

AR _—
new_heap || fbarenaZs e ggmp

FR AR

malloc chunk <

(Heap)
B¢ (Segment)

Entry

Arena

Heap (F#E)

Chunk

77 B AR

Ji

svkiky: 7 ft}jf

A i
L-
L L

< C' | @ pubs.opengroup.org/onlinepubs//7908799/xsh/brk.html o W

The Single UNIX ® Specification, Version 2
Copyright © 1997 The Open Group

NAME

brk, sbrk - change space allocation (LEGACY)

SYNOPSIS

#include <unistd. h>

int brk(vold *addr)
void #*shrk(intptr t imeor):

DESCRIPTION

The brk() and sbrk() functions are used to change the amount of
space allocated for the calling process. The change is made by
resetting the process' break value and allocating the appropriate
amount of space. The amount of allocated space increases as the
break value increases. The newly-allocated space is set to 0. However,
if the application first decrements and then increments the break
value, the contents of the reallocated space are unspecified.

The brk() function sets the break value to addarand changes the
allocated space accordingly.

mmap and associated systems
calls were designed as part of
the Berkeley Software
Distribution (BSD) version of Unix.
Their APl was already described
in the 4.2BSD System Manual,
even though it was neither
implemented in that release, nor
in 4.3BSD.[1] Sun Microsystems
had implemented this very API,
though, in their SunOS operating
system. The BSD developers at
U.C. Berkeley requested Sun to
donate its implementation, but
these talks never led to any
transfer of code; 4.3BSD-Reno
was shipped instead with an
implementation based on the
virtual memory system of
Mach.[2] -- wikipedia

New_ heap()

ok Al e, Wi

0xb4f00000

Ja AT HE R

K/NHSNIMB,
F—HEN,
arenasi fiE A
110457

Farena

HizE X

EFER:LY
J&

fHarena
iz g X
AR KB
IN=R: LR
IR hE
Ay

77 B AR

Ji

#0 _int_malloc (av=0xb7fc7440, bytes=10) at malloc.c:3485

#1 0xb7e97f5c in _G | IibC_m alloc (bytes=10) at malloc.c:2924

#2 0xb7e980c7 in __ Gl __ libc_malloc (bytes=10) at malloc.c:2917
#3 0x08048401 in main (argc=1, argv=0xbffff414) at geheap.c:9

BHRGTETG, & EHAESI IO B LR, 5275 5 538,
“FF T F =R AL, AETN PRI FFE
GBI, fFPAESI, FEFRETHA T ? BRI, R 2T
7!

GBI (LB FA 1] HRTH B2 BB 5 KA

N .

=G| B EGIIEET R
A RO NEER (free list) S8 KA

AT IR D BCE S, B e A R
T bin, 73 BCi SEfEbin L5
&

TTIRPIRE, ZAbin “Hits B sk s A YK

B, ImraEEEESE. B
YHF (B ELFBLIBEH
HRE) MpREFE, £
H7-8E”

fastbin T iEbin
o IH101 o JrI=F

o Hitsk/NT80F /I e TFE, /N, Kb
o £/ ~bin B EL R /N [H] o DI)5k R T
o FA[H|BER

(- Chunks

of size 16 to 80 bytes

-

* Chunks of size

greater than equal
to 512 bytes

(. JON R
o T 2 B RERT
Yo, et AE

Unsorted

\

bin

Chunks of size |ess
than 512 bytes

https://github.com/sploitfun/lsploits/blob/master/glibc/malloc/malloc.c#L1470
https://github.com/sploitfun/lsploits/blob/master/glibc/malloc/malloc.c#L1249
https://github.com/sploitfun/lsploits/blob/master/glibc/malloc/malloc.c#L1600

1SN

Bint H FI 3R

BRNNLIeFT, HE, B

(DAY IR

3851 *fb = victim->fd: BETE R

P —AT)R, EH 7 bin LN
//'?é'

ER36FT, fastbin A Beik
BiEK, Nz=idsmallbin,

WE s, HaNs,
TRz b

TR BN

e checked_request2size

RN T
global _max_fast

o [Hfastbin_index
* i JJ3 %f W fastbin
o 73 e B D IR (R

4R R EIR R I
last_remainder

2ixsmall bin

o & smallbin_index

o ZEXT I [bin 7 48 45 b B
® A T U3 []

BRI B (E 7
bin)

i FHmalloc(1000) #

K, Bk b8

(gdb) p *ar_ptr
55 = {mutex = 1, flags = 1, fastbinsY = {0x0, 0x0, 0x0, 6x0, Ox0, 0x0, Ox0, O6xO0, 0x0,
Ox0}, top = Ox804b7d8, last _remainder = @0x8, bins = {Oxb7fc7470, Oxb7fc7470,
Oxb7fc7478, @xb7fc7478, 0xb7fc7480, @xb7fc7480, 0xb7fc7488, @xb7fc7488,
Oxb7fc7490, 0xb7fc7490, 0xb7fc7498, 0xb7fc7498, 0xb7fc74a0, Oxb7fc74a0,
Oxb7fc74a8, 0xb7fc74a8, 0xb7fc74ba, 0xb7fc74be, @xb7fc74b8, @xb7fc74bs8,
Oxb7fc74cO, Oxb7fc74cO, Oxb7fc74cB, Oxb7fc74cB, 0xb7fc74do, Oxb7fc74do,
Oxb7fc74d8, Oxb7fc74d8, 0xb7fc74ed, 0xb7fc74ed, Oxb7fc74e8, Oxb7fc74e8,
Oxb7fc74fe, Oxb7fc74f0, 0xb7fc74f8, Oxb7fc74f8, Oxb7fc7500, 0xb7fc7500,
Oxb7fc7508, 0xb7fc7508, @xb7fc7518, Oxb7fc7510, @xb7fc7518, @xb7fc7518,
@xb7fc7520, Oxb7fc7520, Oxb7fc7528, Oxb7fc7528, @xb7fc7530, @xb7fc7530,
Oxb7fc7538, @xb7fc7538, 0xb7fc7540, @xb7fc7540, 0xb7fc7548, @xb7fc7548,
Oxb7fc7550, Oxb7fc7550, Oxb7fc7558, @xb7fc7558, Oxb7fc7560, 0xb7fc7560,
Oxb7fc7568, 0xb7fc7568, @xb7fc7578, Oxb7fc7570, @xb7fc7578, @xb7fc7578,
@xb7fc7580, Oxb7fc7580, Oxb7fc7588, Oxb7fc7588, @xb7fc7590, @xb7fc7590,
Oxb7fc7598, Oxb7fc7598, 0xb7fc75a0, 0xb7fc75a0, 0xb7fc75a8, Oxb7fc75a8,
Oxb7fc75b0, 0xb7fc75b®, 0xb7fc75b8, 0xb7fc75b8, 0xb7fc75cO, Oxb7fc75cH,
Oxb7fc75c8, 0xb7fc75c8, 0xb7fc75da, 0xb7fc75da, exb7fc75d8, @xb7fc75ds,
Oxb7fc75e0, Oxb7fc75ed, Oxb7fc75e8, Oxb7fc75eB8, Oxb7fc75f0, Oxb7fc75fO,
Oxb7fc75f8, @xb7fc75f8, Oxb7fc7600, @xb7fc7600, Oxb7fc7608, @xb7fc7608,
Oxb7fc7610, Oxb7fc7610, 0xb7fc7618, Oxb7fc7618, 0xb7fc7620, 0xb7fc7620,
Oxb7fc7628, 0xb7fc7628, 0xb7fc7630, 0xb7fc7630, @xb7fc7638, Oxb7fc7638,
Oxb7fc7640, 0xb7fc7640, Oxb7fc7648, Oxb7fc7648, @xb7fc7650, Oxb7fc7650,
Oxb7fc7658, @xb7fc7658, 0xb7fc7660, Oxb7fc7660, Oxb7fc7668, Oxb7fc7668,
Oxb7fc7670, Oxb7fc7670, 0xb7fc7678, Oxb7fc7678, O0xb7fc7680, 0xb7fc7680,
Oxb7fc7688, 0xb7fc7688, 0xb7fc7698, ©xb7fc7690, @xb7fc7698, Oxb7fc7698,
Oxb7fc76a0, Oxb7fc76a0, Oxb7fc76aB8, Oxb7fc76aB, Oxb7fc76b0, Oxb7fc76bo,
Oxb7fc76b8, Oxb7fc76b8, 0xb7fc76cod, 0xb7fc76cO, Oxb7fc76c8, Oxb7fc76cC8,
Oxb7fc76de, 0xb7fc76do, 0xb7fc76d8, 0xb7fc76d8, 0xb7fc76ed, Oxb7fc76e0,
oxb7fc76e8, 0xb7fc76e8, Oxb7fc76f0, Oxb7fc76fe, oxb7fc76fs, oxb7fc76fs,
@xb7fc7700, Oxb7fc7700, @xb7fc7708, Oxb7fc7708, @xb7fc7710, 0xb7fc7710,
Oxb7fc7718, Oxb7fc7718, Oxb7fc7720, Oxb7fc7720, 0xb7fc7728, Oxb7fc7728,
@xb7fc7730, 0xb7fc7730, @xb7fc7738, @xb7fc7738, 0xb7fc7740, oxb7fc7740,
@xb7fc7748, 0xb7fc7748, @xb7fc7750, Oxb7fc7750, @xb7fc7758, Oxb7fc7758,
Oxb7fc7760, 8xb7fc7760, Oxb7fc7768, 0xb7fc7768, @xb7fc7770, 0xb7fc7770,
Oxb7fc7778, Oxb7fc7778, Oxb7fc77860, Oxb7fc7780, 0xb7fc7788, Oxb7fc7788...},
binmap = {@, @, 8, 0}, next = Oxb7fc7440, next free = Ox0, system _mem = 135168,
max_system_mem = 135168}

o it \fastbin o HILA NIZ o hric Nfree
XSt i o K& e fl/RKI, * AT Tbin
hFAE: X AERAEE D o JlifEH 5 2 R B
kel b b « i top,
(NG S | 5 Hitop

1T A]]

o AR T EAE

HER B U m

OK 7T, Ak
BN AR

Max_fastft) 5
AR A b 2
iz

prev size

https://github.com/sploitfun/lsploits/blob/master/glibc/malloc/malloc.c#L1110
https://github.com/sploitfun/lsploits/blob/master/glibc/malloc/malloc.c#L1111
https://github.com/sploitfun/lsploits/blob/master/glibc/malloc/malloc.c#L1113
https://github.com/sploitfun/lsploits/blob/master/glibc/malloc/malloc.c#L1114

nextchunk-> +-+-4+-+-+-+-F-+-F-F-F-t-F-t-d-t-F-tod-t-dt-todt-t-do-todt-t-t-t-F-+-+
| Size of chunk
+ot-t-t-t-t-t-F-t-F-F-F-F-F-F-t-F-F-t-F-t-F-F-F-F-F-F-F-F-F-F+-+-+

Where "chunk" is the front of the chunk for the purpose of most of
the malloc code, but "mem" is the pointer that is returned to the
user. "Nextchunk" is the beginning of the next contiguous chunk.

Chunks always begin on even word boundries, so the mem portion
(which is returned to the user) is also on an even word boundary, and
thus at least double-word aligned.

Free chunks are stored in circular doubly-linked lists, and look like this:

chunk-> +-+-+-+-+-4-+-+-+-4-+-F-+-t-+-F-+-t-F-F-+-F-F-F+-+-+-+-+-+-+-+-+-+

| Size of previous chunk |

R et i e T S e s et T T e S e e Ik o ks ot
“head:"' | Size of chunk, in bytes |P|
MEM-> +-+-+-+-F-+-F-+-F-F-+-+-+-F-+-+-+-F-+-+-+-F-F-+-+-+-+-+-+-+-+-+-+

| Forward pointer to next chunk in list |

R et i e T S e s et T T e S e e Ik o ks ot

| Back pointer to previous chunk in list |

Fot-t-t-F-t-t-F-F-F-t-F-F-F-t-F-F-F-t-F-F-F-F-F-F-F-F-F-+-F+-+-+-+

| Unused space (may be © bytes long)

nextchunk-=> +—l—+—+
“foot:' | size of chunk, in bytes |

R et i e T S e s et T T e S e e Ik o ks ot

The P (PREV_INUSE) bit, stored in the unused low-order bit of the
chunk size (which is always a multiple of two words), is an in-use
bit for the *previous* chunk. If that bit is *clear*, then the
word before the current chunk size contains the previous chunk
size, and can be used to find the front of the previous chunk.

The very first chunk allocated always has this bit set,

preventing access to non-existent (or non-owned) memory. If

