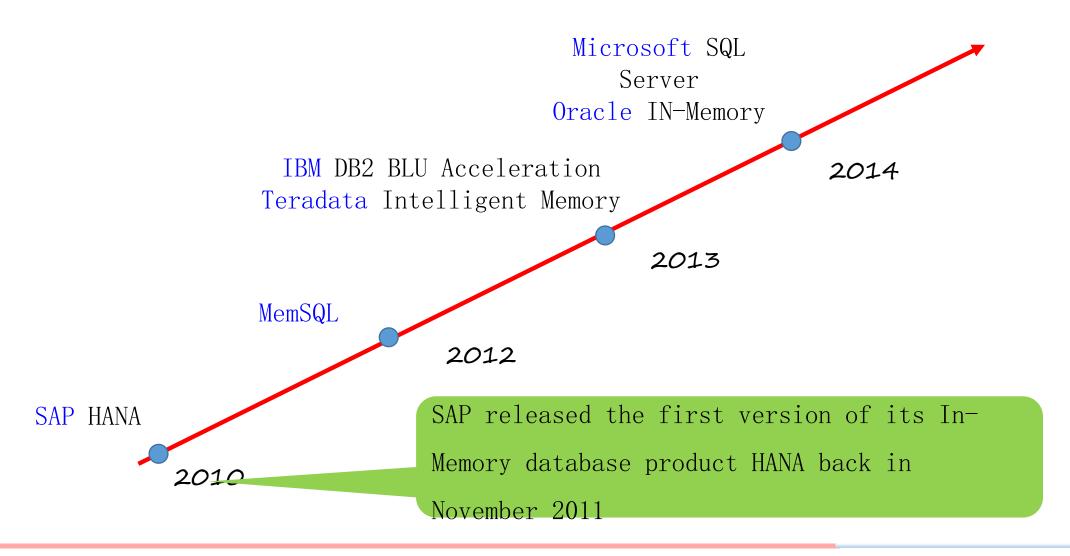
Best Practices for Getting Started with Oracle Database In-Memory 12C

Xinghua Wei WOQUTECH 2017.10

WHO AM I

- The founder of DBGeeK user group
- Oracle ACE Associate
- Oracle Database Performance geek(10+ years)
- Troubleshooter
- Worked on WOQU Technology http://woqutech.com


- Memory is the future
- Why IM high performance
 - Column format
 - SIMD
 - Compression
 - Data Skipping
- When to Use Oracle Database In-Memory
- The impact of enabling IM feature on OLTP
- The Advantage of Oracle IM compares the other IM databases

In December 2013 IDC firm predicted that "Memory Optimized ("In-Memory") Database Technology is taking over Enterprise Databases".

Memory is the new disk

Memory is the future

- Business-driven
- Data-driven
- The maturity of the technical conditions

Memory is the future

- Business-driven
- Data-driven
- The maturity of the technical conditions

Latency Numbers Every Programmer Should Know

	Latency Number Every Prog	rammer	Should	Knov	V		
Latency Comparison Number							
L1 cache reference	0.5	ns					
Branch mispredict	5	ns					
L2 cache reference	7	ns					14 imes L1 cache
Main memory reference	100	ns					20× L2 cache, 200× L2 cache
Compressor 1k bytes with zippy	3,000	ns	3	us			
Send 1K bytes over 1 Gbps network	10,000	ns	10	us			
Read 4K randomly from SSD*	150,000	ns	150	us			\sim 1GB/sec SSD
Read 1MB sequentially from memory	250,000	ns	250	us			
Round trip within same datacenter	500,000	ns	500	us			
Read 1MB sequentially from SSD*	1,000,000	ns	1,000	us	1	ms	$^{\sim}1\mathrm{GB/sec}$ SSD,4 $ imes$ memory
Disk seek	10,000,000	ns	10,000	us	10	ms	20 imes datacenter roundtrip
Read 1MB sequentially from disk	20,000,000	ns	20,000	us	20	ms	80 imes memory, $20 imes$ SSD
Send packet CA->Netherlands->CA	150,000,000	ns	150,000	us	150	ms	

Memory is the future

- Business-driven
- Data-driven
- The maturity of the technical conditions

Memory is the future

- Driven by business
- Driven by the amount of data

• The

Tape is Dead, Disk is Tape, Flash is Disk, RAM Locality is King. Jim Gray, 2006

Oracle In Memory Option

- First introduced in 12.1.0.2 release
- Accelerate data analysis, not for oltp
- The other IMDB product of oracle , timesten , for oltp
- Dual-Format: Column and Row
- Oracle optimizer is smart

Oracle In Memory Option

- The data consistency between the two formats
- The data in IM column format only resides in RAM
- In 12CR2 can sync the data in column format to disks

Oracle In Memory Option

- IBM DB2 BLU Acceleration is very similar to Oracle IMDB in the dual-format architecture
- SAP HANA dual-format architecture, but cannot be both simultaneously
- Oracle perfect ? pay some price for the data consistency between row and column format

Why the IMDB is high performance

DB GEEK

Why high performance

- Column
- SIMD
- Compression
- Data Skipping

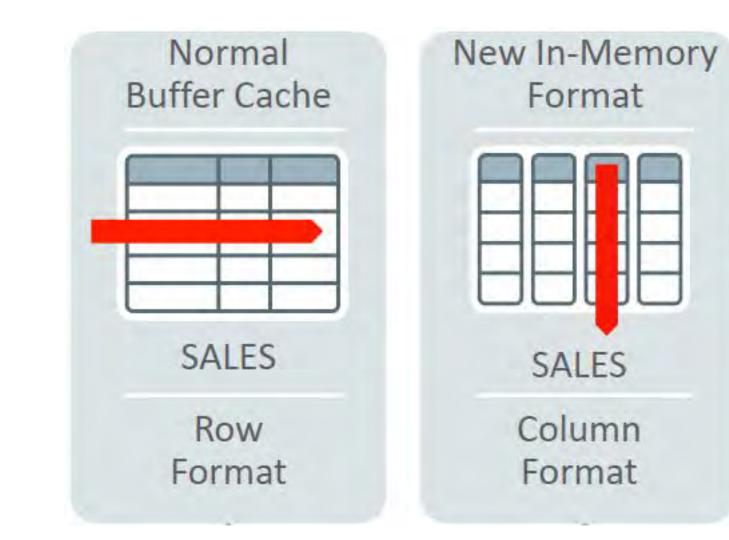
Why is high performance

- Column Format
- SIMD
- Compression
- Data Skipping

Why IM high performance

- Column Format
- SIMD
- Compression
- Data Skipping

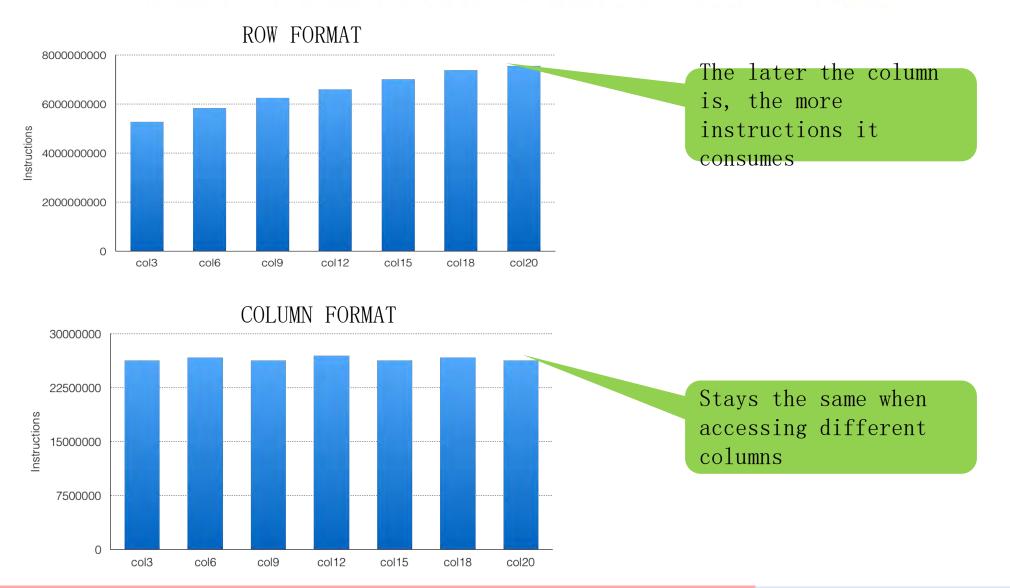
Why IM high performance


- Column Format
- SIMD
- Compression
- Data

Column Format

- Column data tightly packed together
- Improve access efficiency
- Reduce memory traffic
- The cost of accessing to any column is the same

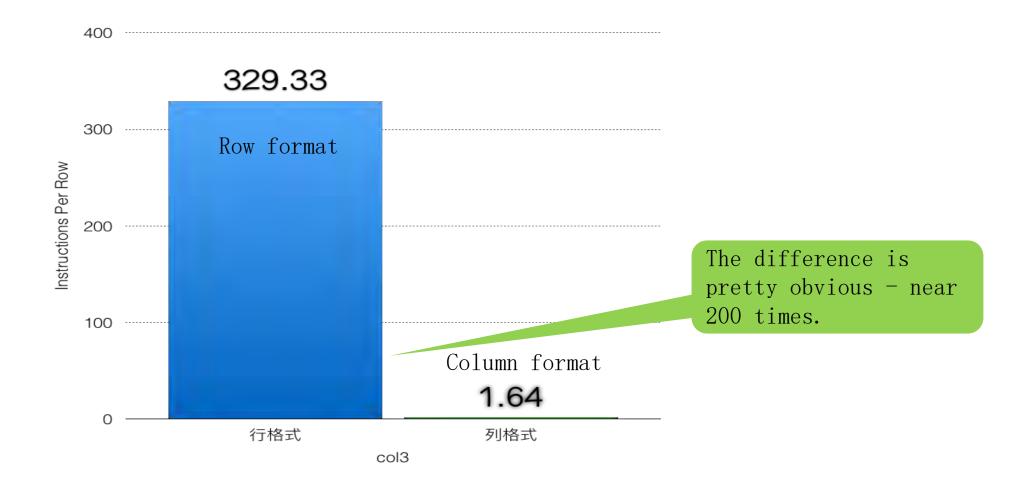
	The cost	of acessing to different
SQL> d	lesc wrh	Cached the table in Oracle
Name	Туре	buffer cache, and populated it
		into IM
 ID1	NUMBER	
ID1 ID2	NUMBER	
ID3	NUMBER	
ID4	NUMBER	Count the total number of rows
ID5	NUMBER	for column 3, 6, 9, 12, 15, 18
ID6	NUMBER	
ID7	NUMBER	and 20 respectively
ID8	NUMBER	select count(ID3) from wrh where $id1>1$ and
ID9	NUMBER	
ID10	NUMBER	id2<1000000;
ID11	NUMBER	select count($ID6$) from wrh where id1>1 and
ID12	NUMBER	
ID13	NUMBER	id2<1000000;
ID14	NUMBER	select count(ID9) from wrh where id1>1 and
ID15	NUMBER	
ID16	NUMBER	id2<1000000;
ID17	NUMBER	select count(ID12) from wrh where id1>1 and
ID18	NUMBER	
ID19	NUMBER	id2<1000000;
ID20	NUMBER	select count(ID15) from wrh where id1>1 and
		id2<1000000;


Let

CPU Performance Counters on Linux

# perf stat -d -p 26031	sleep 5			Measure what's going on inside	
Performance counter sta	ats for process id '26031'	:		a	
				CPU!	
11.767587	task-clock (msec)	#	0.002	CPUs utilized	
3	context-switches	#	0.255	K/sec	
1	cpu-migrations	#	0.085	K/sec	
374	page-faults	#	0.032	M/sec	
14, 850, 049	cycles	#	1.262	GHz	(51.26%)
9, 410, 174	stalled-cycles-frontend	#	63.37%	frontend cycles idle	(55.56%)
		#	0.36	stalled cycles per insn	(66.22%)
1,861,488	branches	#	158.188	M/sec	(66.23%)
30,688	branch-misses	#	1.65%	of all branches	(66.24%)
4, 916, 126	L1-dcache-loads	#	417.768	M/sec	(21.91%)
1,054,064	L1-dcache-load-misses	#	21.44%	of all L1-dcache hits	(17.10%)
299, 978	LLC-loads	#	25.492	M/sec	(24.23%)
240,057	LLC-load-misses	#	80.02%	of all LL-cache hits	(32.41%)

CPU instructions consumed



RA APPU

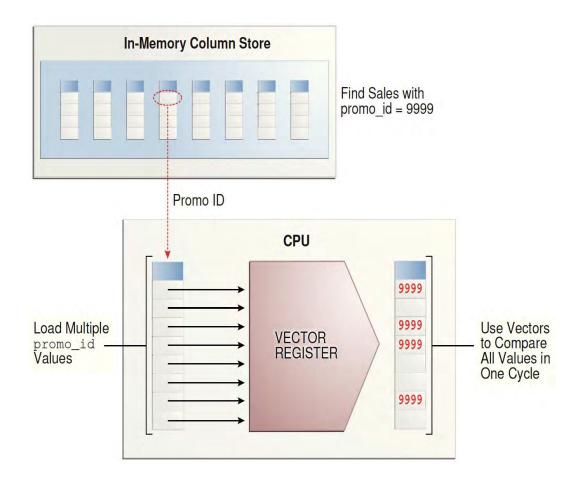
Let

CPU instructions consumed by each row

SIMD Vector Processing

- SIMD, Single instruction, multiple data
- Get the CPU to simultaneously process multiple values in a vector
- Modern Intel CPUs Have 16-32 SIMD registers
- Applies only to column format
- The columnar data is packed tightly together,

take full advantage of the CPU features such as SIMD, superscalar, the friendly data structure is the key point.


The evolution of SIMD on Intel CPU

Instruction set	MMX	SSE	SSE2/SSE3/ SSSE3/SSE4	AVX/AVX2	AVX3 or AVX512
Register Size	64 Bits	128 bits	128 bits	256 Bits	512 bits
# Registers	8	8	16	16	32
Register Name	MM0 to MM7	XMM0 to XMM7	XMM0 to XMM15	YMM0 to YMM15	ZMM0 to ZMM31
Processors	Pentium II	Pentium III	Pentium IV to Nehalem	Sandy Bridge - Haswell	Skylake
Other		Only four 32 bits single precision floating point numbers	Usage expansion (two 64 bits double precision, four 32 bits integers and up to sixteen 8 bits bytes)	Three operand instructions (non destructive) : A+B=C rather than A=A+B Alignements requirements relaxed	

SIMD Vector Processing

The CPU evaluates the data as follows: 1. Loads the first 8 values from the promo_id column into the SIMD register, and then compares them with the value 9999 in a single instruction.

- 2. Discards the entries.
- 3. Loads another 8 values into the SIMD register, and then continues in this way until it has evaluated all entries.

Which SIMD extension does your CPU support?

\$ grep "^model name" /proc/cpuinfo | sort | uniq model name : Intel(R) Xeon(R) CPU E5-4627 v2 @ 3.30GHz

\$ grep ^flags /proc/cpuinfo | egrep "avx|sse " | sed 's/ /\n/g' | egrep "avx|sse " | sort | uniq

avx

sse In my environment, support AVX and sse2 SSEx extensions, does not support avX2, AVX512 extensions.

ssse3

Which extension is Oracle actually using?

\$ pmap 8527 | grep libshpk

00007feeeb310000 2484K r-x-- /u01/app/oracle/product/12.2.0/dbhome_1/lib/libshpkavx12.so

00007feeeb57d000 2044K ----- /u01/app/oracle/product/12.2.0/dbhome_1/lib/libshpkavx12.so

00007feeeb77c000 132K rw--- /u01/app/oracle/product/12.2.0/dbhome_1/lib/libshpkavx12.so

In my environment the AVX has been used by oracle.

Which extension is Oracle actually using?

\$ find

/u01/app/oracle/product/12. 2. 0/dbhome_1/rdbms/admin/libshpkavx12. def /u01/app/oracle/product/12. 2. 0/dbhome_1/rdbms/admin/libshpkavx212. def /u01/app/oracle/product/12. 2. 0/dbhome_1/lib/libmk1_avx512. so /u01/app/oracle/product/12. 2. 0/dbhome_1/lib/libmk1_avx512_mic. so /u01/app/oracle/product/12. 2. 0/dbhome_1/lib/libmk1_vml_avx512. so /u01/app/oracle/product/12. 2. 0/dbhome_1/lib/libshpkavx212. so /u01/app/oracle/product/12. 2. 0/dbhome_1/lib/libshpkavx212. so

• 12CR1, does not support AVX2, AVX512 extensions

• 12CR2, supports AVX2, but I am not sure about AVX512, through Oracle lib directory already exists AVX512 lib

There are two important benefits :

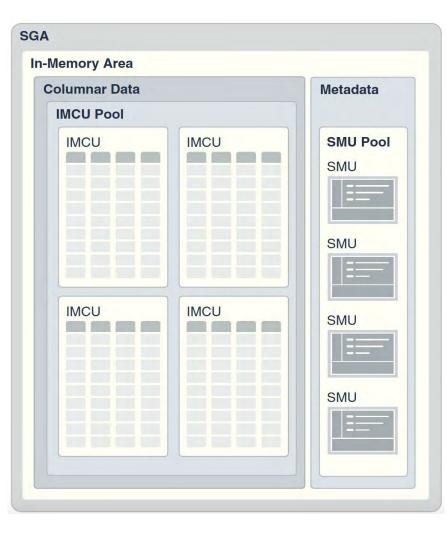
- Less memory traffic
- \bullet Decompression on the fly (probably) benefits from CPU $\rm L2/L3$

cache The general purpose of compression is to save space, But for IM it 's just a side effect

- CPU is faster
- RAM access is the bottleneck of modern computers
- Want to wait less? Do it less!

Decompression on - the - fly

- Query can read the data without decompression
- Only decompress when the data need to return
- \bullet Read the compressed data can benefit from the CPU L2 / L3 cache
- Reducing memory writes

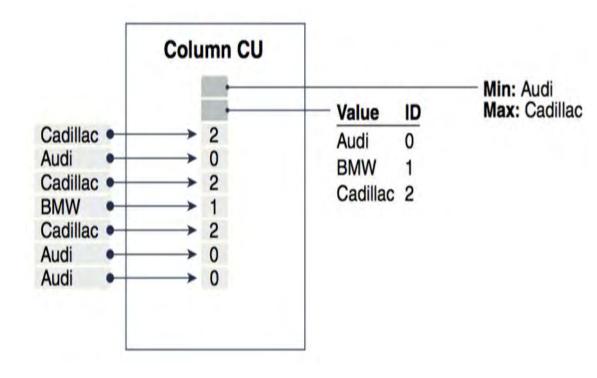

Different compression levels

COMPRESSION LEVEL	DESCRIPTION
NO MEMCOMPRESS	Data is populated without any compression
MEMCOMPRESS FOR DML	MEMCOMPRESS FOR DML
MEMCOMPRESS FOR QUERY LOW	Optimized for query performance (default)
MEMCOMPRESS FOR QUERY HIGH	Optimized for query performance as well as space saving
MEMCOMPRESS FOR CAPACITY LOW	Balanced with a greater bias towards space saving
MEMCOMPRESS FOR CAPACITY HIGH	Optimized for space saving

It is recommended to use the FOR QUERY compression algorithm, SQL queries execute directly on the compressed data

IMCU , CU, Local Dictionary

- The IM stores data for a single object (table, partition, materialized view) in a set of IMCUs.
- An IMCU stores columnar data for one and only one object.


IMCU , CU, Local Dictionary

Column CUs					
prod_id	cust_id	time_id	channel_id		

- A Column Compression Unit (CU) is contiguous storage for a single column in an IMCU.
- Every IMCU has one or more CUs.

IMCU , CU, Local Dictionary

- A CU is divided into a body and a header
- The header contains metadata about the values stored in the CU body
- It may also contain a local Dictionary
- The local Dictionary is a sorted list of the distinct values in

that column and their

corresponding dictionary codes

A exception of Local Dictionary

SQL> select /*+ parallel(16) */ count(*), count(distinct

id) from c1;

COUNT (*) COUNT (DISTINCTID)

The table c1 has only one column, its value is generated according to a sequence.

138572154 138572154

For primary columns, date columns, or the number of distinct value are very high columns, the local dictionary takes up a lot of space

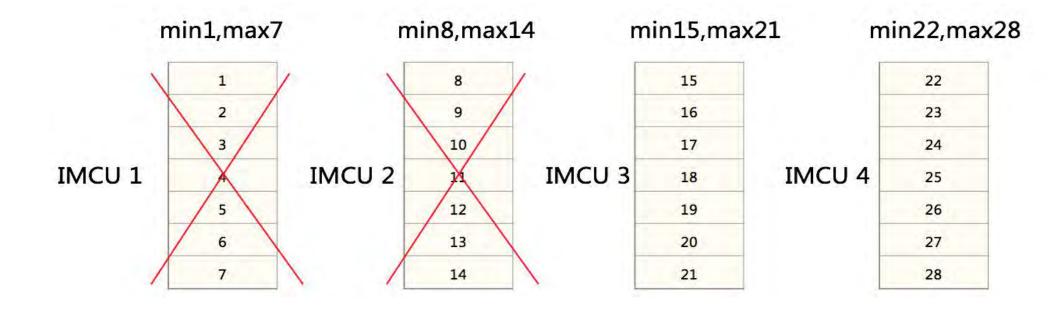
A exception of Local Dictionary

Compression method	Original	After compression	Ratio
memcompress for query low	1688 M	2177 M	-30%
	Bigger origin		

Data Skipping

- The traditional btree indexes have no advantage in the data analysis
- Data skipping technology the major memory database vendors have
- Tell the database quickly which blocks do not need to be accessed
- Automatically create and maintain, only exists in memory

Reduce


Storage Index

- The Storage Index is already available in the first release of Exadata in 2008
- Now this feature has been migrated to IM
- Tell the database which blocks do not need to visit
- Each CU 's head records the maximum and minimum values

Storage Index

For example, for queries such as Where prod_id> 14 and prod_id <29, according to the maximum minimum information recorded by the CU header, the IMCU 1 and IMCU 2 are skipped directly during the scan.

The impact of enable and disable storage index

Retrieve 10% rows out of a 20 GB table:

1.

select /*+ full(wxh) INMEMORY_PRUNING */count(object_name),count(object_type) from wxh where id>1 and id<10000000;

2.

select /*+ full(wxh) NO_INMEMORY_PRUNING */count(object_name), count(object_type)
from wxh where id>1 and id<100000000;</pre>

The impact of enable and disable storage index

SQL	Elapsed Time	
<pre>select /*+ full(wxh) INMEMORY_PRUNING */ count(object_name), count(object_type)</pre>	30 ms	Speed up 5x
<pre>select /*+ full(wxh) NO_INMEMORY_PRUNING */ count(object_name),count(object_type) from wxh where id>1 and id<100000000;</pre>	160 ms	

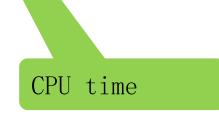
- The (NO_)INMEMORY_PRUNING hint can enable/disable storage indexes.
- You haven't a reason to disable the storage index in the production environment.

Retrieve 15% rows out of a 20 GB table:

1.

select /*+ full(wxh) */count(object_name) from wxh where object_id>1 and object_id<10000;</pre>

2.

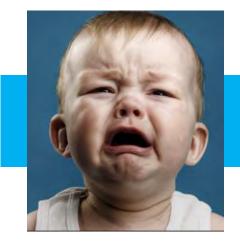

select /*+ full(wxh) */count(object_name) from wxh where object_id>1 and object_id<10000;</pre>

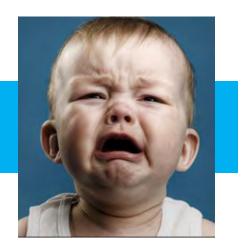
The IM is 110 times faster than buffer cache

Metric	Buffer Cache	In-Memory	Ratio
task-clock (msec)	11684 ms	106 ms	110
cycles	41, 357, 721, 213	179, 523, 876	230 Speed up 110
instructions	41, 453, 927, 963	425, 354, 074	97
in s per cycle	1	2.37	0. 42

IM vs Parallel

- Parallel Execution doesn' t mean "work smarter"
- You' re actually willing to accept to "work harder"
- IM is smart
- IM+Parallel is a best practice
 - More slaves
 - more PGA_AGGREGATE_TARGET
- IM has a Bigger IPC, insns per cycle , higher is better




When to Use Oracle Database In-Memory

Life cycle of a

- Column format
- Storage Index
- Compression
- SIMD

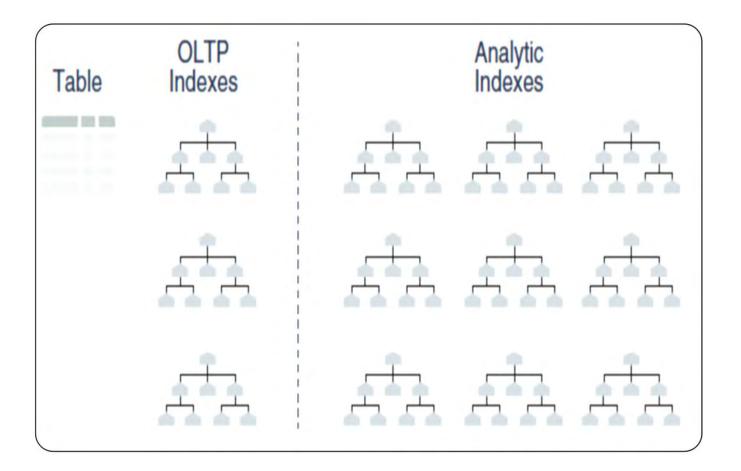
The Solution of accelerate data processing

- In-Memory accelerates join operations through Bloom filter
- Join (12CR2 New feature) join groups eliminate the performance overhead of decompressing and hashing column values
- In-Memory also converts the join into a filter operation
- Virtual (12CR2 New feature), you can

further improve performance for some CPU resource-intensive queries

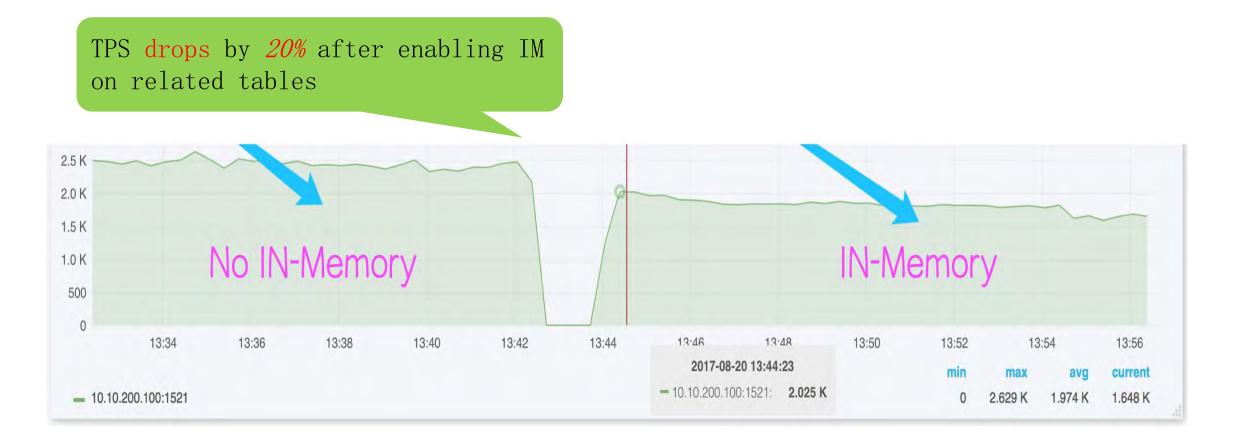
The

The Solution of accelerate data processing


Why oracle try its best to convert the join into a
filter operation

Because, Filter is very efficient through SIMD vector Processing.

The impact of enable IM on OLTP


- IM can indirectly improve the performance of OLTP system
- These analytic indexes are no longer needed
- Reduce the overhead of

maintaining the indexes

A coin, there are always two sides

The impact of enabling IM on OLTP

Based on the swingbench tool, 25 concurrent users, 10G of data volume.

The Advantage of Oracle IM

- Column Format
- SIMD
- Data Skipping
- Compression

The technology about high performance these IM database vendors are using is similar

The Advantage of Oracle IM

	Oracle Database In-Momory 12.2.0.1	SAP HANA SPS11	Microsoft SQL Server 2016	IBM DB2 BLU 10.5	MemSQL 5.0
Release date	Apr 2017	November 2015	June 2016(TBD)	June 2013	March 2016
Columnar format	~	~	~	~	 Image: A start of the start of
Compression	1	\checkmark	1	\checkmark	~
SIMD vector processing	~	\checkmark	×	\checkmark	~
Data skipping	\checkmark	\checkmark	 ✓ 	\checkmark	~
In-memory aggregation	~				
In-memory OLTP optimizations			~		\checkmark
Size not limited by DRAM	~	\checkmark	×	\checkmark	\checkmark
Cluster(scale-out) support	~	\checkmark			\checkmark
Dual-format in one database	1			\checkmark	
Consistent updates	1	× *	~		
100% application transparency	~				
Persistence of Column Store	1	\checkmark	\checkmark	\checkmark	\checkmark
Query on Secondary Replica	~		~		\checkmark
Materialized View with Column Store	1				
Integration with R	1	\checkmark	V	\checkmark	~
Memory-Only columns		\checkmark		\checkmark	

The Advantage of Oracle IM

These enterprise features is

real advantage of oracle IM

- Scalability
 - RAC
 - Active Data Guard
- Application transparency
- Mixed workload support

天职 WOQU TECH

Thank You!

