



# We need to evolve our architecture for other analytics

### Clustering

#### Manually Created Cluster





- Clustering based on key performance metrics

- Clustering based on key performance metrics
- Continuously measure the clusters



- Clustering based on key performance metrics
- Continuously measure the clusters
- Different clustering for different business needs

- Clustering based on key performance metrics
- Continuously measure the clusters
- Different clustering for different business needs
- Create clusters in minutes for all cities

- Clustering based on key performance metrics
- Continuously measure the clusters
- Different clustering for different business needs
- Create clusters in minutes for all cities
- Foundation for other stream analytics





All cities under 3 minutes



- All cities under 3 minutes
- Pluggable algorithms and measurements



- All cities under 3 minutes
- Easily pluggable algorithms and measurements
- Historical geo-temporal data for clustering



- All cities under 3 minutes
- Easily pluggable algorithms and measurements
- Historical geo-temporal data for clustering
- Real-time geo-temporal data for measurement



- All cities under 3 minutes
- Easily pluggable algorithms and measurements
- Historical geo-temporal data for clustering
- Real-time geo-temporal data for measurement
- Shared optimizations



- All cities under 3 minutes
- Easily pluggable algorithms and measurements
- Historical geo-temporal data for clustering
- Real-time geo-temporal data for measurement
- Shared optimizations. To put things in perspective:
  - 70,000 hexagons in SF
  - Naive distance function requires at least 70,000 x 70,000 = 4.9 billion pairs!



- All cities under 3 minutes
- Easily pluggable algorithms and measurements
- Historical geo-temporal data for clustering
- Real-time geo-temporal data for measurement
- Shared optimizations
  - Incremental updates
  - Compact data representation

- Every decision is based on forecasting

- Forecasting based on both historical data and stream input

- Forecasting based on both historical data and stream input



- Forecasting based on both historical data and stream input



- Spatially granular forecasting - down to every hexagon

- Spatially granular forecasting - down to every hexagon



- Temporally granular forecasting - down to every minute

- Temporally granular forecasting - down to every minute



#### Pattern Detection

- Similarity of different metrics across geolocation and time
- Metric outliers across geolocations and time
- Frequent occurrences of certain patterns
- Clustered behavior
- Anomalies

#### Common Requirements in Pattern Detection

- Not just traditional time series analysis
- Incorporating insights on marketplace data
- Required both historical data and real-time input
- Spatially granular patterns down to every hexagon
- Temporally granular patterns down to every minute

#### **Example: Anomaly Detection**



- Simple time series analysis
- For a single geo area
- Can be noisy

#### A More Realistic Anomaly Detection



#### **Example: Anomaly Detection**



#### **Example: Anomaly Detection**





- Time series by event time

- Time series by event time



https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101

- Time series by event time

https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101



- Time series by event time



https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101

- Time series by event time
- Flexible windowing tumbling, sliding, conditionally triggered

- Time series by event time
- Flexible windowing tumbling, sliding, conditionally triggered
- e.g. event-based triggers

- Time series by event time
- Flexible windowing tumbling, sliding, conditionally triggered
- e.g. event-based triggers
- e.g., triggers of computation results

- Time series by event time
- Flexible windowing tumbling, sliding, conditionally triggered
- Stateful processing

- Time series by event time
- Flexible windowing tumbling, sliding, conditionally

