### Database Consolidation: Resource Management Best Practices OOW Session CON6581

Sue K. Lee sue.k.lee@oracle.com Director of Development Oracle

Marty Stogsdill Senior Manager, Oracle Architecture and Engineered Systems martinstogsdill@discover.com Discover Financial Services



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.





October 1–5, 2017

#### Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle's products remains at the sole discretion of Oracle.



### Program Agenda

- **1** Consolidation Concepts
- <sup>2</sup> Resource Controls
- <sup>3</sup> Managing a Cloud



4 Use Case: Discover



### Program Agenda

- **1** Consolidation Concepts
- <sup>2</sup> Resource Controls
- <sup>3</sup> Managing a Cloud



4 Use Case: Discover



### Why Consolidate?

- More bang for the buck!
  - Most companies have lots of low-load, test, or development databases
  - Fully utilize powerful servers and storage
- Which style of consolidation?
  - Many options
  - No "right" approach!



### Managing Resources

- Anticipate contention for resources!
  - CPU, memory, I/O, flash space, storage space...
- DBA is the arbiter of resources who determines:

What sort of performance guarantees are required? How densely to consolidate? Limit access to "extra" resources?



### How to Guarantee Resources?

- Resource guarantees == minimum performance
- Best way to protect against "noisy neighbor"
- Method 1: Parameters!

PDB 4 is guaranteed 2G of SGA. But it can use more!

#### **Best Practices!**

Don't let the minimums consume all the space!

*Leave room for databases to get more than the minimum!* 

#### 7

#### *How much SGA is each PDB guaranteed?*



### How to Guarantee Resources?

- Method 2: Shares!
  - Guarantees a percentage of the total
  - Indicates a priority

Support PDB has 1 out of 4 shares. It is guaranteed 25% of the CPU.



But when it is the only active PDB, it

### How to Limit Resources?

- Some resources can be constrained with a limit
  - CPU\_COUNT limits CPU
  - SGA\_TARGET limits SGA
  - PGA\_AGGREGATE\_LIMIT limits PGA

Use with caution! Use limits if: (1) No other way to control the resource :-( (2) Pay for performance! You don't want to give away resources for free!



### Program Agenda

- **1** Consolidation Concepts
- <sup>2</sup> Resource Controls
- <sup>3</sup> Managing a Cloud



4 Use Case: Discover



| Managing CPU<br>For PDBs or Consumer Groups (Workloads)<br>Shares specify the PDB's or<br>Consumer Group's priority |        |                   |                 |             | J, |
|---------------------------------------------------------------------------------------------------------------------|--------|-------------------|-----------------|-------------|----|
| Resource Plan                                                                                                       |        |                   |                 |             |    |
| PDB<br>or Consumer Group                                                                                            | Shares | Utilization Limit | Guaranteed CPU  | Maximum CPU |    |
| Sales                                                                                                               | 2      |                   | 2/(2+1+1) = 50% | 100%        |    |
| Marketing                                                                                                           | 1      |                   | 25%             | 100%        |    |
| Support                                                                                                             | 1      | 75%               | 25%             | 75%         |    |

#### A PDB's CPU can also be limited with CPU\_COUNT New in 12.2

For examples and tuning, see MOS notes 1358709.1, 1338988.1

ORACLE

### Managing CPU For Database Instances

Instance Caging manages CPU between database instances

Just 2 steps:

- 1) Set CPU\_COUNT to the maximum CPU threads (not cores!) the instance can use
- 2) Set RESOURCE\_MANAGER\_PLAN (e.g. to default\_plan)DB #1 is caged



For examples and tuning, see MOS note 1362445.1

to 36 CPUs

### Managing CPU Instance Caging

ORACLE

#### Approach #1: Partition CPUs

- sum(cpu\_counts) <= #cpu threads</li>
- Partitioning provides maximum isolation
- No CPU contention between instances!
- Best for performance-critical databases



#### For examples and tuning, see MOS note 1362445.1

### Managing CPU Instance Caging

#### **Option #2: Over-Subscribe CPUs**

- sum(cpu\_counts) <= 3 x #cpu threads</li>
- Over-subscribing provides efficient CPU utilization
- Some contention for CPU if databases are sufficiently loaded
- Best for non-critical databases



For examples and tuning, see MOS note 1362445.1

ORACLE

### Exadata Storage

- Exadata provides extreme I/O performance via flash and hard disks
- Use I/O Resource Manager to tune consolidations for
  - Databases (including VM-based databases)
  - PDBs
  - Consumer Groups (workloads)





### Exadata Storage Managing Flash Space

#### *Key to great OLTP performance? High flash cache hit rate!*

| Inter-Database IORM Plan |                 |                   |                  |
|--------------------------|-----------------|-------------------|------------------|
| Database                 | Flash Cache Min | Flash Cache Limit | Flash Cache Size |
| DB-1                     | 500 MB          |                   |                  |
| DB-2                     |                 | 2 GB              |                  |
| CDB-1                    |                 |                   | 10 GB            |



| Exada<br>Managi | ata Storage                     | 2                        |                                                                   |                          |                                                       |
|-----------------|---------------------------------|--------------------------|-------------------------------------------------------------------|--------------------------|-------------------------------------------------------|
| M               | linimum guarantee<br>a database | es space for<br>e.       | Soft <b>Limits</b> are or<br>applied when the F<br>Cache is full. | nly<br>lash space<br>Use | hits and reserves<br>for a database.<br>e cautiously! |
|                 | are sometimes i                 | nactive.<br>Inter-Databa | ase IORM Plan                                                     |                          |                                                       |
|                 | Database                        | Flash Cache Min          | Flash Cache Limit                                                 | Flash Cache Size         |                                                       |
|                 | DB-1                            | 500 MB                   |                                                                   |                          |                                                       |
|                 | DB-2                            |                          | 2 GB                                                              |                          |                                                       |
|                 | CDB-1                           |                          |                                                                   | 10 GB                    |                                                       |



### Exadata Storage Managing Flash Space

To control flash space for databases, configure an IORM plan on the storage cells. To control flash space for PDBs, configure a database resource plan

| Inter-   | Database IOR       | M Plan               | CD        | B Resource F  | Plan                      |
|----------|--------------------|----------------------|-----------|---------------|---------------------------|
| Database | Flash Cache<br>Min | Flash Cache<br>Limit | PDB       | Memory<br>Min | Memo<br>Limi <sup>s</sup> |
| DB-1     | 500 MB             |                      | Sales     | 15%           | 75%                       |
| DB-2     |                    | 2 GB                 | Marketing | 30%           |                           |
| CDB-1    | 1 GB               | 10 GB                | Support   |               | 50%                       |

# For CDB plans, apply percentages against the CDB's min and limit

#### Exadata Storage Managing Flash and Disk I/Os

## CPU, flash I/Os, and disk I/Os are managed with the same plan!

#### (Only exception is Instance Caging)

|                               | Type of Plan                      | Where to Configure?                                                                        | Shares       | Limits       |
|-------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------|--------------|--------------|
| Databases                     | Inter-Database IORM plan for I/Os | Configured on Exadata cell.<br>Default shares based on<br>CPU_COUNT <sup>New in 18.1</sup> | ✓            | ✓            |
| PDBs in a CDB                 | CDB Resource Plan                 | Configured on Database.<br>Default shares based on<br>CPU_COUNT                            | $\checkmark$ | $\checkmark$ |
| Consumer Groups in a Database | Database Resource Plan            | Configured on Database                                                                     | ✓            | $\checkmark$ |

### Exadata Storage Managing Flash I/Os

- Exadata has extremely high flash bandwidth
- Flash I/Os managed via shares and utilization limits
- OLTP I/Os always have top priority, regardless of database
  - Plenty of bandwidth to accommodate all OLTP I/Os!



### Exadata Storage Managing Disk I/Os

- Two goals for managing disk I/Os
  - Low latency: important for OLTP
  - High throughput: important for scans
- High throughput results in high latency! You cannot have both goals!
- IORM "objective"
  - Choose what is more important: latency or throughput

| Objective           | Peak Disk<br>Utilization for<br>Scans | OLTP<br>Read<br>Latencies |
|---------------------|---------------------------------------|---------------------------|
| Basic (IORM is off) | 100%                                  | < 2 sec                   |
| High Throughput     | 100%                                  | < 1 sec                   |
| Balanced            | 90%                                   | < 160 ms                  |
| Low Latency         | 40%                                   | < 30 ms                   |
| Auto                | varies                                | varies                    |

#### *Use "auto" objective: IORM chooses for you, based on your current workload.*



#### New in 12.2!

### Non-Exadata I/Os PDB Rate Limits

- Rate limit parameters prevent PDBs from swamping the storage system
  - MAX\_IOPS: maximum I/O requests per second
  - MAX\_MBPS: maximum megabytes per second of I/O
- For non-Exadata storage only!
  - On Exadata, use IORM much more powerful!
- What about background I/Os?
  - DBWR I/Os are counted, but not throttled
  - LGWR and Root I/Os aren't counted, nor throttled

#### Monitor the "resmgr:io rate limit" wait event and v\$rsrcmgrmetric\_history



### Managing Physical Memory Preventing Swapping



If you see "WARNING: Heavy swapping observed on system" in the alert log, take action!



#### Managing Physical Memory Linux Huge Pages



#### Use Huge Pages! See MOS notes #361468.1 and #401749.1.

#### Managing Physical Memory SGA



Use MEMORY\_TARGET for small SGAs. Huge pages and Memory RM are not supported with MEMORY\_TARGET!







- Monitor v\$pgastat
  - "maximum PGA allocated" historical max
  - "total PGA allocated" current usage

#### Verify that PGA\_AGGREGATE\_LIMIT >= PGA\_AGGREGATE\_TARGET x 2!

### Managing Memory in a CDB

| PDB Parameter        | Description               | When to Set?                                                                        |
|----------------------|---------------------------|-------------------------------------------------------------------------------------|
| PGA_AGGREGATE_LIMIT  | Maximum PGA size          | Set for unruly PDBs.<br>Verify that the limit >= 2x target.<br>Should set on Cloud! |
| PGA_AGGREGATE_TARGET | Target PGA size           | Set for unruly PDBs.<br>Should set on Cloud!                                        |
| SGA_MIN_SIZE         | Minimum SGA size          | Useful for small PDBs or critical PDBs                                              |
| DB_CACHE_SIZE        | Minimum buffer cache size | Set sparingly – if PDB's shared pool is shrinking its buffer cache                  |
| SHARED_POOL_SIZE     | Minimum shared pool size  | Set sparingly - if PDB's buffer cache is shrinking its shared pool                  |
| SGA_TARGET           | Maximum SGA size          | Set for unruly PDBs.<br>Should set on Cloud!                                        |

### Managing Parallel Execution **Parallel Statement Queuing**

in Use

- Use queuing to avoid parallel execution downgrades
- Queue non-critical queries when server is busy
- Two types of queries
  - Critical: not queued
  - Non-critical: "queue" able



### **Managing Parallel Execution**





### Managing Parallel Execution





#### Parallel Statement Queuing Multi-Tenant

#### Configure parallel statement queuing at CDB level, PDB level, or both!

|                         | Set in PDB?      | Default Value                   |
|-------------------------|------------------|---------------------------------|
| Max DOP                 |                  | PDB's CPU_COUNT                 |
| PARALLEL_SERVERS_TARGET | Yes! New in 18.1 | Calculated from PDB's CPU_COUNT |
| PARALLEL_MAX_SERVERS    | Yes! New in 12.2 | Calculated from PDB's CPU_COUNT |



### Program Agenda

- **1** Consolidation Concepts
- <sup>2</sup> Resource Controls
- Managing a Cloud



4 Use Case: Discover



### Managing a Cloud

- Use Resource Manager in all types of deployments
  - Private Cloud, Cloud at Customer, Public Cloud
- In Public Cloud, Resource Manager natively configured to (a) define levels of service and (b) provide isolation between tenants
  - Exadata Express Cloud Service
  - Autonomous Database Warehouse Cloud
- Driving principles
  - Pick a simple way of defining a few PDB profiles
  - Know your workload and pick a partitioned or over-subscription strategy
  - Configure and lockdown resource plans and parameters



#### New in 12.2!

### Simplified CDB Management

#### Use case: Exadata Express Cloud Service

- 1) Establish a small number of PDB Profiles
- 2) Create a CDB Resource Plan, based on these PDB Profiles

| CDB Resource Plan   |        |  |
|---------------------|--------|--|
| Performance Profile | Shares |  |
| X20                 | 1      |  |
| X250                | 1      |  |
| X500                | 2      |  |
| X1000               | 4      |  |

3) Lockdown each profile's parameters. The PDB DBA cannot change these values!

| Lockdown Profile for X1000 |       |  |
|----------------------------|-------|--|
| Parameter                  | Value |  |
| PDB_LOCKDOWN               | X1000 |  |
| DB_PERFORMANCE_PROFILE     | X1000 |  |
| CPU_COUNT                  | 8     |  |
| SGA_TARGET                 | 15G   |  |
| PGA_AGGREGATE_LIMIT        | 15G   |  |
| SESSIONS                   |       |  |
| MAX_IDLE_TIME              |       |  |
|                            |       |  |

### Automatic Management Reduce CPU and Exadata I/O Impact

#### Simple ways to use Resource Management

| Task                                                                                                                                                                   | Goal                                                           | Action                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| RMAN backup or image copy                                                                                                                                              | Deprioritize CPU and<br>Exadata I/Os                           | Automatically mapped to the BATCH consumer group. Just enable DEFAULT_PLAN.                                          |
| Data Pump data load                                                                                                                                                    | Deprioritize CPU and<br>Exadata I/Os<br>(Can also prioritize!) | Automatically mapped to the ETL consumer group.<br>Just enable ETL_PLAN or DSS_PLAN.                                 |
| <ul> <li>Automated maintenance tasks:</li> <li>Optimizer Stats Collection</li> <li>Segment Advisor</li> <li>SQL Tuning Advisor</li> <li>SOL Plan Management</li> </ul> | Deprioritize CPU and<br>Exadata I/Os                           | Automatically mapped to the<br>ORA\$AUTOTASK consumer group.<br>Automatically managed, using Maintenance<br>Windows. |

### Automatic Management

#### **InMemory Operations**

#### Simple ways to use Resource Management

| Task                                                            | Goal                                                                          | Action                                                                                                           |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Population of InMemory data <sup>New in 12.2</sup>              | Reduce CPU impact.                                                            | Automatically categorized into the<br>ora\$autotask consumer group.<br>Deprioritize by enabling<br>DEFAULT_PLAN. |
| Dynamic scans of InMemory data <sup>New in 12.2</sup>           | Accelerate InMemory scans,<br>using leftover CPU and light-<br>weight threads | Just enable CPU Resource Manager.<br>Requires >= 24 CPU threads.                                                 |
| InMemory Fast Start writes New in 18.1                          | Reduce impact of Fast Start<br>writes on Exadata                              | Just enable IORM by setting Objective = "auto".                                                                  |
| Prioritize smart scans over InMemory population New in 12.2.1.1 | Reduce CPU impact on Exadata storage cells                                    | No action required!                                                                                              |

### **Enterprise Manager Express UI**

#### **Configure and Monitor PDB Resource Manager**



### Exadata Storage

- Use the Exadata sections of AWR report to configure and tune IORM
- Or, use Enterprise Manager Cloud Control UI!

#### **Exadata Top Database Consumers**

- Top Databases by Requests
- Top Databases by Throughput
- Top Databases by Requests per Cell
- Top Databases by Throughput per Cell

#### **Top Databases by IO Requests**

- The top databases by IO Requests are displayed
- At most 10 databases are displayed
- %Total % of Total IO requests
- Total total IO requests or IO throughput (Flash + Disk)
- Ordered by IO requests desc



|          |            | IO Requests |                |           |             |             |
|----------|------------|-------------|----------------|-----------|-------------|-------------|
| DB Name  | DBID       | %Total      | Total Requests | per Sec   | Flash       | Disk        |
| Q00685P0 | 3346871381 | 39          | 394,016,282    | 27,322.40 | 288,255,677 | 105,760,605 |
| T01235P0 | 895331201  | 22          | 224,497,116    | 15,567.38 | 178,144,130 | 46,352,986  |
| D00680P0 | 1649454831 | 21          | 207,894,822    | 14,416.12 | 155,169,216 | 52,725,606  |
| D00898P0 | 1768815604 | 8           | 77,159,331     | 5,350.48  | 63,698,722  | 13,460,609  |
| Q00639P0 | 3855217730 | 4           | 38,656,732     | 2,680.59  | 38,046,506  | 610,226     |

How much I/O is each database generating?

### Program Agenda

- **1** Consolidation Concepts
- 2 Resource Controls
- Managing a Cloud
- Use Case: Discover



# Integrated Cloud Applications & Platform Services

For questions, go to Oracle DemoGrounds, Booth SOA 149



# And a few extra slides for content we didn't have time to cover...



## Mixed Workloads and Resource Manager



### Mixed Workloads and Resource Management

- Every database runs multiple workloads with different priorities
  - OLTP database
    - OLTP
    - Real-time reports
    - Maintenance (backup, stats gathering, etc.)
  - Data warehouse
    - Critical, tuned reports
    - Batch jobs
    - ETL
    - Ad-hoc reports
- These workloads compete for resources
- Use Resource Manager to allocate resources to workloads

- First step
  - Group database sessions that comprise a workload into a Consumer Group
- Sample consumer groups
  - Critical
  - Batch
  - Maintenance
  - Other (default)



If you use services, create a Consumer Group for each service





#### Or use other session attributes...





Use any of these session attributes to map sessions to Consumer Groups:

#### Session Attributes:

- Oracle user name
- Client O/S user name
- Client program name
- Client machine name
- Client id
- Service name
- Module name
- Action name

ORACLE

#### • Function being performed

"backup" (RMAN backup, defaults to BATCH\_GROUP)
"copy" (RMAN image copy, defaults to BATCH\_GROUP)
"dataload" (datapump, defaults to ETL\_GROUP)
"inmemory" (in-memory population, defaults to New in 12.1.0.2

dbms\_resource\_manager.set\_consumer\_group\_mapping(

attribute => 'ORACLE\_FUNCTION', value => 'INMEMORY', consumer\_group => 'BATCH\_GROUP');

# Managing CPU within a Database



### Configuring CPU Resource Manager Sample SQL Script

begin

dbms\_resource\_manager.create\_pending\_area;-

dbms\_resource\_manager.create\_plan(plan => 'myplan');

dbms\_resource\_manager.create\_plan\_directive(plan =>'myplan', group\_or\_subplan => 'critical\_group', shares => 5);

dbms\_resource\_manager.create\_plan\_directive(plan =>'myplan', group\_or\_subplan => 'other\_groups', shares => 1);

dbms\_resource\_manager.submit\_pending\_area;

end;

Mandatory 1<sup>st</sup> step for creating or modifying a Resource Plan

Create a new Resource Plan

Set resource allocations and other directives for each Consumer Group

Mandatory final step. Verifies the Resource Plan. If this passes, you can enable the Resource Plan.

### Configuring CPU Resource Manager Sample SQL Script

begin

end;

dbms\_resource\_manager.create\_pending\_area;

dbms\_resource\_manager.create\_cdb\_plan(plan => 'myplan');

dbms\_resource\_manager.submit\_pending\_area;

Mandatory 1<sup>st</sup> step for creating or modifying a CDB Resource Plan

Create a new CDB Resource Plan

Set resource allocations and other directives for each PDB

Mandatory final step. Verifies the CDB Resource Plan. If this passes, you can enable the CDB Resource Plan.

### Configuring CPU Resource Manager Enterprise Manager UI

#### ORACLE Enterprise Manager Cloud Control 12c

| 🐔 Enterprise 👻 🌀 Targets 👻 숡 Eavorites 👻 🥝 History 👻                                             |                               |                                                              |
|--------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------|
| Oemrep_Database ③     Oracle Database → Performance → Availability → Security → Schema → A     A | Administration 🗸              |                                                              |
|                                                                                                  | Initialization Parameters     |                                                              |
| Getting Started with Database Resource Manager                                                   | Storage                       | •                                                            |
| J J                                                                                              | Oracle Scheduler              | •                                                            |
| The Database Resource Manager helps you manage how resources such (                              | Replication                   | <ul> <li>icated among user sessions.</li> </ul>              |
| <b>VITIP</b> Administration Privileges Specify which users or roles have the sys                 | Migrate to ASM                | anager", which is required for configuring Resource Manager, |
|                                                                                                  | Resource Manager              |                                                              |
| Consumer Groups Define Consumer Groups, which are user sessive                                   | Database Feature Usage        | ource processing requirements.                               |
| <ul> <li>Consumer Group Mappings Define consumer group mapping rules, v</li> </ul>               | which are used to map user so | essions to consumer groups.                                  |

- Plans Define Resource Plans for a single database, which contain directives that specify how resources are allocated to Consumer Groups.
- Performance Statistics Monitor the statistics for the currently enabled Resource Plan.

### Monitoring and Tuning CPU Resource Manager

- Configuring a resource plan is an iterative process
  - Create a resource plan
  - Monitor application performance and Resource Manager metrics
  - Adjust resource allocations and re-monitor
- Changes to the resource plan are enforced immediately
  - Instance restart NOT required



### Monitoring and Tuning CPU Resource Manager Monitoring Basics

- v\$rsrc\_plan
  - Current resource plan
- v\$rsrc\_session\_info
  - Current and historical statistics for each session
- v\$rsrc\_consumer\_group
  - Current and historical statistics for each consumer group
- v\$rsrcmgrmetric\_history, v\$rsrcpdbmetric\_history
  - Minute-by-minute metrics for each consumer group or PDB





<u>Mon</u>itor using v\$rsrcmgrmetric\_history, v\$rsrcpdbmetric\_history or Enterprise Manager

ORACLE

# Managing Runaway Queries



### Managing Runaway Queries

- Runaway queries can be caused by
  - Badly written SQL
  - Bad execution plans
- Severely impact performance of well-behaved queries
- Very hard to completely eradicate!



Managing Runaway Queries Configure by Consumer Group

**Define** runaway query thresholds:

✓ Estimated execution time
 ✓ Elapsed time

✓ Amount of CPU time used

✓ Number of I/Os issued

✓ Bytes of I/O issued

✓ Number of logical I/Os issued New in 12c

Manage runaway queries:

 Switch to a lower-priority consumer group

✓ Abort call

 $\checkmark$  Kill session

✓ Log to SQL Monitor <sup>Ne</sup>

New in 12c

### Managing Runaway Queries Workload Management in a Cloud Database



# New in 12c New in 12c New in 12c

| Column                | Description                                                                                                                                                               |  |  |  |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| RM_CONSUMER_GROUP     | Current consumer group name                                                                                                                                               |  |  |  |
| RM_LAST_ACTION        | Action that was taken (if any):<br>SWITCH TO <consumer group="" name=""><br/>CANCEL_SQL<br/>KILL_SESSION<br/>LOG_ONLY<sup>New in 12c</sup></consumer>                     |  |  |  |
| RM_LAST_ACTION_REASON | The reason why the action above was<br>taken:<br>SWITCH_CPU_TIME<br>•SWITCH_IO_REQS<br>•SWITCH_IO_MBS<br>•SWITCH_ELAPSED_TIME <sup>New in 12c</sup><br>•SWITCH_IO_LOGICAL |  |  |  |
| RM_LAST_ACTION_TIME   | The time at which this action was taken                                                                                                                                   |  |  |  |

