Oracle TDE for large databases

Oracle OpenWorld – October 2017
CCC Information Services

Steve Young – DBA Manager syoung1@cccis.com
Fei Dong – Sr. Oracle DBA fdong@cccis.com
Steve Rosenblum – Sr. Oracle DBA srosenblum@cccis.com
Auto Physical Damage

- 12M claims per year in US
- 18 of top 25 carriers
- Statistically significant data for 97% U.S. CBSAs
- 125M photos/year
- ~150M historical claims
- $500B in historical claim data
- 16,000+ staff appraiser
- Industry's ONLY Fully-integrated, cloud-based platform

Auto Casualty

- Injury Sciences and AIS Acquisitions
- 25+ years of scientific data
- Science and medical based EXPERTISE
- Review 24,000 repair facilities
- $10B in medicals annually
- Manage 80M pages of documents annually
- 17 of top 25 carriers
- 125M historical claims
- 80M pages of documents annually
Implementing Oracle TDE at CCC

Business Case for Encryption

- No ‘regulated data’ stored in our databases
- Didn’t need to comply with regulations
- Provide customers piece of mind that their data is protected
- Address the potential reputational risk of loss of data
- CCC Business decision in 2015:
 Encrypt ALL customer data by Q3/2017
Implementing Oracle TDE at CCC

CCC DataCenter Topography

Primary Datacenter
- Exadata RAC
- Linux RAC
- Legacy Solaris
- 80% Prod
- 20% Non-Prod

Remote Datacenter
- Exadata RAC
- Linux RAC
- Legacy Solaris
- 80% Non-Prod
- 20% D/R
- Load Testing

Hosted Datacenter
- 2-3 key applications
- Linux RAC
- Prod databases
- Non-Prod
- D/R

Cloud Services
- Primarily Non-Prod
- 24 Pre-Prod DBs
- Soon to be Prod
- EC2 – Oracle
- RDS – SQL Server/ Aurora
Our IT Shop

- Java / Oracle
- 24 x 7 operations
- Oracle Linux, RAC
- Exadata environment:
 - Full Exadata rack, high capacity disk
 - X5 Production, X3 Active Standby, X2 D/R
 - Heavily partitioned, large databases (120TB)
 - Limited to 11g R2 due to legacy application compatibility
Our Challenges

- 24/7 environment
- Busy application release schedule
- Complicated enterprise architecture:
 - Consolidated databases with multiple applications
 - Multiple interacting databases
 - Coordination difficulty
- Disk space constraints
- Can only run production on standby database for limited time
Our Approach to Data Encryption

- **Exadata databases:** encrypt using Oracle TDE
- **Non-Exadata databases:** encrypted via SAN solution
TDE Options Considered

Oracle OpenWorld October 2017
Implementing Oracle TDE at CCC

Options for Implementing TDE

Option 1 - Create new encrypted tablespaces

• Move all objects to encrypted tablespaces during maintenance windows

• Create future partitions in encrypted tablespaces
Implementing Oracle TDE at CCC

Option 1 – Create new encrypted tablespaces

<table>
<thead>
<tr>
<th>PROS</th>
<th>CONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Standard Methodology/simple steps</td>
<td>• Time consuming & tedious</td>
</tr>
<tr>
<td>• Leverage online redefinition to reduce downtime</td>
<td>• Operational investment depending on targeted objects</td>
</tr>
<tr>
<td></td>
<td>• Some complex objects cannot use alter/move</td>
</tr>
<tr>
<td></td>
<td>• Requires additional space for online redefinition</td>
</tr>
<tr>
<td></td>
<td>• Requires several downtime windows</td>
</tr>
</tbody>
</table>
Options for Implementing TDE

Option 2 - Logical Standby

• Create all table spaces encrypted on standby
• Move all objects to standby database, switchover, rebuild old primary database as new standby
Option 2 - Logical Standby

<table>
<thead>
<tr>
<th>PROS</th>
<th>CONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Minimizes database downtime / unavailability</td>
<td>• Complicated for complex, large databases</td>
</tr>
<tr>
<td></td>
<td>• Additional disk space required</td>
</tr>
</tbody>
</table>
Options for Implementing TDE

Option 3 – Off-line datafile conversion

- Need to take an outage!
- New feature for version 11.2.0.4+ & 12.1.0.2+
- Can be done while database is open or mounted
Option 3 - *Off-line datafile conversion*

<table>
<thead>
<tr>
<th>PROS</th>
<th>CONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Fast and relatively simple</td>
<td>• Requires application downtime</td>
</tr>
<tr>
<td></td>
<td>• Performance impact</td>
</tr>
</tbody>
</table>
Options for Implementing TDE

Option 4 – fast datafile conversion with DataGuard

- Requires a physical standby database
- Production workload performance is unaffected
- Minimizes application downtime
Implementing Oracle TDE at CCC

Option 4 – fast datafile conversion with DataGuard

<table>
<thead>
<tr>
<th>PROS</th>
<th>CONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Minimizes downtime</td>
<td>• Requires physical standby database</td>
</tr>
<tr>
<td>• Simple, straightforward solution</td>
<td>• Additional disk space required if you don’t already have a standby database</td>
</tr>
<tr>
<td>• Less impact to the production system</td>
<td></td>
</tr>
</tbody>
</table>
Implementing Oracle TDE at CCC

Implementation Option Matrix

<table>
<thead>
<tr>
<th>OPTION</th>
<th>PROS</th>
<th>CONS</th>
</tr>
</thead>
</table>
| 1. Create new encrypted tablespaces | • Standard Methodology/simple steps
• Leverage online redefinition to reduce downtime | • Time consuming & tedious
• Operational investment depending on targeted objects
• Some complex objects cannot use alter/move
• Additional space for online redefinition
• Requires several downtime windows |
| 2. Logical Standby Database | • Minimizes database downtime/unavailability | • Complicated for complex, large databases
• Additional disk space required |
| 3. Fast datafile Conversion | • Fast and simple | • Requires application downtime
• Performance impact |
| 4. Fast Datafile conversion to TDE with DataGuard | • Minimizes downtime
• Simple, straightforward solution
• Less impact to the production system | • Requires a physical standby database
• Additional disk space required if you don’t already have a standby database |
Implementing Oracle TDE at CCC

CCC Solution: *Fast datafile conversion with DataGuard*

Why?
- Encrypt all data in our databases
- Large databases
- Limited extra storage
- Limited downtime window
- Limited time to run applications on our Standby databases
- Complex application environments: unusual data types, heavily partitioned & highly integrated apps
- Existing DataGuard environment
How we implemented TDE

Oracle OpenWorld October 2017
Implementing Oracle TDE at CCC

CCC Solution: *Fast datafile conversion with DataGuard*

Preparation
- Consult and review approach with Oracle

- Identify pre-requisites:
 - Existing physical standby per Oracle MAA best practice
 - Patching to enable the new feature – see MOS 2148746.1

- Build TDE key management strategy

- Test & verify assumptions:
 - Encrypt on standby in given timeframes
 - Encrypt partial database --- YES
 - Encrypt partial data file --- YES
Primary Data Center

X5 Exadata (Primary)
Oracle 11.2.0.4

Data Guard replication

X3 Exadata (Local Standby)
Oracle 11.2.0.4

Remote Datacenter (Disaster Recovery Site)

X2 Exadata (Remote Standby)
Oracle 11.2.0.4
Implementing Oracle TDE at CCC

Implementation Approach

- Encrypt standby, perform switchover
 - Stop recovery for standby
 - Convert datafiles - issue encryption command for each datafile

 SQL> alter database datafile 'xxxxx' encrypt;

 - Optional: use dbverify to confirm used blocks are encrypted
 Unix>dbverify file='xxxxx' USERID=<user>/<password>

- Resume recovery to sync with primary
- Switchover

- Encrypt (original) primary & switchover
Implementing Oracle TDE at CCC

Performance Considerations

- 3 databases with total size of 140TB
- About 500 datafiles to encrypt
- Strategies to encrypt:
 - Ran multiple encryption threads in parallel
 - Group datafiles threads based on similar sizing
- Encryption time range from 5hr/TB on X2 - to 2.5hr/TB on Exadata X5
Implementing Oracle TDE at CCC

To improve our chances of success...

- Attended Oracle Database 12C Security Workshop
- Created use cases
- Built a test lab
- Lots of testing CCC & Oracle {patches needed to address specific issues}
- Oracle verified assumptions
- Oracle certified the approach
 - Multiple approaches (different methodologies in prod and non-prod)
- Checked Oracle TDE performance patches
- Consulted with other companies about lessons learned
- Held conference calls with Oracle support and TDE development teams
- Researched Oracle TDE whitepapers!
Implementing Oracle TDE at CCC

Lessons Learned

- Encryption keys
 - Make sure you have all the patches needed
 - Backup the keys and don’t delete them!

- Release 12 much easier to implement TDE, but not an option for us

- Performance after encryption – Oracle estimates were accurate

- Build a test lab with multiple clusters; test different scenarios

- Find out what approaches work best for your different objects
Implementing Oracle TDE at CCC

References:

- **Whitepapers:**
 - Transparent Data Encryption (TDE) Frequently Asked Questions
 - Oracle Advanced Security Transparent Data Encryption Best Practices
 - Converting to Transparent Data Encryption with Oracle Data Guard using Fast Offline Conversion

- **Oracle Security Solutions:** Oracle Database 12C Security Workshop
Questions ?
Thanks for Attending!
APPENDIX

Patch level to enable fast datafile conversion for 11.2.0.4 & 12.1.0.2

see MOS 2148746.1