
emulate asynchronous 
functionality

• May be long or short lived.

• Lightweight and copyable.

• May be customized on a 
finegrained basis.

• Example: an executor to 
capture exceptions 
generated by an 
asynchronous operation into 
an exception_ptr.
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Dispatch, post and defer

• The three fundamental operations for submitting function objects for 
execution.

• They differ in the level of eagerness to execute a function.

• May be used to submit function objects to an executor or an 
execution context.
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Dispatch

• Run the function object immediately if the rules allow it.

• Otherwise, submit for later execution.

• Example: a thread pool
• Rule: run function objects in the pool and nowhere else.

• If we are on a thread in the pool, run the function object immediately.

• If we are not on a thread in the pool, queue the function object for later and wake up a thread to 
process it.
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Post

• Submit the function for later execution.

• Never run the function object immediately.

• Example: a thread pool
• Whether or not we are on a thread in the pool, queue the function object for later and wake up a 

thread to process it.
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Defer

• Submit the function for later execution.

• Never run the function immediately.

• Implies a continuation relationship between caller and function 
object.

• Example: a thread pool
• If we are not on a thread in the pool, queue the function object for later and wake up a thread to 

process it.

• If we are on a thread in the pool, queue the function object for later, but don’t wake up a thread to 
process it until control returns to the pool.

Slide 53



Use cases

1. Replacing std::async

2. active objects

3. parallelism in application data flow

4. asynchronous operations
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Agenda

1. Definitions
2. Diagnostics
3. Generic programming with Concepts
4. Generic programming with the C++17
5. Conclusion



Definitions

• Modern C++
• Concepts TS
• Ranges TS
• Novice
• Average
• Expert



Constraints

// pre-conditions:
//   ++i must be possible
//   decltype(++i) is I&
template <typename I>
I successor(I i, int n)
{

while (--n > 0)
++i;

return i;
}



Constraints

// pre-conditions:
//   ++i must be possible
template <typename I>
auto successor(I i, int n) -> std::enable_if_t<

std::is_same_v<decltype(++i), I&>, I>
{

while (--n > 0)
++i;

return i;
}



Constraints

template <typename I>
requires requires(I i) {

{++i} -> I&;
}
I successor(I i, int n)
{

while (--n > 0)
++i;

return i;
}



Concepts



template <typename T>
concept bool Equality_comparable = requires(T t) {

{t == t} -> bool;
{t != t} -> bool;

}

template <typename T>
concept bool Regular = std::is_destructible_v<T> && std::is_default_constructible_v<T> &&

std::is_move_constructible_v<T> && std::is_move_assignable_v<T> &&
std::is_copy_constructible_v<T> && std::is_copy_assignable_v<T> &&
Equality_comparable<T>;

template <Regular T>
class Regular_vector : public std::vector<T> {};

Concepts



Diagnostics



// without concepts
#include <algorithm>
#include <iterator>
#include <list>

int main()
{

auto l = std::list{1, 2, 3, 4, 5};
std::sort(std::begin(l), std::end(l));

}

Listing 1



// with concepts
#include <experimental/ranges/algorithm>
#include <experimental/ranges/iterator>
#include <list>

int main()
{

auto l = std::list{1, 2, 3, 4, 5};
std::experimental::ranges::sort(l);

}

Listing 2



// without concepts
#include <algorithm>
#include <iterator>
#include <vector>

class Foo {};

int main()
{

auto v = std::vector<Foo>{};
std::sort(std::begin(v), std::end(v));

}

Listing 3



// with concepts
#include <experimental/ranges/algorithm>
#include <experimental/ranges/iterator>
#include <vector>

class Foo {};

int main()
{

auto v = std::vector<Foo>{};
std::experimental::ranges::sort(v);

}

Listing 4



Generic programming with Concepts



Simple for experts?

• Nope.
• This is good!
• Descriptive concepts aren’t trivially composable.
• Sortable aims to mathematically capture what it means for a 

type to be sortable.
• Intuitively easy to understand, proof not-so-much



Generic programming in C++17



std::enable_if
#include <type_traits>

template <class T, std::enable_if_t<std::is_integral_v<T>>* = nullptr>
void foo(T) {}

int main()
{
foo(42.0);

}

<source>: In function 'int main()':
7 : <source>:7:11: error: no matching function for call to 'foo(double)'

foo(42.0);
^

4 : <source>:4:6: note: candidate: template<class T, std::enable_if_t<is_integral_v<T> >* <anonymous> > void foo(T)
void foo (T){}

^~~
4 : <source>:4:6: note:   template argument deduction/substitution failed:
3 : <source>:3:63: note: invalid template non-type parameter
template <class T, std::enable_if_t<std::is_integral_v<T>>* = nullptr>

^~~~~~~
Compiler exited with result code 1



std::enable_if
#include <type_traits>

template <class T, class = void>
struct foo;

template <class T>
struct foo<T, std::enable_if_t<std::is_integral_v<T>>> {

//impl
};

int main() {
foo<double> a;

}

<source>: In function 'int main()':
12 : <source>:12:15: error: aggregate 'foo<double> a' has incomplete type and cannot be defined

foo<double> a;
^

Compiler exited with result code 1




