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About Thick Database

A code development strategy A.k.a., Thick

— Maximize use of database code to simplify Database Approach,

. Thick Database
the user interface Paradigm, Smart

— The user’s device (client) runs minimal code | Database (SmartDb),
oL - C Fat Database
* Name plays off the term “thin client
— A “Year of the Internet” term

— Means most processing occurs on a server
— Slightly outmoded now

 Thick database means “thin client” %g

Provenance

» Topic is rarely seen now, but not new
— Using database features to enforce data integrity
defined by business rules is obvious
« Started trending many years ago

— ODTUG Business Rules Symposium Day 2001-2004
» Organized by Dr. Paul Dorsey of Dulcian, Inc.

— Thoughts evolved into Thick Database
» Sessions starting around 2006
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Topic is Still Active

dulcian.com

— Look in Resources | Conference Presentations - Thick Database
Mike Smithers’ Blog

— https://mikesmithers.wordpress.com/tag/thick-database-paradigm/
Toon Koppelaars, Oracle Real World Performance Group

— https://www.youtube.com/watch?v=8jiJDflpw4Y

— http://'www.prohuddle.com/webinars/ToonKoppelaars/ThickDB.php
Bryn Llewellyn, Distinguished Product Manager (Oracle)

— https://blogs.oracle.com/plsgl-and-ebr/entry/why_use_pl_sq|l Eg

Guiding Principles for Code

» Database code that implements business rules
in PL/SQL

» Database views to represent complex business
objects (SQL)
—Each view has an accompanying application

programming interface (API)
* Written in PL/SQL

—Interaction is with view and API ﬁ ﬁ
[ [
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What is a Business Rule?

» A statement of a behavior, definition, or constraint that
allows an organization to achieve its goals.
» Systems analysis is all about determining business rules
— Often business requirements are equated with business rules
— Business rules used to communicate business with business
users
A full definition of business rules can identify all aspects

of an application
— Possible exceptions: technical details like development

software, server specifics

| Topic is expanded in Appendix A. |

Options for Business Rule Systems

» Simple
— Store definition in a table (statement, name, 1D)
— Reference definition to an application specification

— Represent the rule in a test plan

* Moderate
— Everything in “Simple” plus...
— A home-grown code generator creates application code (and optionally Ul
code) from business rule definitions
— Requires setting up a “language” to represent all rules
— Changing the BR definition requires only regenerating the application code

Complexity, Flexibility

* Extreme
— Everything in “Moderate” plus...
: 7 — Instead of a code generator, a home-grown runtime engine that reads

business rule definitions at runtime and creates application on the fly
— Changing the BR definition immediately affects the application runtime
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Thick Benefits

» Application accuracy
— Business rules match application code
— Test plans can be generated from business rules
» Productivity
— Can greatly simplify user interface code
» Code reusability
— Ease of application maintenance
» Better performance
— Code is close to data storage — fewer messages, easy access
— Views also reduce the number of round trips needed

* Proper use of staff
— User interface developers can concentrate on Ul code @

— Database code developers can concentrate on database code
to support the Ul

Simplifies User Interface Work

« Database views can represent multiple tables
— Arbitrarily complex logic
— Aggregate functions: MAX(), COUNT()
— Set operators: UNION, MINUS
— Calculation functions: first_salary()
— Even: a PL/SQL function cast as a table
* One view per application Ul page
— The page submit commits the entire page
— Reminds one of mainframe “block submit”

— Back end code deals the data into
the proper tables
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» Ul technology changes
— If code is in database, only Ul needs rewriting
— Application logic in database can carry forward
» Table refactoring
— For example, if a set of tables used in Ul views is
normalized into more tables

« Joins and query of view can be updated
» Ul may not need to change

Some Changes Require Less Rewriting

Traditional Client UI Screen
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Front-end Tool “Agnostic”

» Application Express (APEX)
» Application Development Framework (ADF)
» Mobile Application Framework (MAF)
* Forms
» JavaScript
— JavaScript Extension Toolkit (JET)
— Mobile Application Accelerator (MAX)
— Visual Builder Cloud Service (VBCS, formerly ABCS)
e PL/SQL Toolkit
» PHP: Hypertext Processor (PHP)
* Rails
» ColdFusion
* (whatever)

Tools’ Use of Thick Database

APEX
Forms
— | TS
Database
ADF < » ADF BC 4  \4 v
> | View1 View 2
T
I MAF B Services ::
JavaScript |, REST TTabl il !
It N Services [ Table2] ]
al pes) —[—H_[Table 3
I P (something [
(others) < or nothing)
\_/
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Drawbacks

» Time and effort required
— Design and set up
— Documenting standards
— Instructing staff
* Requirements on the IT shop side
— Architect/database designer

— Expert coder
» Develop generic code “engines” to run and/or generate business rules

code
* Need buy-in from management 00
— For all of the above Pl

When Not to Use Thick Database

« If your organization is dedicated to “database
independence”
— Changing from Oracle to SQL Server, for example
— This is a BIG DEAL

— Forces applications to use ANSI SQL only
» Applications are “thicker” than the database

« If your applications have few or simple business rules
— Overhead of Thick Database may not be worthwhile
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How Many Schemas?

* Normal set up these days
— One schema owns the data and code

— Another schema runs the application and accesses data and
code

— Control access by grants
e Variation @
— The data owner schema is separate from the code owner

schema -
— Even more secure: another layer for grants E %
(1) Why Use PL/SQL? By Bryn Llewellyn 17
Agenda

 What is Thick Database?

\ e Thick Database techniques ]

e Level of Thick

QN
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O] advisor’ San Francisco ~

About San Francisco  Hotels  Vacation Rentals  Restaurants Thingstodo  Flights ee

San Francisco Marriott Marquis

@@@®(O) 5,547 Reviews #26 of 230 Hotels in San Francisco

@ 780 Mission Street, San Francisco, CA 94103-3113 % +1844-631-0595 O3 Hotel website O Save

Ooooo Reviewed yesterday m

“The towels were so thick there
| could barely close my suitcase.”

Yogi Berra
Level @ Contributor

Database Components

Tables — the usual

— No grants or synonyms to other schemas
Table API packages

— INSERT, UPDATE, DELETE, (SELECT) procedures
— Call business rules validation code
Views on the tables

— Queries can be arbitrarily complex
INSTEAD OF triggers on the views
— Call the table API procedures
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Table API

» A PL/SQL package per table

— All data modification (“DML") is accomplished through
procedures

« INS()

« UPD()
« DEL()
« LCK()

* Procedures are called only from INSTEAD OF .@
view triggers

e NO gl’ants to table at all Code samples are available r/llr

in Appendix B.

Optional Table API Components

» A function can act as SELECT
— A bit trickier and not always necessary

— Virtual Private Database policies can filter data to all
SELECT statements instead

» Package enforcement global variable

— Trigger uses it to prevent “DML” statements outside of the
package

» Applies only to table owner because table has no grants

— Access only by Table API r'/flr
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Package Enforcement Global Variable

CREATE OR REPLACE TRIGGER employees_trbr
BEFORE INSERT OR UPDATE OR DELETE
ON employees
FOR EACH ROW
BEGIN
IF NOT employees _pkg.g_allow_dml
THEN
RAISE_APPLICATION_ERROR(-20199,
"You may not issue INSERT, UPDATE, or " ||
"DELETE statements to this table.");
END IF;

-- other code for validating rules
END employees_trbr;

Database Views and Triggers

* Views on tables requiring access

* INSTEAD OF triggers on the views

— INSERT, UPDATE, DELETE row-level trigger
» Call Table API procedures

— Exceptions o> U
» Cross-row validation requires statement-level triggers on \77 :

tables or application code
» Cross-table validation requires application code

© Peter Koletzke, 2017 12 OOW 2017
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SQL Flow
<
Database
N INSTEAD OF Trigger Table 1 Trigger
“DML"

Table 1

| Cvews )

Table 2 API
Table 3 API

Table 3 Trigger Table 2 Trigger
Table 3 Table 2
\ /

Generate the Stub Code

* |It's all cookie cutter stuff at the start
— Table API — triggers and packages
— View INSTEAD OF trigger

» Use a prebuilt generator

— http://www.dbartisans.com/oracle/docs/
PLSQL_ Frameworks_and_Libraries.pdf

— Steven Feuerstein

* https://community.oracle.com/community/
database/developer-tools/oddgen

 Or roll your own generator
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Agenda
 What is Thick Database?

» Thick Database techniques

-+ Level of Thick

Three Main Levels

» Light
— No grants to tables, multiple schemas
— Views to represent Ul screens,
— Application logic handles business rules

— Simple business rules system
* Moderate

— Same as Light plus...
— INSTEAD OF triggers on views

— Table API
— Any type of business rules system

* Deep
— Same as Moderate plus...

\/ — More complex business rules systems

» Requires skilled code architect

Complexity, Flexibility
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Do You Need an Oracle Database?

* No, but...

— A central location for business rules code is necessary
* Bestin a database
— Views are needed to hide details of the data storage
* INSTEAD OF triggers may not be available
» So application may be responsible for calling the central code
— Table API concept may be possible
» DB2 supports PL/SQL
* You can always just allow access to views not tables @

How to Transition to Thick Database

Like applying any other standard while “in flight”
Apply it 100% to new applications
Can apply it to existing application enhancements

Can start small
— Incorporate user interface interaction with database views

© Peter Koletzke, 2017 15 OOW 2017
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summary

Thick Database is driven by business rules

Thick Database can improve productivity, system
performance, application accuracy, Ul simplicity, security

Leverage SQL: Database views, no grants to tables

Leverage PL/SQL: View INSTEAD OF triggers, table triggers,
table APIs

Different levels of thick depending on available time and talent

500+ Technical Experts ORACLE

r ACE PROGRAM

Helping Peers Globally

A ORACLE ORACLE A ORACLE
ACE Director ACE \”‘2 ACE Associate

3 Membership Tiers Connect:

. grac:e ﬁgg Director bit.ly/OracleACEProgram X

e Oracle

« Oracle ACE Associate o Facebook.com/oracleaces

' | @oracleace

" Davaioper Nominate yourself or someone you know: acenomination.oracle.com
iy
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Business Rules Categories
What is a Business Rule?

» A statement of a behavior, definition, or Business definition _
constraint that allows an organization to — A statement that explains a fact relevant to

achieve its goals. the business, for example:

» Systems analysis is all about determining . et
business rules An employee is active in one and only one

— Often business requirements are equated with department at a time.

0 bUdSiPESS rules e bus " « Data validation
» Used to communicate business wi . :
business users — A statement that describes how data is

verified, for example:

* The employee’s job start date must be or
or after the job start date.

* A full definition of business rules can
identify all aspects of an application

— Possible exceptions: technical details like 4
development software, server specifics ™%

B U
More Business Rule Categories Another Business Rule Category
« Allowed values * Data privileges
— Related to data validation — Selective to users or (better) roles
— Defines field values from a fixed list (hard — Defines access to view or modify certain
coded or in a table) or range, for example, data, for example,
* The value of the “State” portion of an address in the * Only directors can update salaries for staff in
United States must be from the list of US states their division.
(including the District of Columbia). « Only managers can view salaries other than
» System Behavior their own for staff in their department.
— A statement that guides the internal actions in * Personal data for clients, such as credit card
the system, for example: numbers and Medicaid IDs, are only visible to
. Saving a change to an employee record staff who have been cleared to view it. i

« Staff may only view profile information for
clients in the department’s territory.

archives the old version of the record in
a history table.

Sample Business Rules _ Test Plans and Business Rules

An employee is active in one and only one
department at a time.

« The employee’s job end date must be on
or after the job start date.

* Business rules statements can be used
as or linked with test plans

» Generation of test plans is then just a

» The value of the “State” portion of an address in report
the United States must be from the list of US « Each busi . twill b
states (including the District of Columbia). ach business requirement will be
+ Saving a change to an employee record properly tested

archives the old version of the record in
a history table.

Only managers can view salaries other than
their own for staff in their department.

Business Rule

Business 1.1 1.* _
. Test Plan
Requirement [ Test Plan |
Req #




Where to Place the
Business Rules Code?

» Environments these days are multi-tier
— Database tier

— Middle tier

 Application server/web server (SOA, web
services, ESB, etc.)

— Client tier
» Web browser ¢
* Mobile device
* Code can be located on one L
or more tiers |

Primary Assumption

» Standard relational database constraints
are ALWAYS used to protect data integrity
— Primary key
— Foreign key
— Unique key
— Check constraints
« NOT NULL
 Value- or function-base (optional)
» This is true regardless of the
database vendor

Code on the Client Tier

» Web application consideration:

— Since HTML is not a programming language, you
need JavaScript for this

» Benefits
— Fast feedback to user: very friendly
— No processing at all on database or middle tiers

» Drawbacks
— Difficult to maintain business rules documentation
— Some browsers handle JavaScript differently

— Possible need to repeat code for each app
* Potential for omission in a single app
— Not centralized

Code on the Middle Tier

Business rules code is in the middle tier
— That is, if there is a middle tier

¢ For example, APEX has none
— ADF

» Java and XML files for the application

« Declarative validation rules, EO, VO, App module code
Benefits
— Saves database server CPU time
— Returns messages to user faster and friendlier
Drawbacks
— Each app needs to repeat the code for a particular table
— Requires database roundtrip messages

— Documenting or checking business rules
requires visiting many files unless you
use a Rules Engine or other repository

Code on the Database Tier

¢ Thick Database approach
— Views
— Table API code
« Triggers and procedures (and policies) that enforce rules
« Benefits
— Data integrity is enforced for all applications

— Business rules code can be generated from metadata or, at
least, documented from one source

— Maintenance requires only database changes
« Application modification may not be needed
— Primary language is PL/SQL
» Drawbacks

— Handling return messages from the database in
a friendly way is not a default

— Places complete burden of validation of data on the
database server — possibly more CPU time taken

So, Which is Best?

Depends on the application

Database tier (Thick Database) ensures
data integrity

— Any application

Middle tier saves database round trips
— If processing only on middle tier

Client tier provides best interactivity

— Immediate feedback to user

— Also saves database round trips

(= )




Feature Comparison

1 (no support) o 10 (the best support) Su gge stion
Location of Business Rules Code Client Application | Database
Feature Computer | Server Server * Modified Database-centric Approach
User interactivity 10 7 5 — Always code rules in the database
Saves client computer resource usage ** 2 10 g0 — Selectively duplicate business rules
Saves roundtrip message to client computer 10 10 in the middle tier and client tier
Saves application server resource usage ** 10 2 10 « Carefully consider each rule
Saves roundtrip message to application 10 10 « Know and document that you are duplicating rules

server

e Can even turn off database rule for a transaction if it has been

Saves database server resource usage ** 10 10 2 . A
- run on the client side
Saves roundtrip message to database server 10 10 ) X .
- - — Consider using a BR repository tool

Ease of maintenance (dependency analysis, 2 5 10 K

adding, updating, reporting) * * Home grown or Oracle Business Rules
Reuse of code 2 5 10 » Guiding principles
Assurance that business rules are applied to 5 5 10 — Use database code when possible

all applications « Itis the closest to the data == most efficient

Total 61 64 i — Save database round trips when possible

* Assumes that the business rules repository is not used at * Client side can check data type, for example

runtime or to generate code. "
I ** This feature reflects use of that tier for business rules purposes _ L UU

Some Challenges

* |dentifying business rules
 Stating them accurately

* Representing the business rules in
system programmatic code

 Defining and maintaining business rules
statements

« Communicating rules to users

» Synchronizing programmatic code and
the business rules repository
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EMP_DETAILS VW View

CREATE OR REPLACE FORCE VIEW emp_details_vw
AS

SELECT emp.employee_id,
emp.job_id,
emp.manager_id,
emp.department_id,
dept.location_id,
loc.country_id,
emp.first_name,
emp. last_name,
emp.salary,
emp.commission_pct,
emp.email,
emp . phone_number,
emp.hire_date,
emp.created_date,
emp.created_by,
emp.modified_date,
emp.modified_by,
dept.department_name,
jb.job_title,
loc.city,
loc.state province,
cntry.country_hame,
reg.region_name

FROM employees emp, departments dept,
jobs jb, locations loc,
countries cntry, regions reg

WHERE emp.department_id = dept.department_id

AND dept.location_id = loc.location_id
AND loc.country_id = cntry.country_id
AND cntry.region_id = reg.region_id

AND Jjb_job_id = emp.job_id;

COMMENT ON TABLE EMP_DETAILS_VW 1S "An all-inclusive view of an employee including all
organization levels and current job description.”;

EMP_DETAILS VW_TRBR Trigger

CREATE OR REPLACE TRIGGER emp_details_vw_trbr
INSTEAD OF DELETE OR INSERT OR UPDATE
ON emp_details_wvw
FOR EACH ROW
DECLARE
BEGIN
IF INSERTING
THEN
employees pkg.ins(
:NEW.employee_id,
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:NEW.First_name,
:NEW. last_name,
:NEW.email,
:NEW.phone_number,
:NEW.hire_date,
*NEW_job_id,
:NEW_salary,
*NEW.commission_pct,
:NEW_manager_id,
:NEW.department_id,
:NEW.created_by,
:NEW.created_date,
:NEW.modified_ by,
:NEW.modified _date);

ELSIF UPDATING

THEN

employees pkg.upd(

:NEW.employee_id,
:NEW.First_name,
:NEW. last_name,
INEW_email,
:NEW.phone_number,
:NEW.hire_date,
INEW.job_id,
:NEW.salary,
:NEW._.commission_pct,
:NEW_manager_id,
:NEW.department_id,
:NEW.created by,
:NEW.created_date,
:NEW.modified by,
:NEW.modified _date);

ELSE -- DELETING

employees pkg.del (

:NEW.employee_id);

END IF;

END emp_details_vw_trbr;

EMPLOYEES PKG Package

CREATE OR REPLACE PACKAGE employees pkg
IS

g_allow_dml BOOLEAN DEFAULT FALSE;
PROCEDURE ins (
p_employee_id employees.employee id%TYPE,
p_Ffirst _name employees.first_name%TYPE,
p_last _name employees.last _name%TYPE,
p_email employees.email%TYPE,
p_phone_number employees.phone_number%TYPE,

2
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p_hire _date employees.hire date%TYPE,

p_job_id employees.job id%TYPE,

p_salary employees.salary%TYPE,

p_commission_pct employees.commission_pct%TYPE,

p_manager_id employees._manager_id%TYPE,

p_department_id employees.department_ id%TYPE,

p_created_by employees.created_ by%TYPE,

p_created_date employees.created_date%TYPE,

p_modified_by employees.modified_by%TYPE,

p_modified_date employees.modified_date%TYPE);
PROCEDURE upd(

p_employee _id employees.employee id%TYPE,

p_Ffirst name employees.first _name%TYPE,

p_last name employees.last name%TYPE,

p_email employees.email%TYPE,

p_phone_number employees.phone_ number%TYPE,

p_hire _date employees.hire date%TYPE,

p_job_id employees.job id%TYPE,

p_salary employees.salary%TYPE,

p_commission_pct employees.commission_pct%TYPE,

p_manager_id employees.manager_id%TYPE,

p_department_id employees.department_ id%TYPE,

p_created_by employees.created by%TYPE,

p_created_date employees.created_date%TYPE,

p_modified_by employees.modified_ by%TYPE,

p_modified_date employees.modified_date%TYPE);

PROCEDURE del (
p_employee_id employees.employee 1d%TYPE);

PROCEDURE Ick (
p_employee_id employees.employee 1d%TYPE);
END employees_pkg;
CREATE OR REPLACE PACKAGE BODY employees_pkg
IS

FUNCTION check_insert_rules(
p_employee_id employees.employee id%TYPE,
p_first_name employees.first_name%TYPE,
p_last _name employees.last _name%TYPE,
p_email employees.email%TYPE,
p_phone_number employees.phone_number%TYPE,
p_hire_date employees.hire_date%TYPE,
p_job_id employees.job_ 1d%TYPE,
p_salary employees.salary%TYPE,
p_commission_pct employees.commission_pctWTYPE,
p_manager_id employees.manager_1d%TYPE,
p_department_id employees.department_id%TYPE,
p_created_by employees.created by%TYPE,

3
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p_created_date employees.created date%TYPE,
p_modified by employees.modified by%TYPE,
p_modified date employees.modified date%TYPE)
RETURN VARCHARZ2
IS
Vv_error_message VARCHAR2(10000);
BEGIN
IF p_hire_date < jobs pkg.job_start_date(p_department_id)
THEN
- "Employee Hire Date must be on or after the job start date."
V_error_message := message_pkg.-message_ text(500);
END IF;
IF NOT util_pkg.check list value(
"US_STATE", departments_pkg.address_state(p_department_id))
THEN
V_error_message := v_error_message ||
END IF;
RETURN v_error_message;
END check_insert_rules;

|l message pkg.message text(501);

PROCEDURE ins (
p_employee_id employees.employee id%TYPE,
p_first_name employees.first_name%TYPE,
p_last _name employees.last _name%TYPE,
p_email employees.email%TYPE,
p_phone_number employees.phone_number%TYPE,
p_hire _date employees.hire date%TYPE,
p_job_id employees.job id%TYPE,
p_salary employees.salary%TYPE,
p_commission_pct employees.commission_pct%TYPE,
p_manager_id employees.manager_id%TYPE,
p_department_id employees.department_ id%TYPE,
p_created by employees.created by%TYPE,
p_created_date employees.created_date%TYPE,
p_modified_by employees.modified_ by%TYPE,
p_modified _date employees.modified_date%TYPE)
IS
v_error_message VARCHAR2(10000);

BEGIN
g_allow_dml := TRUE;
-— Or put this call in the table trigger
v_error_message := check_insert_rules(
p_employee_id,
p_first_name,
p_last_name,
p_email,
p_phone_number,
p_hire_date,
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p_job_id,
p_salary,
p_commission_pct,
p_manager_id,
p_department_id,
p_created_by,
p_created_date,
p_modified_by,
p_modified_date);
IF v_error_message IS NULL
THEN
INSERT INTO employees(
employee_id,
first_name,
last_name,
email,
phone_number,
hire_date,
job_id,
salary,
commission_pct,
manager_id,
department_id,
created by,
created date,
modified_by,
modified_date)
VALUES (
p_employee_id,
p_Ffirst _name,
p_last _name,
p_email,
p_phone_number,
p_hire_date,
p_job_id,
p_salary,
p_commission_pct,
p_manager_id,
p_department_id,
p_created_by,
p_created_date,
p_modified by,
p_modified_date);
ELSE
RAISE_APPLICATION_ERROR(-20298, v_error_message);
END IF;
g_allow_dml := FALSE;
EXCEPTION
WHEN OTHERS
THEN
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g_allow _dml := FALSE;

RAISE_APPLICATION_ERROR(-20299, "Error inserting: "]]SQLERRM);
END ins;

PROCEDURE upd(

1S

p_employee_id employees.employee id%TYPE,
p_Ffirst_name employees.first_name%TYPE,
p_last _name employees.last _name%TYPE,

p_email employees.email%TYPE,

p_phone_number employees.phone_number%TYPE,
p_hire _date employees.hire date%TYPE,
p_job_id employees.job id%TYPE,

p_salary employees.salary%TYPE,
p_commission_pct employees.commission_pct%TYPE,
p_manager_id employees.manager_id%TYPE,
p_department_id employees.department_ id%TYPE,
p_created by employees.created by%TYPE,
p_created_date employees.created _date%TYPE,
p_modified by employees.modified_ by%TYPE,
p_modified_date employees.modified_date%TYPE)

BEGIN

g_allow_dml := TRUE;

-- TODO: Add call to check update_rules() when it is created.

UPDATE employees
SET
first _name = p_first_name,
last _name = p_last name,
email = p_email,
phone_number = p_phone_number,
hire _date = p_hire_date,
job_id = p_job_id,
salary = p_salary,
commission_pct = p_commission_pct,
manager_id = p_manager_id,
department_id = p_department_id,
created_by = p_created by,
created_date = p_created_date,
modified_by = p_modified_by,
modified_date = p_modified_date
WHERE employee_id = p_employee_id;

g_allow_dml := FALSE;

EXCEPTION

WHEN OTHERS
THEN
g_allow_dml := FALSE;

See ins().-
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RAISE_APPLICATION_ERROR(-20299, "Error updating: "]]SQLERRM);
END upd;

PROCEDURE del (

p_employee_id employees.employee 1d%TYPE)
IS
BEGIN

g_allow_dml := TRUE;
-— TODO: Add call to check_delete rules() when it is created. See ins().
DELETE FROM employees
WHERE employee_id = p_employee_id;
g_allow _dml := FALSE;
EXCEPTION

WHEN OTHERS

THEN

g_allow_dml :-= FALSE;

RAISE_APPLICATION_ERROR(-20299, "Error deleting: "|]]|SQLERRM);
END del;

PROCEDURE Ick (

p_employee_id employees.employee 1d%TYPE)
IS

v_dummy PLS_INTEGER;
BEGIN

g_allow _dml := TRUE;

SELECT 1
INTO  v_dummy
FROM employees
WHERE employee id = p_employee_id
FOR UPDATE;
g_allow_dml :-= FALSE;
EXCEPTION
WHEN OTHERS
THEN
g_allow_dml :-= FALSE;
RAISE_APPLICATION_ERROR(-20299, "Error locking: "]|SQLERRM);
END Ick;

END employees pkg;
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EMPLOYEES TRBR Trigger

CREATE OR REPLACE TRIGGER employees_ trbr
BEFORE INSERT OR UPDATE OR DELETE
ON employees
FOR EACH ROW
DECLARE
V_error VARCHAR2(2000) ;
BEGIN
IF NOT employees_pkg.g allow_dml
THEN
RAISE_APPLICATION_ERROR(-20199, "You may not issue INSERT, UPDATE, or " ||
"DELETE statements to this table.");
END IF;
-- Note: The following is an alternative to calling the
- business rules checks from the table API
IF INSERTING
THEN
v_error -= check_insert_rules(
:NEW.employee_id,
-- other column values
ELSIF UPDATING

THEN
v_error := check_update rules(
:NEW.employee_id,
-- other column values
ELSE -- DELETING
v_error -= check_delete rules(
:NEW.employee_id,
-- other column values
END IF;

IF v_error IS NOT NULL
THEN
-- Fails the trigger and the statement
RAISE_APPLICATION_ERROR(-20199, v_error);
END IF;

END employees_trbr;

Table AP1 Code Generation Snippets
-— Column list

SELECT LOWER(column_name)]]~," col

FROM user_tab _columns

WHERE table_name = "EMPLOYEES®

ORDER BY column_id;

-— VALUES list
SELECT "p_"]|LOWER(column_name)|]"," col
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FROM user_tab_columns
WHERE table_name = "EMPLOYEES®
ORDER BY column_id;

-— Parameter list

SELECT "p_"|]|LOWER(column_name)]|* employees."]|LOWER(column_name)|] "%TYPE," col
FROM user_tab _columns

WHERE table_name = "EMPLOYEES®

ORDER BY column_id;

-- Update columns

SELECT LOWER(column_name)]]"™ = "1
"p_"| ILOWER(column_name) ]| ",

FROM user_tab_columns

WHERE table_name = "EMPLOYEES®

ORDER BY column_id;

col

-— INSTEAD OF trigger parameters

SELECT ":NEW." | JLOWER(column_name)|]"," col
FROM user_tab_columns

WHERE table_name = "EMPLOYEES®

ORDER BY column_id;
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