
Partners

Codeplay - Connecting AI to Silicon

Customers

C++ platform via the SYCL™ open standard, enabling
vision & machine learning e.g. TensorFlow™

The heart of Codeplay's compute technology
enabling OpenCL™, SPIR™, HSA™ and Vulkan™

Products
Automotive (ISO 26262)

IoT, Smartphones & Tablets
High Performance Compute (HPC)

Medical & Industrial

Technologies: Vision Processing
Machine Learning

Artificial Intelligence
Big Data Compute

Addressable Markets

High-performance software solutions
for custom heterogeneous systems

Enabling the toughest processor
systems with tools and middleware
based on open standards

Established 2002 in Scotland

~70 employees

Company

Agenda
• A recap, C++17, the final report card. Is it great or

just OK?

• C++20 and the future of C++

• Networking

• Concepts

• … more

C++ 17 approved in Kona

C++11,14,17“No more Raw Food”
• Don’t use raw numbers, do type-rich programming with

UDL

• Don’t declare, use auto whenever possible

• Don’t use raw NULL or (void *) 0, use nullptr

• Don’t use raw new and delete, use unique_ptr/shared_ptr

• Don’t use heap-allocated arrays, use std::vector and
std::string, or the new VLA, then dynarray<>

• Don’t use functors, use lambdas

• Don’t use raw loops; use STL algorithms, ranged-based for
loops, and lambdas

• Rule of Three? Rule of Zero or Rule of Five.

C++ Std Timeline/status
https://isocpp.org/std/status

8

•static_assert(condition) without a message

•Allowing auto var{expr};

•Writing a template template parameter as template <…>
typename Name

•Removing trigraphs

•Folding expressions

•std::uncaught_exceptions()

•Attributes for namespaces and enumerators

•Shorthand syntax for nested namespace definitions

•u8 character literals

•Allowing full constant expressions in non-type template
parameters

•Removing the register keyword, while keeping it reserved
for future use

•Removing operator++ for bool

•Making exception specifications part of the type system.

•__has_include(),

•Choosing an official name for what are commonly called
“non-static data member initializers” or NSDMIs. The
official name is “default member initializers”.

•A minor change to the semantics of inheriting
constructors

• The [[fallthrough]] attribute,

• The [[nodiscard]] attribute,

• The [[maybe_unused]] attribute

• Extending aggregate initialization to allow
initializing base subobjects.

• Lambdas in constexpr contexts

• Disallowing unary folds of some operators over
an empty parameter pack

• Generalizing the range-based for loop

• Lambda capture of *this by value

• Relaxing the initialization rules for scoped enum
types.

• Hexadecimal floating-point literals

C++ 17 Language features

http://wg21.link/n3928
http://wg21.link/n3912
http://wg21.link/n4051
http://wg21.link/n4086
http://wg21.link/n4191
http://wg21.link/n4152
http://wg21.link/n4196
http://wg21.link/n4230
http://wg21.link/n4197
http://wg21.link/n4198
http://wg21.link/p0001r0
http://wg21.link/p0002r0
http://wg21.link/p0012r0
http://wg21.link/p0061r0
http://wg21.link/p0134r0
http://wg21.link/p0136r0
http://wg21.link/p0188
http://wg21.link/p0189
http://wg21.link/p0212
http://wg21.link/p0017
http://wg21.link/p0170
http://wg21.link/p0036
http://wg21.link/p0184
http://wg21.link/p0018
http://wg21.link/p0138
http://wg21.link/p0245

if constexpr (formerly known as constexpr_if, and before
that, static_if)

Template parameter deduction for constructors

template <auto N>

Inline variables

Guaranteed copy elision

Guarantees on expression evaluation order

Dynamic memory allocation for over-aligned data

is_contiguous_layout (really a library feature, but it
needs compiler support)

Removing exception specifications

Using attribute namespaces without repetition

Replacement of class objects containing reference members

Standard and non-standard attributes

Forward progress guarantees: Base definitions

Forward progress guarantees for the Parallelism TS
features

• Introducing the term 'templated
entity‘

• Proposed wording for structured
bindings

• Selection statements with initializer

• Explicit default constructors and
copy-list-initialization

• Not in C++17
• Default comparisons

• For/against/neutral: 16/31/20

• Operator dot
• Not moved as CWG discovered a flaw

C++17 Language features

http://wg21.link/p0292
http://wg21.link/p0091
http://wg21.link/p0127
http://wg21.link/P0386
http://wg21.link/p0135
http://wg21.link/p0145
http://wg21.link/p0035
http://wg21.link/p0258
http://wg21.link/p0003
http://wg21.link/p0028
http://wg21.link/P0137
http://wg21.link/P0283
http://wg21.link/p0296
http://wg21.link/p0299
http://wg21.link/p0391
http://wg21.link/p0217
http://wg21.link/p0305
http://wg21.link/p0398
http://wg21.link/p0221
http://wg21.link/p0252

•Removing some legacy library components

•Contiguous iterators

•Safe conversions in unique_ptr<T[]>

•Making std::reference_wrapper trivially copyable

•Cleaning up noexcept in containers

•Improved insertion interface for unique-key maps

•void_t alias template

•invoke function template

•Non-member size(), empty(), and data() functions

•Improvements to pair and tuple

•bool_constant

•shared_mutex

•Incomplete type support for standard containers

•Type traits variable templates.

•as_const()

•Removing deprecated iostreams aliases

•Making std::owner_less more flexible

•Polishing <chrono>

•Variadic lock_guard

•Logical type traits.

• Re-enabling shared_from_this

• not_fn

• constexpr atomic::is_always_lock_free

• Nothrow-swappable traits

• Fixing a design mistake in the searchers
interface

• An algorithm to clamp a value between a pair
of boundary values

• constexpr
std::hardware_{constructive,destructive}_inter
ference_size

• A 3-argument overload of std::hypot

• Adding constexpr modifiers

• Giving std::string a non-const data() member
function

• is_callable, the missing INVOKE-related trait

C++17 Library Features

http://wg21.link/n4190
http://wg21.link/n4132
http://wg21.link/n4089
http://wg21.link/n4277
http://wg21.link/n4258
http://wg21.link/n4279
http://wg21.link/n3911
http://wg21.link/n4169
http://wg21.link/n4280
http://wg21.link/n4387
http://wg21.link/n4389
http://wg21.link/n4508
http://wg21.link/n4510
http://wg21.link/p0006r0
http://wg21.link/p0007r0
http://wg21.link/p0004r0
http://wg21.link/p0074r0
http://wg21.link/p0092r0
http://wg21.link/n4498
http://wg21.link/p0013r0
http://wg21.link/p0033
http://wg21.link/p0005
http://wg21.link/p0152
http://wg21.link/p0185
http://wg21.link/p0253
http://wg21.link/p0025
http://wg21.link/p0154
http://wg21.link/p0030
http://wg21.link/p0031
http://wg21.link/p0272
http://wg21.link/p0077

•High-performance, locale-independent number
<-> string conversions

•make_from_tuple() (like apply(), but for
constructors)

•Letting folks define a default_order<>
without defining std::less<>

•Splicing between associative containers
•Relative paths
•C11 libraries
•shared_ptr::weak_type
•gcd() and lcm() from LF TS 2
•Deprecating std::iterator, redundant
members of std::allocator, and is_literal

•Reserve a namespace for STL v2
•std::variant<>
•Better Names for Parallel Execution
Policies in C++17

•Temporarily discourage memory_order_consume
•A <random> Nomenclature Tweak

• Synopses for the C library

• Making Optional Greater Equal Again

• Making Variant Greater Equal

• Homogeneous interface for variant, any and
optional

• Elementary string conversions

• Integrating std::string_view and std::string

• has_unique_object_representations

• Extending memory management tools

• Emplace Return Type

• Removing Allocator Support in std::function

• make_from_tuple: apply for construction

• Delete operator= for polymorphic_allocator

• Fixes for not_fn

• Adapting string_view by filesystem paths

• Hotel Parallelifornia: terminate() for Parallel
Algorithms Exception Handling

C++17 Library features

http://wg21.link/p0067
http://wg21.link/p0209
http://wg21.link/p0181
http://wg21.link/p0083
http://wg21.link/p0219
http://wg21.link/p0063
http://wg21.link/p0163
http://wg21.link/p0295
http://wg21.link/p0174
http://wg21.link/p0180
http://wg21.link/p0088
http://wg21.link/P0336
http://wg21.link/P0371
http://wg21.link/P0346
http://wg21.link/p0175
http://wg21.link/p0307
http://wg21.link/p0393
http://wg21.link/p0032
http://wg21.link/p0067
http://wg21.link/p0254
http://wg21.link/p0258
http://wg21.link/p0040
http://wg21.link/p0084
http://wg21.link/p0302
http://wg21.link/p0209
http://wg21.link/P0337
http://wg21.link/P0358
http://wg21.link/P0392
http://wg21.link/P0394

No Concepts

No Unified Call Syntax

No Default Comparison

No operator dot

• Inline variable stays

What is not in C++ 17

Fixes to C+17 • https://isocpp.org/std/s
tanding-documents/sd-
6-sg10-feature-test-
recommendations#recs
.cpp17

Changes voted in the last minute

• Removing Deprecated
Exception
Specifications from
C++17

• Added Elementary
string conversions

• Std::byte was added

•C++11 Std is
– 1353 pages compared to 817

pages in C++03

•C++14 Std is
– 1373 pages (N3937), n3972

(free)

•The new C++17 CD is
– N4606: 1572 pages

•C99
• 550 pages

•C11 is
– 701 pages compared to 550

pages in C99

• OpenMP 3.1 is

– 160 pages and growing

• OpenMP 4.0 is

– 320 pages

• OpenMP 4.5 is

– 359 pages

• OpenCL 2.0

• 288 pages

• OpenCL 2.1

• 300 pages

• OpenCL 2.2

• 304 pages

By the number of pages

• Each round of
international
comment ballots
generates bugs,
tweaks, and
requests

C++11/14/17: Stability

• Spain

• US

• Great Britain

• Russia

• Japan

• Canada

• Finland

• Switzerland

• Late

C++ 17: by Country

• Evolution

• Core

• Library Evolution

• Library

• Parallel/Concurrenc
y

C++ 17: by EWG, CWG, LEWG, LWG, SG1

Comments to address in ballot resolution# Comments to address in ballot resolution

C++ 18 Goals

Improve support for large-scale dependable software

• Modules
• to improve locality and improve compile time; n4465 and n4466

• Contracts
• for improved specification; n4378 and n4415

• A type-safe union
• probably functional-programming style pattern matching; something based

on my Urbana presentation, which relied on the Mach7 library: Yuriy
Solodkyy, Gabriel Dos Reis and Bjarne Stroustrup: Open Pattern Matching
for C++. ACM GPCE'13.

20

http://www.stroustrup.com/OpenPatternMatching.pdf

Provide support for higher-level concurrency models

• Basic networking
• asio n4478

• A SIMD vector
• to better utilize modern high-performance hardware; e.g., n4454 but I’d like a real vector rather than just a way of writing

parallelizable loops

• Improved futures
• e.g., n3857 and n3865

• Co-routines
• finally, again for the first time since 1990; N4402, N4403, and n4398

• Transactional memory
• n4302

• Parallel algorithms (incl. parallel versions of some of the STL)
• n4409

21

Simplify core language use and address major sources of errors
• Concepts (n3701 and n4361)

• concepts in the standard library
• based on the work done in Origin, The Palo Alto TR, and Ranges n4263, n4128 and n4382

• default comparisons
• to complete the support for fundamental operations; n4475 and n4476

• uniform call syntax
• among other things: it helps concepts and STL style library use; n4474

• operator dot
• to finally get proxies and smart references; n4477

• array_view and string_view
• better range checking, DMR wanted those: "fat pointers"; n4480

• arrays on the stack
• "stack_array" anyone? But we need to find a safe way of dealing with stack overflow; n4294

• optional
• unless it is subsumed by pattern matching, and I think not in time for C++17, n4480

22

C++ 17 Report Card

Improve support for large-scale dependable software

• Modules
• to improve locality and improve compile time; n4465 and n4466

• Contracts
• for improved specification; n4378 and n4415

• A type-safe union
• functional-programming style pattern matching; something based on my

Urbana presentation, which relied on the Mach7 library: Yuriy Solodkyy,
Gabriel Dos Reis and Bjarne Stroustrup: Open Pattern Matching for C++.
ACM GPCE'13.

24

http://www.stroustrup.com/OpenPatternMatching.pdf

Provide support for higher-level concurrency models

• Basic networking
• asio n4478

• A SIMD vector
• to better utilize modern high-performance hardware; e.g., n4454 but I’d like a real vector rather than just a way of writing parallelizable

loops

• Improved futures
• e.g., n3857 and n3865

• Co-routines
• finally, again for the first time since 1990; N4402, N4403, and n4398

• Transactional memory
• n4302

• Parallel algorithms (incl. parallel versions of some of the STL

• n4409

25

Simplify core language use and address major sources of errors
• Concepts (n3701 and n4361)

• concepts in the standard library
• based on the work done in Origin, The Palo Alto TR, and Ranges n4263, n4128 and n4382

• default comparisons
• to complete the support for fundamental operations; n4475 and n4476

• uniform call syntax
• among other things: it helps concepts and STL style library use; n4474

• operator dot
• to finally get proxies and smart references; n4477

• array_view and string_view
• better range checking, DMR wanted those: "fat pointers"; n4480

• arrays on the stack
• "stack_array" anyone? But we need to find a safe way of dealing with stack overflow; n4294

• optional
• unless it is subsumed by pattern matching, and I think not in time for C++17, n4480

26

May come back in
limited form with

National Body
comment

May come back in
limited form with

National Body
comment

•You blew it

•Not a Major release

•No risk, no gain

•Nobody implement TSs

•Tethering tower of Babel
of TSs

• Did a nice job

• But not Minor either

• Safe and conservative
wins

• TSs are implemented

• Followed the rules of a
bus train model, how to
get 110 people to work
together

The Verdict on C++17? (from reddit)

A Medium/OK
Release

Agenda
• A recap, C++17, the final report card. Is it great or

just OK?

• C++20 and the future of C++

• Networking

• Concepts

• … more

Overall direction
plan:

• Concepts

• Modules

• Ranges

• Networking

• Pack expansions in using-declarations

• Lifting Restrictions on requires-
Expressions

• Allowing attributes on template
instantiations.

• Simplifying implicit lambda capture.

• Consistent comparisons.

• Static reflection.

• Implicit moving from rvalue references
in return statements

• Contracts.

C++20 new features Kona

short float.

http://wg21.link/p0537r0
http://wg21.link/p0588r0
http://wg21.link/p0515r0
http://wg21.link/p0194r3
http://wg21.link/p0527r0
http://wg21.link/p0542r0
http://wg21.link/p0192r2

C++17 DIS
• In Kona

• Address additional returned comments in February Kona

• Issue DIS after Kona, Feb 2017, send it to National Body for final approval ballot; this is
just an up/down vote, no comments

• Will not be approved in time for July 2017 Toronto Meeting due to translation time

• Then send it to ISO Geneva for publication, likely by EOY 2017

• Template parameter lists for
generic lambdas.

• Designated initializers.

• Default member initializers
for bitfields

• tweak to C++17’s constructor
template argument deduction
rules

• Lambda capture [=, *this]
• Fixing const-qualified pointers to members

• __VA_OPT__ macro
• language defect related to

defaulted copy constructors.

• allowing the template keyword in unqualified-ids

• attribute to mark unreachable code

• Down with typename!

• Removing throw().
• Ranged-based for statement with initializer.
• changes to the Modules TS and

Concepts

• detecting endianness
programmatically

• Repairing elementary
string conversions

• Extending make_shared to support arrays

• Improvements to the
integration of C++17 class
template argument deduction
into the standard library

C++20 features Toronto

http://wg21.link/p0428
http://wg21.link/p0329
http://wg21.link/p0683
http://wg21.link/p0702
http://wg21.link/p0409
http://wg21.link/p0704
http://wg21.link/p0306
http://wg21.link/p0641r0
http://wg21.link/p0389r0
http://wg21.link/p0627
http://wg21.link/p0634r0
http://wg21.link/p0691r1
http://wg21.link/p0614r0
http://wg21.link/p0463
http://wg21.link/p0682
http://wg21.link/p0674
http://wg21.link/p0739

• All Modules PDTS comment
processed

• Range based for

• Simplify implicit lambda
capture

• Spaceship operator for
consistent comparison

• C++ ostream synchronized
buffer

• Atomic<Shared_ptr>

• Floating point atomics

• Memory order is an
enumeration

• After C++17
• Default is 3 yr cycle: C++20, 23

• C++20 prediction
• Concepts, ranges, Concurrency TS1/TS2, Parallelism

TS2, Executor TS1, Reflection TS1, Coroutine TS1,
Networking TS1, Modules TS1, Transactional Memory
TS1, Numerics TS1, Heterogeneous TS1

C++ 20 Features just added in ABQC++ 20 Features just added in ABQ

Pre-C++11 projects
ISO number Name Status What is it? C++17?

ISO/IEC TR 18015:2006
Technical Report on C++
Performance

Published 2006 (ISO store)
Draft: TR18015 (2006-02-
15)

C++ Performance report No

ISO/IEC TR 19768:2007
Technical Report on C++
Library Extensions

Published 2007-11-15 (ISO
store)
Draft: n1745 (2005-01-17)
TR 29124 split off, the rest
merged into C++11

Has 14 Boost libraries, 13
of which was added to
C++11.

N/A (mostly already
included into C++11)

ISO/IEC TR 29124:2010

Extensions to the C++
Library to support
mathematical special
functions

Published 2010-09-03 (ISO
Store)
Final draft: n3060 (2010-
03-06). Under
consideration to merge
into C++17 by p0226
(2016-02-10)

Really, ORDINARY math
today with a Boost and
Dinkumware
Implementation

YES

ISO/IEC TR 24733:2011

Extensions for the
programming language
C++ to support decimal
floating-point arithmetic

Published 2011-10-25 (ISO
Store)
Draft: n2849 (2009-03-06)
May be superseded by a
future Decimal TS or
merged into C++ by n3871

Decimal Floating Point
decimal32
decimal64
decimal128

No. Ongoing work in SG6

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=43351
http://www.open-std.org/jtc1/sc22/wg21/docs/TR18015.pdf
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=43289
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1745.pdf
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=50511
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3060.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0226r0.pdf
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=38843
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2849.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3871.html

Status after Nov ABQ C++ Meeting
ISO number Name Status links C++17?

ISO/IEC TS 18822:2015
C++ File System Technical
Specification

Published 2015-06-18.
(ISO store). Final draft:
n4100 (2014-07-04)

Standardize Linux and
Windows file system
interface

YES

ISO/IEC TS 19570:2015
C++ Extensions for
Parallelism

Published 2015-06-24.
(ISO Store). Final draft:
n4507 (2015-05-05)

Parallel STL algorithms.

YES but removed
dynamic execution
policy, exception_lists,
changed some names

ISO/IEC TS 19841:2015 Transactional Memory TS
Published 2015-09-16,
(ISO Store). Final draft:
n4514 (2015-05-08)

Composable lock-free
programming that scales

No. Already in GCC 6
release and waiting for
subsequent usage
experience.

ISO/IEC TS 19568:2015
C++ Extensions for
Library Fundamentals

Published 2015-09-30,
(ISO Store). Final draft:
n4480 (2015-04-07)

optional, any,
string_view and more

YES but moved
Invocation Traits and
Polymorphic allocators
into LF TS2

ISO/IEC TS 19217:2015
C++ Extensions for
Concepts

Published 2015-11-13.
(ISO Store). Final draft:
n4553 (2015-10-02)

Constrained templates

Merged into C++20
without terse syntax. .
Already in GCC 6 release
and and waiting for
subsequent usage
experience.

http://www.iso.org/iso/catalogue_detail.htm?csnumber=63483
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4100.pdf
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=65241
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=66343
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4514.pdf
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=65238
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4480.html
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=64031
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4553.pdf

Status after Nov ABQ C++ Meeting
ISO number Name Status What is it? C++17?

ISO/IEC TS 19571:2016
C++ Extensions for
Concurrency

Published 2016-01-19.
(ISO Store) Final draft:
p0159r0 (2015-10-22)

improvements to future,
latches and barriers,
atomic smart pointers

Latches,
atomic<shared_ptr<t>>
headed into C++20.
Already in Visual Studio
release and Anthony
Williams Just Threads!
and waiting for
subsequent usage
experience.

ISO/IEC TS 19568:2017
C++ Extensions for Library
Fundamentals, Version 2

Published 2017-03-30.
(ISO Store) Draft: n4617
(2016-11-28)

source code information
capture and various
utilities

No.

ISO/IEC DTS 21425:xxxx Ranges TS
PDTS, Draft n4651 (2017-
03-15)

Range-based algorithms
and views

No. Resolution of
comments on Preliminary
Draft in progress

ISO/IEC DTS 19216:xxxx Networking TS
PDTS, Draft n4656 (2017-
03-17)

Sockets library based on
Boost.ASIO

No. Resolution of
comments on Preliminary
Draft in progress

ISO/IEC DTS 21544:xxxx Modules

Proposed Draft n4689
(2017-07-31) out for
ballot

A component system to
supersede the textual
header file inclusion
model

No. First version based
largely on Microsoft’s
design; hope to vote out
Preliminary Draft at next
meeting.

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=65242
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0159r0.html
https://www.iso.org/standard/70587.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4617.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4651.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4656.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4647.pdf
http://wg21.link/n4647

Status after Nov ABQ C++ Meeting
ISO number Name Status What is it? C++17?

Numerics TS
Early development. Draft
p0101 (2015-09-27)

Various numerical
facilities

No. Under active
development

ISO/IEC DTS 19571:xxxx Concurrency TS 2 Early development

Exploring , lock-free,
hazard pointers, RCU,
atomic views, concurrent
data structures

No. Under active
development

ISO/IEC DTS 19570:xxxx Parallelism TS 2
Early development. Draft
n4578 (2016-02-22)

Exploring task blocks,
progress guarantees,
SIMD.

No. Under active
development

ISO/IEC DTS 19841:xxxx
Transactional Memory TS
2

Early development
Exploring on_commit,
in_transaction.

No. Under active
development.

Graphics TS
Early development. Draft
p0267r0 (2016-02-12)

2D drawing API using
Cairo interface, adding
stateless interfacec

No. Wording review of
the spec in progress

ISO/IEC DTS 19569:xxxx Array Extensions TS
Under overhaul.
Abandoned draft: n3820
(2013-10-10)

Stack arrays whose size is
not known at compile
time

No. Withdrawn; any
future proposals will
target a different vehicle

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0101r0.html
https://isocpp.org/files/papers/N4578.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0267r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3820.html

Status after Nov ABQ C++ Meeting
ISO number Name Status What is it? C++17?

ISO/IEC DTS 22277:xxxx Coroutine TS PDTS. Draft n4663 (2017-03-25)
Resumable functions, based on
Microsoft’s await design

Preliminary Draft voted out for
balloting by national standards
bodies

Reflection TS

Early development. Draft
p0194r2 (2016-10-15) with
rationale in p0385r2 (2017-02-
06). Alternative: p0590r0 (2017-
02-05)

Code introspection and (later)
reification mechanisms

No. Introspection proposal
passed core language design
review; next stop is design
review of the library
components. Targeting a
Reflection TS.

Contracts TS
Unified proposal reviewed
favourably.)

Preconditions, postconditions,
etc.

No. Proposal passed core
language design review; next
stop is design review of the
library components. Targeting
C++20.

Executor TS
Separated from Concurrency
TS. have a unified proposal .

Describes how, where, when of
execution. Enables distributed
and heterogeneous computing.

No. bi-weekly calls

Heterogeneous Device TS
Managed_ptr and Channels
proposal.

Support Hetereogeneous
Devices

No. Under active development.

C++17
Draft International Standard
published; on track for final
publication by end of 2017

Filesystem TS, Parallelism TS,
Library Fundamentals TS I, if
constexpr, and various other
enhancements are in. See slide
44-47 for details.

YES

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4663.pdf
http://wg21.link/n4649
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0194r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0385r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0590r0.pdf
http://wg21.link/p0194r3
http://wg21.link/p0542r0
http://wg21.link/p0433r1

Agenda
• A recap, C++17, the final report card. Is it great or

just OK?

• C++20 and the future of C++

• Networking

• Concepts

• … more

Run a function asynchronously. #include <experimental/executor>

using std::experimental::post;

int main()

{

post([]{

// ...

});

}

1. Using the executors library: a two minute introduction

Slide 39

Run a function asynchronously on
your own thread pool

#include <experimental/executor>

#include <experimental/thread_pool>

using std::experimental::post;

using std::experimental::thread_pool;

int main()

{

thread_pool pool;

post(pool, []{

// ...

});

pool.join();

}

Using the executors library: a two minute introduction

Slide 40

Run a function asynchronously.

Wait for the result.

#include <experimental/executor>

#include <experimental/future>

#include <iostream>

using std::experimental::post;

using std::experimental::package;

int main()

{

std::future<int> f =
post(package([]{

// ...
return 42;

}));
std::cout << f.get() << std::endl;

}

Using the executors library: a two minute introduction

Slide 41

Run a function asynchronously on
your own thread pool.

Wait for the result.

#include <experimental/executor>

#include <experimental/future>

#include <experimental/thread_pool>

#include <iostream>

using std::experimental::post;

using std::experimental::package;

using std::experimental::thread_pool;

int main()

{

thread_pool pool;

std::future<int> f =

post(pool, package([]{

// ...

return 42;

}));

std::cout << f.get() << std::endl;

}

Using the executors library: a two minute introduction

Slide 42

Run a function in the future.

Wait for the result.

#include <experimental/executor>

#include <experimental/future>

#include <experimental/timer>

#include <iostream>

using std::experimental::post_after;

using std::experimental::package;

int main()

{

std::future<int> f =
post_after(

std::chrono::seconds(1),
package([]{

// ...
return 42;

}));
std::cout << f.get() << std::endl;

}

Using the executors library: a two minute introduction

Slide 43

Networking Executor

• Executors are to function execution as allocators are to memory
allocation

• An executor is a set of rules governing where, when and how to run a
function object.

• Like allocators, executors are lightweight and cheap to copy.

• Examples:
• The system executor

• A strand

Slide 44

Execution Context

• An execution context is a place where function objects are executed.

• Examples:
• A fixed-size thread pool

• A loop scheduler

• An asio::io_service

• The set of all threads in the process

Slide 45

Example: a thread pool

• A thread pool is an execution context.

• A thread pool has an executor.

• A thread pool’s executor embodies this rule:
• Run function objects in the pool and nowhere else.

Slide 46

Example: a strand

• A strand is an executor.

• A strand is an adapter for an underlying executor.

• A strand embodies this rule:
• Run function objects according to the underlying executor’s rules, but also run them in FIFO order and

not concurrently.

Slide 47

Execution contexts and executors

Slide 48

Execution contexts and executors

Execution Contexts Executors

• Usually long lived.

• Non-copyable.

• May contain additional state.

• Timer queues.

• Socket reactors.

• Hidden threads to
emulate asynchronous
functionality

• May be long or short lived.

• Lightweight and copyable.

• May be customized on a
finegrained basis.

• Example: an executor to
capture exceptions
generated by an
asynchronous operation into
an exception_ptr.

Slide 49

Dispatch, post and defer

• The three fundamental operations for submitting function objects for
execution.

• They differ in the level of eagerness to execute a function.

• May be used to submit function objects to an executor or an
execution context.

Slide 50

Dispatch

• Run the function object immediately if the rules allow it.

• Otherwise, submit for later execution.

• Example: a thread pool
• Rule: run function objects in the pool and nowhere else.

• If we are on a thread in the pool, run the function object immediately.

• If we are not on a thread in the pool, queue the function object for later and wake up a thread to
process it.

Slide 51

Post

• Submit the function for later execution.

• Never run the function object immediately.

• Example: a thread pool
• Whether or not we are on a thread in the pool, queue the function object for later and wake up a

thread to process it.

Slide 52

Defer

• Submit the function for later execution.

• Never run the function immediately.

• Implies a continuation relationship between caller and function
object.

• Example: a thread pool
• If we are not on a thread in the pool, queue the function object for later and wake up a thread to

process it.

• If we are on a thread in the pool, queue the function object for later, but don’t wake up a thread to
process it until control returns to the pool.

Slide 53

Use cases

1. Replacing std::async

2. active objects

3. parallelism in application data flow

4. asynchronous operations

Slide 54

Agenda
• A recap, C++17, the final report card. Is it great or

just OK?

• C++20 and the future of C++

• Networking

• Concepts

• … more

Agenda

1. Definitions
2. Diagnostics
3. Generic programming with Concepts
4. Generic programming with the C++17
5. Conclusion

Definitions

• Modern C++
• Concepts TS
• Ranges TS
• Novice
• Average
• Expert

Constraints

// pre-conditions:
// ++i must be possible
// decltype(++i) is I&
template <typename I>
I successor(I i, int n)
{

while (--n > 0)
++i;

return i;
}

Constraints

// pre-conditions:
// ++i must be possible
template <typename I>
auto successor(I i, int n) -> std::enable_if_t<

std::is_same_v<decltype(++i), I&>, I>
{

while (--n > 0)
++i;

return i;
}

Constraints

template <typename I>
requires requires(I i) {

{++i} -> I&;
}
I successor(I i, int n)
{

while (--n > 0)
++i;

return i;
}

Concepts

template <typename T>
concept bool Equality_comparable = requires(T t) {

{t == t} -> bool;
{t != t} -> bool;

}

template <typename T>
concept bool Regular = std::is_destructible_v<T> && std::is_default_constructible_v<T> &&

std::is_move_constructible_v<T> && std::is_move_assignable_v<T> &&
std::is_copy_constructible_v<T> && std::is_copy_assignable_v<T> &&
Equality_comparable<T>;

template <Regular T>
class Regular_vector : public std::vector<T> {};

Concepts

Diagnostics

// without concepts
#include <algorithm>
#include <iterator>
#include <list>

int main()
{

auto l = std::list{1, 2, 3, 4, 5};
std::sort(std::begin(l), std::end(l));

}

Listing 1

// with concepts
#include <experimental/ranges/algorithm>
#include <experimental/ranges/iterator>
#include <list>

int main()
{

auto l = std::list{1, 2, 3, 4, 5};
std::experimental::ranges::sort(l);

}

Listing 2

// without concepts
#include <algorithm>
#include <iterator>
#include <vector>

class Foo {};

int main()
{

auto v = std::vector<Foo>{};
std::sort(std::begin(v), std::end(v));

}

Listing 3

// with concepts
#include <experimental/ranges/algorithm>
#include <experimental/ranges/iterator>
#include <vector>

class Foo {};

int main()
{

auto v = std::vector<Foo>{};
std::experimental::ranges::sort(v);

}

Listing 4

Generic programming with Concepts

Simple for experts?

• Nope.
• This is good!
• Descriptive concepts aren’t trivially composable.
• Sortable aims to mathematically capture what it means for a

type to be sortable.
• Intuitively easy to understand, proof not-so-much

Generic programming in C++17

std::enable_if
#include <type_traits>

template <class T, std::enable_if_t<std::is_integral_v<T>>* = nullptr>
void foo(T) {}

int main()
{
foo(42.0);

}

<source>: In function 'int main()':
7 : <source>:7:11: error: no matching function for call to 'foo(double)'

foo(42.0);
^

4 : <source>:4:6: note: candidate: template<class T, std::enable_if_t<is_integral_v<T> >* <anonymous> > void foo(T)
void foo (T){}

^~~
4 : <source>:4:6: note: template argument deduction/substitution failed:
3 : <source>:3:63: note: invalid template non-type parameter
template <class T, std::enable_if_t<std::is_integral_v<T>>* = nullptr>

^~~~~~~
Compiler exited with result code 1

std::enable_if
#include <type_traits>

template <class T, class = void>
struct foo;

template <class T>
struct foo<T, std::enable_if_t<std::is_integral_v<T>>> {

//impl
};

int main() {
foo<double> a;

}

<source>: In function 'int main()':
12 : <source>:12:15: error: aggregate 'foo<double> a' has incomplete type and cannot be defined

foo<double> a;
^

Compiler exited with result code 1

