Leveraging Oracle SQL and PL/SQL to Simplify
User Interface Application Development Using Thick Database Techniques

Leveraging Oracle SQL and
PL/SQL to Simplify User Interface
Application Development

Using Thick Database Techniques

Peter Koletzke
Technical Director & Principal Instructor

. ORACIF
A | ORACLE ey

ACE Director WORLD

Agenda

e What is Thick Database?]

» Thick Database techniques

e Level of Thick

Slides with sample
Appendix A - More About Business Rules code will be available
Appendix B - Code Samples on the OOW website.

© Peter Koletzke, 2017 1 OOW 2017

Leveraging Oracle SQL and PL/SQL to Simplify
User Interface Application Development Using Thick Database Techniques

About Thick Database

A code development strategy A.k.a., Thick

— Maximize use of database code to simplify Database Approach,

. Thick Database
the user interface Paradigm, Smart

— The user’s device (client) runs minimal code | Database (SmartDb),
oL - C Fat Database
* Name plays off the term “thin client
— A “Year of the Internet” term

— Means most processing occurs on a server
— Slightly outmoded now

 Thick database means “thin client” %g

Provenance

» Topic is rarely seen now, but not new
— Using database features to enforce data integrity
defined by business rules is obvious
« Started trending many years ago

— ODTUG Business Rules Symposium Day 2001-2004
» Organized by Dr. Paul Dorsey of Dulcian, Inc.

— Thoughts evolved into Thick Database
» Sessions starting around 2006

© Peter Koletzke, 2017 2 OO0OW 2017

Leveraging Oracle SQL and PL/SQL to Simplify
User Interface Application Development Using Thick Database Techniques

Topic is Still Active

dulcian.com

— Look in Resources | Conference Presentations - Thick Database
Mike Smithers’ Blog

— https://mikesmithers.wordpress.com/tag/thick-database-paradigm/
Toon Koppelaars, Oracle Real World Performance Group

— https://www.youtube.com/watch?v=8jiJDflpw4Y

— http://'www.prohuddle.com/webinars/ToonKoppelaars/ThickDB.php
Bryn Llewellyn, Distinguished Product Manager (Oracle)

— https://blogs.oracle.com/plsgl-and-ebr/entry/why_use_pl_sq|l Eg

Guiding Principles for Code

» Database code that implements business rules
in PL/SQL

» Database views to represent complex business
objects (SQL)
—Each view has an accompanying application

programming interface (API)
* Written in PL/SQL

—Interaction is with view and API ﬁ ﬁ
[[

© Peter Koletzke, 2017 3 OO0OW 2017

Leveraging Oracle SQL and PL/SQL to Simplify
User Interface Application Development Using Thick Database Techniques

What is a Business Rule?

» A statement of a behavior, definition, or constraint that
allows an organization to achieve its goals.
» Systems analysis is all about determining business rules
— Often business requirements are equated with business rules
— Business rules used to communicate business with business
users
A full definition of business rules can identify all aspects

of an application
— Possible exceptions: technical details like development

software, server specifics

| Topic is expanded in Appendix A. |

Options for Business Rule Systems

» Simple
— Store definition in a table (statement, name, 1D)
— Reference definition to an application specification

— Represent the rule in a test plan

* Moderate
— Everything in “Simple” plus...
— A home-grown code generator creates application code (and optionally Ul
code) from business rule definitions
— Requires setting up a “language” to represent all rules
— Changing the BR definition requires only regenerating the application code

Complexity, Flexibility

* Extreme
— Everything in “Moderate” plus...
: 7 — Instead of a code generator, a home-grown runtime engine that reads

business rule definitions at runtime and creates application on the fly
— Changing the BR definition immediately affects the application runtime

© Peter Koletzke, 2017 4 OOW 2017

Leveraging Oracle SQL and PL/SQL to Simplify
User Interface Application Development Using Thick Database Techniques

Thick Benefits

» Application accuracy
— Business rules match application code
— Test plans can be generated from business rules
» Productivity
— Can greatly simplify user interface code
» Code reusability
— Ease of application maintenance
» Better performance
— Code is close to data storage — fewer messages, easy access
— Views also reduce the number of round trips needed

* Proper use of staff
— User interface developers can concentrate on Ul code @

— Database code developers can concentrate on database code
to support the Ul

Simplifies User Interface Work

« Database views can represent multiple tables
— Arbitrarily complex logic
— Aggregate functions: MAX(), COUNT()
— Set operators: UNION, MINUS
— Calculation functions: first_salary()
— Even: a PL/SQL function cast as a table
* One view per application Ul page
— The page submit commits the entire page
— Reminds one of mainframe “block submit”

— Back end code deals the data into
the proper tables

© Peter Koletzke, 2017 5 OOW 2017

Leveraging Oracle SQL and PL/SQL to Simplify
User Interface Application Development Using Thick Database Techniques

» Ul technology changes
— If code is in database, only Ul needs rewriting
— Application logic in database can carry forward
» Table refactoring
— For example, if a set of tables used in Ul views is
normalized into more tables

« Joins and query of view can be updated
» Ul may not need to change

Some Changes Require Less Rewriting

Traditional Client UI Screen

- e e e e e e e e = =

1

Table 1 Table 3
v

Table 2 Table 4

B S ——— - > Table 3

|
I - »— Table -

Thick Database UI Screen

Traditional vs. Thick Database Uls

g =y
< Database 3
e
I T T T
Table 1
i f t I
I I I
4—] Table 2
f i I i
A
______________]
View 1
| Table 1 i} Table 3 |
- P e e e e e e e e Il
i N
i Table2 i | Table 4 |
e e e e e e e e e e e e e e e
\.._______ ________/

© Peter Koletzke, 2017

OOow 2017

Leveraging Oracle SQL and PL/SQL to Simplify

User Interface Application Development Using Thick Database Techniques

Front-end Tool “Agnostic”

» Application Express (APEX)
» Application Development Framework (ADF)
» Mobile Application Framework (MAF)
* Forms
» JavaScript
— JavaScript Extension Toolkit (JET)
— Mobile Application Accelerator (MAX)
— Visual Builder Cloud Service (VBCS, formerly ABCS)
e PL/SQL Toolkit
» PHP: Hypertext Processor (PHP)
* Rails
» ColdFusion
* (whatever)

Tools’ Use of Thick Database

APEX
Forms
— | TS
Database
ADF < » ADF BC 4 \4 v
> | View1 View 2
T
I MAF B Services ::
JavaScript |, REST TTabl il !
It N Services [Table2]]
al pes) —[—H_[Table 3
I P (something [
(others) < or nothing)
_/

© Peter Koletzke, 2017 7

OOow 2017

Leveraging Oracle SQL and PL/SQL to Simplify
User Interface Application Development Using Thick Database Techniques

Drawbacks

» Time and effort required
— Design and set up
— Documenting standards
— Instructing staff
* Requirements on the IT shop side
— Architect/database designer

— Expert coder
» Develop generic code “engines” to run and/or generate business rules

code
* Need buy-in from management 00
— For all of the above Pl

When Not to Use Thick Database

« If your organization is dedicated to “database
independence”
— Changing from Oracle to SQL Server, for example
— This is a BIG DEAL

— Forces applications to use ANSI SQL only
» Applications are “thicker” than the database

« If your applications have few or simple business rules
— Overhead of Thick Database may not be worthwhile

© Peter Koletzke, 2017 8 OO0OW 2017

Leveraging Oracle SQL and PL/SQL to Simplify
User Interface Application Development Using Thick Database Techniques

How Many Schemas?

* Normal set up these days
— One schema owns the data and code

— Another schema runs the application and accesses data and
code

— Control access by grants
e Variation @
— The data owner schema is separate from the code owner

schema -
— Even more secure: another layer for grants E %
(1) Why Use PL/SQL? By Bryn Llewellyn 17
Agenda

 What is Thick Database?

\ e Thick Database techniques]

e Level of Thick

QN

© Peter Koletzke, 2017 9 OO0OW 2017

Leveraging Oracle SQL and PL/SQL to Simplify
User Interface Application Development Using Thick Database Techniques

O] advisor’ San Francisco ~

About San Francisco Hotels Vacation Rentals Restaurants Thingstodo Flights ee

San Francisco Marriott Marquis

@@@®(O) 5,547 Reviews #26 of 230 Hotels in San Francisco

@ 780 Mission Street, San Francisco, CA 94103-3113 % +1844-631-0595 O3 Hotel website O Save

Ooooo Reviewed yesterday m

“The towels were so thick there
| could barely close my suitcase.”

Yogi Berra
Level @ Contributor

Database Components

Tables — the usual

— No grants or synonyms to other schemas
Table API packages

— INSERT, UPDATE, DELETE, (SELECT) procedures
— Call business rules validation code
Views on the tables

— Queries can be arbitrarily complex
INSTEAD OF triggers on the views
— Call the table API procedures

© Peter Koletzke, 2017 10 OOW 2017

Leveraging Oracle SQL and PL/SQL to Simplify
User Interface Application Development Using Thick Database Techniques

Table API

» A PL/SQL package per table

— All data modification (“DML") is accomplished through
procedures

« INS()

« UPD()
« DEL()
« LCK()

* Procedures are called only from INSTEAD OF .@
view triggers

e NO gl’ants to table at all Code samples are available r/llr

in Appendix B.

Optional Table API Components

» A function can act as SELECT
— A bit trickier and not always necessary

— Virtual Private Database policies can filter data to all
SELECT statements instead

» Package enforcement global variable

— Trigger uses it to prevent “DML” statements outside of the
package

» Applies only to table owner because table has no grants

— Access only by Table API r'/flr

© Peter Koletzke, 2017 11 OOW 2017

Leveraging Oracle SQL and PL/SQL to Simplify
User Interface Application Development Using Thick Database Techniques

Package Enforcement Global Variable

CREATE OR REPLACE TRIGGER employees_trbr
BEFORE INSERT OR UPDATE OR DELETE
ON employees
FOR EACH ROW
BEGIN
IF NOT employees _pkg.g_allow_dml
THEN
RAISE_APPLICATION_ERROR(-20199,
"You may not issue INSERT, UPDATE, or " ||
"DELETE statements to this table.");
END IF;

-- other code for validating rules
END employees_trbr;

Database Views and Triggers

* Views on tables requiring access

* INSTEAD OF triggers on the views

— INSERT, UPDATE, DELETE row-level trigger
» Call Table API procedures

— Exceptions o> U
» Cross-row validation requires statement-level triggers on \77 :

tables or application code
» Cross-table validation requires application code

© Peter Koletzke, 2017 12 OOW 2017

Leveraging Oracle SQL and PL/SQL to Simplify
User Interface Application Development Using Thick Database Techniques

SQL Flow
<
Database
N INSTEAD OF Trigger Table 1 Trigger
“DML"

Table 1

| Cvews)

Table 2 API
Table 3 API

Table 3 Trigger Table 2 Trigger
Table 3 Table 2
\ /

Generate the Stub Code

* |It's all cookie cutter stuff at the start
— Table API — triggers and packages
— View INSTEAD OF trigger

» Use a prebuilt generator

— http://www.dbartisans.com/oracle/docs/
PLSQL_ Frameworks_and_Libraries.pdf

— Steven Feuerstein

* https://community.oracle.com/community/
database/developer-tools/oddgen

 Or roll your own generator

© Peter Koletzke, 2017 13 OOW 2017

Leveraging Oracle SQL and PL/SQL to Simplify
User Interface Application Development Using Thick Database Techniques

Agenda
 What is Thick Database?

» Thick Database techniques

-+ Level of Thick

Three Main Levels

» Light
— No grants to tables, multiple schemas
— Views to represent Ul screens,
— Application logic handles business rules

— Simple business rules system
* Moderate

— Same as Light plus...
— INSTEAD OF triggers on views

— Table API
— Any type of business rules system

* Deep
— Same as Moderate plus...

\/ — More complex business rules systems

» Requires skilled code architect

Complexity, Flexibility

© Peter Koletzke, 2017 14

OOow 2017

Leveraging Oracle SQL and PL/SQL to Simplify
User Interface Application Development Using Thick Database Techniques

Do You Need an Oracle Database?

* No, but...

— A central location for business rules code is necessary
* Bestin a database
— Views are needed to hide details of the data storage
* INSTEAD OF triggers may not be available
» So application may be responsible for calling the central code
— Table API concept may be possible
» DB2 supports PL/SQL
* You can always just allow access to views not tables @

How to Transition to Thick Database

Like applying any other standard while “in flight”
Apply it 100% to new applications
Can apply it to existing application enhancements

Can start small
— Incorporate user interface interaction with database views

© Peter Koletzke, 2017 15 OOW 2017

Leveraging Oracle SQL and PL/SQL to Simplify
User Interface Application Development Using Thick Database Techniques

summary

Thick Database is driven by business rules

Thick Database can improve productivity, system
performance, application accuracy, Ul simplicity, security

Leverage SQL: Database views, no grants to tables

Leverage PL/SQL: View INSTEAD OF triggers, table triggers,
table APIs

Different levels of thick depending on available time and talent

500+ Technical Experts ORACLE

r ACE PROGRAM

Helping Peers Globally

A ORACLE ORACLE A ORACLE
ACE Director ACE \”‘2 ACE Associate

3 Membership Tiers Connect:

. grac:e ﬁgg Director bit.ly/OracleACEProgram X

e Oracle

« Oracle ACE Associate o Facebook.com/oracleaces

' | @oracleace

" Davaioper Nominate yourself or someone you know: acenomination.oracle.com
iy

© Peter Koletzke, 2017 16 OOW 2017

Leveraging Oracle SQL and PL/SQL to Simplify
User Interface Application Development Using Thick Database Techniques

| omem ||~ | ° Pleasefill out the session evaluation
e ea) dt:;< | « 7of8books co-authored with Dr. Paul Dorsey,
. Avrom Roy-Faderman, & Duncan Mills

» Slides and sample code on the OOW website.

ORACLE
JDeveloper 10

Handbook

Register Now

www.kscopel8.odtug.com

Oracle JDeveloper 11g ==-w

Handbook

A Guide to Fusion Web Developmant

-
B

2 T 0 R AN

© Peter Koletzke, 2017 17 OOW 2017

Appendix A: More About Business Rules

Business Rules Categories
What is a Business Rule?

» A statement of a behavior, definition, or Business definition _
constraint that allows an organization to — A statement that explains a fact relevant to

achieve its goals. the business, for example:

» Systems analysis is all about determining . et
business rules An employee is active in one and only one

— Often business requirements are equated with department at a time.

0 bUdSiPESS rules e bus " « Data validation
» Used to communicate business wi . :
business users — A statement that describes how data is

verified, for example:

* The employee’s job start date must be or
or after the job start date.

* A full definition of business rules can
identify all aspects of an application

— Possible exceptions: technical details like 4
development software, server specifics ™%

B U
More Business Rule Categories Another Business Rule Category
« Allowed values * Data privileges
— Related to data validation — Selective to users or (better) roles
— Defines field values from a fixed list (hard — Defines access to view or modify certain
coded or in a table) or range, for example, data, for example,
* The value of the “State” portion of an address in the * Only directors can update salaries for staff in
United States must be from the list of US states their division.
(including the District of Columbia). « Only managers can view salaries other than
» System Behavior their own for staff in their department.
— A statement that guides the internal actions in * Personal data for clients, such as credit card
the system, for example: numbers and Medicaid IDs, are only visible to
. Saving a change to an employee record staff who have been cleared to view it. i

« Staff may only view profile information for
clients in the department’s territory.

archives the old version of the record in
a history table.

Sample Business Rules _ Test Plans and Business Rules

An employee is active in one and only one
department at a time.

« The employee’s job end date must be on
or after the job start date.

* Business rules statements can be used
as or linked with test plans

» Generation of test plans is then just a

» The value of the “State” portion of an address in report
the United States must be from the list of US « Each busi . twill b
states (including the District of Columbia). ach business requirement will be
+ Saving a change to an employee record properly tested

archives the old version of the record in
a history table.

Only managers can view salaries other than
their own for staff in their department.

Business Rule

Business 1.1 1.* _
. Test Plan
Requirement [Test Plan |
Req #

Where to Place the
Business Rules Code?

» Environments these days are multi-tier
— Database tier

— Middle tier

 Application server/web server (SOA, web
services, ESB, etc.)

— Client tier
» Web browser ¢
* Mobile device
* Code can be located on one L
or more tiers |

Primary Assumption

» Standard relational database constraints
are ALWAYS used to protect data integrity
— Primary key
— Foreign key
— Unique key
— Check constraints
« NOT NULL
 Value- or function-base (optional)
» This is true regardless of the
database vendor

Code on the Client Tier

» Web application consideration:

— Since HTML is not a programming language, you
need JavaScript for this

» Benefits
— Fast feedback to user: very friendly
— No processing at all on database or middle tiers

» Drawbacks
— Difficult to maintain business rules documentation
— Some browsers handle JavaScript differently

— Possible need to repeat code for each app
* Potential for omission in a single app
— Not centralized

Code on the Middle Tier

Business rules code is in the middle tier
— That is, if there is a middle tier

¢ For example, APEX has none
— ADF

» Java and XML files for the application

« Declarative validation rules, EO, VO, App module code
Benefits
— Saves database server CPU time
— Returns messages to user faster and friendlier
Drawbacks
— Each app needs to repeat the code for a particular table
— Requires database roundtrip messages

— Documenting or checking business rules
requires visiting many files unless you
use a Rules Engine or other repository

Code on the Database Tier

¢ Thick Database approach
— Views
— Table API code
« Triggers and procedures (and policies) that enforce rules
« Benefits
— Data integrity is enforced for all applications

— Business rules code can be generated from metadata or, at
least, documented from one source

— Maintenance requires only database changes
« Application modification may not be needed
— Primary language is PL/SQL
» Drawbacks

— Handling return messages from the database in
a friendly way is not a default

— Places complete burden of validation of data on the
database server — possibly more CPU time taken

So, Which is Best?

Depends on the application

Database tier (Thick Database) ensures
data integrity

— Any application

Middle tier saves database round trips
— If processing only on middle tier

Client tier provides best interactivity

— Immediate feedback to user

— Also saves database round trips

(=)

Feature Comparison

1 (no support) o 10 (the best support) Su gge stion
Location of Business Rules Code Client Application | Database
Feature Computer | Server Server * Modified Database-centric Approach
User interactivity 10 7 5 — Always code rules in the database
Saves client computer resource usage ** 2 10 g0 — Selectively duplicate business rules
Saves roundtrip message to client computer 10 10 in the middle tier and client tier
Saves application server resource usage ** 10 2 10 « Carefully consider each rule
Saves roundtrip message to application 10 10 « Know and document that you are duplicating rules

server

e Can even turn off database rule for a transaction if it has been

Saves database server resource usage ** 10 10 2 . A
- run on the client side
Saves roundtrip message to database server 10 10) X .
- - — Consider using a BR repository tool

Ease of maintenance (dependency analysis, 2 5 10 K

adding, updating, reporting) * * Home grown or Oracle Business Rules
Reuse of code 2 5 10 » Guiding principles
Assurance that business rules are applied to 5 5 10 — Use database code when possible

all applications « Itis the closest to the data == most efficient

Total 61 64 i — Save database round trips when possible

* Assumes that the business rules repository is not used at * Client side can check data type, for example

runtime or to generate code. "
I ** This feature reflects use of that tier for business rules purposes _ L UU

Some Challenges

* |dentifying business rules
 Stating them accurately

* Representing the business rules in
system programmatic code

 Defining and maintaining business rules
statements

« Communicating rules to users

» Synchronizing programmatic code and
the business rules repository

Appendix B: Code Samples

EMP_DETAILS VW View

CREATE OR REPLACE FORCE VIEW emp_details_vw
AS

SELECT emp.employee_id,
emp.job_id,
emp.manager_id,
emp.department_id,
dept.location_id,
loc.country_id,
emp.first_name,
emp. last_name,
emp.salary,
emp.commission_pct,
emp.email,
emp . phone_number,
emp.hire_date,
emp.created_date,
emp.created_by,
emp.modified_date,
emp.modified_by,
dept.department_name,
jb.job_title,
loc.city,
loc.state province,
cntry.country_hame,
reg.region_name

FROM employees emp, departments dept,
jobs jb, locations loc,
countries cntry, regions reg

WHERE emp.department_id = dept.department_id

AND dept.location_id = loc.location_id
AND loc.country_id = cntry.country_id
AND cntry.region_id = reg.region_id

AND Jjb_job_id = emp.job_id;

COMMENT ON TABLE EMP_DETAILS_VW 1S "An all-inclusive view of an employee including all
organization levels and current job description.”;

EMP_DETAILS VW_TRBR Trigger

CREATE OR REPLACE TRIGGER emp_details_vw_trbr
INSTEAD OF DELETE OR INSERT OR UPDATE
ON emp_details_wvw
FOR EACH ROW
DECLARE
BEGIN
IF INSERTING
THEN
employees pkg.ins(
:NEW.employee_id,

Appendix B: Code Samples

:NEW.First_name,
:NEW. last_name,
:NEW.email,
:NEW.phone_number,
:NEW.hire_date,
*NEW_job_id,
:NEW_salary,
*NEW.commission_pct,
:NEW_manager_id,
:NEW.department_id,
:NEW.created_by,
:NEW.created_date,
:NEW.modified_ by,
:NEW.modified _date);

ELSIF UPDATING

THEN

employees pkg.upd(

:NEW.employee_id,
:NEW.First_name,
:NEW. last_name,
INEW_email,
:NEW.phone_number,
:NEW.hire_date,
INEW.job_id,
:NEW.salary,
:NEW._.commission_pct,
:NEW_manager_id,
:NEW.department_id,
:NEW.created by,
:NEW.created_date,
:NEW.modified by,
:NEW.modified _date);

ELSE -- DELETING

employees pkg.del (

:NEW.employee_id);

END IF;

END emp_details_vw_trbr;

EMPLOYEES PKG Package

CREATE OR REPLACE PACKAGE employees pkg
IS

g_allow_dml BOOLEAN DEFAULT FALSE;
PROCEDURE ins (
p_employee_id employees.employee id%TYPE,
p_Ffirst _name employees.first_name%TYPE,
p_last _name employees.last _name%TYPE,
p_email employees.email%TYPE,
p_phone_number employees.phone_number%TYPE,

2

Appendix B: Code Samples

p_hire _date employees.hire date%TYPE,

p_job_id employees.job id%TYPE,

p_salary employees.salary%TYPE,

p_commission_pct employees.commission_pct%TYPE,

p_manager_id employees._manager_id%TYPE,

p_department_id employees.department_ id%TYPE,

p_created_by employees.created_ by%TYPE,

p_created_date employees.created_date%TYPE,

p_modified_by employees.modified_by%TYPE,

p_modified_date employees.modified_date%TYPE);
PROCEDURE upd(

p_employee _id employees.employee id%TYPE,

p_Ffirst name employees.first _name%TYPE,

p_last name employees.last name%TYPE,

p_email employees.email%TYPE,

p_phone_number employees.phone_ number%TYPE,

p_hire _date employees.hire date%TYPE,

p_job_id employees.job id%TYPE,

p_salary employees.salary%TYPE,

p_commission_pct employees.commission_pct%TYPE,

p_manager_id employees.manager_id%TYPE,

p_department_id employees.department_ id%TYPE,

p_created_by employees.created by%TYPE,

p_created_date employees.created_date%TYPE,

p_modified_by employees.modified_ by%TYPE,

p_modified_date employees.modified_date%TYPE);

PROCEDURE del (
p_employee_id employees.employee 1d%TYPE);

PROCEDURE Ick (
p_employee_id employees.employee 1d%TYPE);
END employees_pkg;
CREATE OR REPLACE PACKAGE BODY employees_pkg
IS

FUNCTION check_insert_rules(
p_employee_id employees.employee id%TYPE,
p_first_name employees.first_name%TYPE,
p_last _name employees.last _name%TYPE,
p_email employees.email%TYPE,
p_phone_number employees.phone_number%TYPE,
p_hire_date employees.hire_date%TYPE,
p_job_id employees.job_ 1d%TYPE,
p_salary employees.salary%TYPE,
p_commission_pct employees.commission_pctWTYPE,
p_manager_id employees.manager_1d%TYPE,
p_department_id employees.department_id%TYPE,
p_created_by employees.created by%TYPE,

3

Appendix B: Code Samples

p_created_date employees.created date%TYPE,
p_modified by employees.modified by%TYPE,
p_modified date employees.modified date%TYPE)
RETURN VARCHARZ2
IS
Vv_error_message VARCHAR2(10000);
BEGIN
IF p_hire_date < jobs pkg.job_start_date(p_department_id)
THEN
- "Employee Hire Date must be on or after the job start date."
V_error_message := message_pkg.-message_ text(500);
END IF;
IF NOT util_pkg.check list value(
"US_STATE", departments_pkg.address_state(p_department_id))
THEN
V_error_message := v_error_message ||
END IF;
RETURN v_error_message;
END check_insert_rules;

|l message pkg.message text(501);

PROCEDURE ins (
p_employee_id employees.employee id%TYPE,
p_first_name employees.first_name%TYPE,
p_last _name employees.last _name%TYPE,
p_email employees.email%TYPE,
p_phone_number employees.phone_number%TYPE,
p_hire _date employees.hire date%TYPE,
p_job_id employees.job id%TYPE,
p_salary employees.salary%TYPE,
p_commission_pct employees.commission_pct%TYPE,
p_manager_id employees.manager_id%TYPE,
p_department_id employees.department_ id%TYPE,
p_created by employees.created by%TYPE,
p_created_date employees.created_date%TYPE,
p_modified_by employees.modified_ by%TYPE,
p_modified _date employees.modified_date%TYPE)
IS
v_error_message VARCHAR2(10000);

BEGIN
g_allow_dml := TRUE;
-— Or put this call in the table trigger
v_error_message := check_insert_rules(
p_employee_id,
p_first_name,
p_last_name,
p_email,
p_phone_number,
p_hire_date,

Appendix B: Code Samples

p_job_id,
p_salary,
p_commission_pct,
p_manager_id,
p_department_id,
p_created_by,
p_created_date,
p_modified_by,
p_modified_date);
IF v_error_message IS NULL
THEN
INSERT INTO employees(
employee_id,
first_name,
last_name,
email,
phone_number,
hire_date,
job_id,
salary,
commission_pct,
manager_id,
department_id,
created by,
created date,
modified_by,
modified_date)
VALUES (
p_employee_id,
p_Ffirst _name,
p_last _name,
p_email,
p_phone_number,
p_hire_date,
p_job_id,
p_salary,
p_commission_pct,
p_manager_id,
p_department_id,
p_created_by,
p_created_date,
p_modified by,
p_modified_date);
ELSE
RAISE_APPLICATION_ERROR(-20298, v_error_message);
END IF;
g_allow_dml := FALSE;
EXCEPTION
WHEN OTHERS
THEN

Appendix B: Code Samples

g_allow _dml := FALSE;

RAISE_APPLICATION_ERROR(-20299, "Error inserting: "]]SQLERRM);
END ins;

PROCEDURE upd(

1S

p_employee_id employees.employee id%TYPE,
p_Ffirst_name employees.first_name%TYPE,
p_last _name employees.last _name%TYPE,

p_email employees.email%TYPE,

p_phone_number employees.phone_number%TYPE,
p_hire _date employees.hire date%TYPE,
p_job_id employees.job id%TYPE,

p_salary employees.salary%TYPE,
p_commission_pct employees.commission_pct%TYPE,
p_manager_id employees.manager_id%TYPE,
p_department_id employees.department_ id%TYPE,
p_created by employees.created by%TYPE,
p_created_date employees.created _date%TYPE,
p_modified by employees.modified_ by%TYPE,
p_modified_date employees.modified_date%TYPE)

BEGIN

g_allow_dml := TRUE;

-- TODO: Add call to check update_rules() when it is created.

UPDATE employees
SET
first _name = p_first_name,
last _name = p_last name,
email = p_email,
phone_number = p_phone_number,
hire _date = p_hire_date,
job_id = p_job_id,
salary = p_salary,
commission_pct = p_commission_pct,
manager_id = p_manager_id,
department_id = p_department_id,
created_by = p_created by,
created_date = p_created_date,
modified_by = p_modified_by,
modified_date = p_modified_date
WHERE employee_id = p_employee_id;

g_allow_dml := FALSE;

EXCEPTION

WHEN OTHERS
THEN
g_allow_dml := FALSE;

See ins().-

Appendix B: Code Samples

RAISE_APPLICATION_ERROR(-20299, "Error updating: "]]SQLERRM);
END upd;

PROCEDURE del (

p_employee_id employees.employee 1d%TYPE)
IS
BEGIN

g_allow_dml := TRUE;
-— TODO: Add call to check_delete rules() when it is created. See ins().
DELETE FROM employees
WHERE employee_id = p_employee_id;
g_allow _dml := FALSE;
EXCEPTION

WHEN OTHERS

THEN

g_allow_dml :-= FALSE;

RAISE_APPLICATION_ERROR(-20299, "Error deleting: "|]]|SQLERRM);
END del;

PROCEDURE Ick (

p_employee_id employees.employee 1d%TYPE)
IS

v_dummy PLS_INTEGER;
BEGIN

g_allow _dml := TRUE;

SELECT 1
INTO v_dummy
FROM employees
WHERE employee id = p_employee_id
FOR UPDATE;
g_allow_dml :-= FALSE;
EXCEPTION
WHEN OTHERS
THEN
g_allow_dml :-= FALSE;
RAISE_APPLICATION_ERROR(-20299, "Error locking: "]|SQLERRM);
END Ick;

END employees pkg;

Appendix B: Code Samples

EMPLOYEES TRBR Trigger

CREATE OR REPLACE TRIGGER employees_ trbr
BEFORE INSERT OR UPDATE OR DELETE
ON employees
FOR EACH ROW
DECLARE
V_error VARCHAR2(2000) ;
BEGIN
IF NOT employees_pkg.g allow_dml
THEN
RAISE_APPLICATION_ERROR(-20199, "You may not issue INSERT, UPDATE, or " ||
"DELETE statements to this table.");
END IF;
-- Note: The following is an alternative to calling the
- business rules checks from the table API
IF INSERTING
THEN
v_error -= check_insert_rules(
:NEW.employee_id,
-- other column values
ELSIF UPDATING

THEN
v_error := check_update rules(
:NEW.employee_id,
-- other column values
ELSE -- DELETING
v_error -= check_delete rules(
:NEW.employee_id,
-- other column values
END IF;

IF v_error IS NOT NULL
THEN
-- Fails the trigger and the statement
RAISE_APPLICATION_ERROR(-20199, v_error);
END IF;

END employees_trbr;

Table AP1 Code Generation Snippets
-— Column list

SELECT LOWER(column_name)]]~," col

FROM user_tab _columns

WHERE table_name = "EMPLOYEES®

ORDER BY column_id;

-— VALUES list
SELECT "p_"]|LOWER(column_name)|]"," col

Appendix B: Code Samples

FROM user_tab_columns
WHERE table_name = "EMPLOYEES®
ORDER BY column_id;

-— Parameter list

SELECT "p_"|]|LOWER(column_name)]|* employees."]|LOWER(column_name)|] "%TYPE," col
FROM user_tab _columns

WHERE table_name = "EMPLOYEES®

ORDER BY column_id;

-- Update columns

SELECT LOWER(column_name)]]"™ = "1
"p_"| ILOWER(column_name)]| ",

FROM user_tab_columns

WHERE table_name = "EMPLOYEES®

ORDER BY column_id;

col

-— INSTEAD OF trigger parameters

SELECT ":NEW." | JLOWER(column_name)|]"," col
FROM user_tab_columns

WHERE table_name = "EMPLOYEES®

ORDER BY column_id;

	Levaraging Oracle SQL and PL/SQL to Simplify User Interface App Dev
	Wat is Thick Database?
	Thick Database Techniques
	Levels of Thick

	Appendix A: More About Business Rules
	Appendix B: Code Samples
	EMP_DETAILS_VW View
	EMP_DETAILS_VW_TRBR Trigger
	EMPLOYEES_PKG Package
	EMPLOYEES_TRBR Trigger
	Table API Code Generation Snippets

