LSTM应用实例——实时数据序列

017 CPP-Summit

typedef mtl::LSTM<40, 10, 10, 4> RTLSTM;

RTLSTM::InMatrix<5> inMx; RTLSTM::OutMatrix<1> outMx; RTLSTM::OutMatrix<1> expectMx;

RTLSTM::InMatrix<10> inMx; RTLSTM::OutMatrix<1> outMx; RTLSTM::OutMatrix<1> expectMx;

RTLSTM::InMatrix<10> inMx; RTLSTM::OutMatrix<3> outMx; RTLSTM::OutMatrix<3> expectMx;

2017 CPP-Summit

一个人能将某事教授给其他人,他算 是真正地了解了这件事。一个程序员 能将某件事教授给计算机他才算真正 地了解了这件事。

未来计划和遗留问题

- 梯度消失和梯度爆炸
- 矩阵运算GPU支持
- 动态调整结点
- 大对象计算公式的运算符重载
 A = B × C
 A.multiply(B, C);

• 源码

https://github.com/bowdar/DeepLearning

• 强烈推荐

https://github.com/wichtounet/dll

• 参考资料

http://www.asimovinstitute.org

https://www.zybuluo.com/hanbingtao/note/433855

2017 CPP-Summit

深度学习框架与大规模深度学习 训练系统

——来自商汤的解决方案

张行程

商汤科技深度学习框架核心开发者

SenseTime in Al Industry Landscape

Fundamental Algorithm Layer

- The technical barrier is high, the market scale is over 100 billion
- Have chance to generate a new giant company

Hardware Layer

 capital intensive, not easy for startups to surpass

Application Layer

Market
 Decentralized

 Computer vision technologies are the first to be monetized

The Success of Deep Learning

Google Search

2006-01 2007-01 2008-01 2009-01 2010-01 2011-01 2012-01 2013-01 2014-01 2015-01 2016-01

Deep Learning Enables Al Breakthroughs

Facial Recognition

Voice Recognition

Game Playing

Deep Learning Enabling machines to acquire knowledge and skills inducted from massive data

Autonomous Driving

Image Recognition

What Lead to the Success?

The Race of Network Depth

Challenges for training deep models

Dense computation requirement

- To train ResNet50: 1000,000 T FLOP
- 14 days on NVIDIAM40 GPU

□ Limited GPU memory

- Largest memory available: Quadro M6000 24G
- Requirement increase linearwith model depth

More Challenges

□ Heavy concurrent small file access

- ~10T image data will be randomly accessed
- Images size 10k~ 500k
- Throughput should up to 2k images / sec

□ Large communication load

• Exchange 500 MB/s amongevery computation node

Technical Infrastructures

Our Integrated Solutions

PPL A library of highly optimized computational modules.

Parrots

A deep learning framework that is efficientscalable and flexible

DeepLink

A large-scale cluster platform designed for deep learning.

010 0110 0100 0100 000 000 000 000 000 Layers

The efficiency of a deep network essentially depends on how fast we can compute:

PPL (Parrots Primitive Library) is to provide highly optimized functions for such computation.

PPL Editions

PPL has multipleeditions for different architectures

X86	ARM	CUDA	OpenCL
 Support all common CNN functions. Support Windows, Linux, and Mac OS X. 	 Support all common CNN functions. Support iOS, Android, Linux, and Windows. 	 Support all common CNN functions. Support Windows, Linux, and Mac OS X. 	 Mainly to support embedded devices. Support all common CNN functions.
Support ISA: AVX, AVX2, and 64-bit processors.	 Supported ISA: ARMv7 (32bit), ARMv8(64bit) Supported processors: ARM CortexA iPhone 4x – 6x All qualcomm 	 Support all NVidia GPUs GeForce Tesla Tk1 cuDNN + our own implementations 	 Supported devices: Qualcomm adreno GPU ARM MaliGPU Performance comparable to the ARM edition.

PPL X86 vs. Intel MKL

