
OOW 2017© Peter Koletzke, 2017

Leveraging Oracle SQL and PL/SQL to Simplify
User Interface Application Development Using Thick Database Techniques

1

Leveraging Oracle SQL and
PL/SQL to Simplify User Interface

App Dev

Peter Koletzke
Technical Director & Principal Instructor

Using Thick Database Techniques
Application Development

2

Agenda

Slides with sample
code will be available
on the OOW website.

• What is Thick Database?

• Thick Database techniques

• Level of Thick

Appendix A – More About Business Rules
Appendix B – Code Samples

OOW 2017© Peter Koletzke, 2017

Leveraging Oracle SQL and PL/SQL to Simplify
User Interface Application Development Using Thick Database Techniques

2

3

About Thick Database
• A code development strategy

– Maximize use of database code to simplify
the user interface

– The user’s device (client) runs minimal code

• Name plays off the term “thin client”
– A “Year of the Internet” term

– Means most processing occurs on a server

– Slightly outmoded now

• Thick database means “thin client”

A.k.a., Thick
Database Approach,
Thick Database
Paradigm, Smart
Database (SmartDb),
Fat Database

4

Provenance
• Topic is rarely seen now, but not new

– Using database features to enforce data integrity
defined by business rules is obvious

• Started trending many years ago
– ODTUG Business Rules Symposium Day 2001-2004

• Organized by Dr. Paul Dorsey of Dulcian, Inc.

– Thoughts evolved into Thick Database
• Sessions starting around 2006

OOW 2017© Peter Koletzke, 2017

Leveraging Oracle SQL and PL/SQL to Simplify
User Interface Application Development Using Thick Database Techniques

3

5

Topic is Still Active
• dulcian.com

– Look in Resources | Conference Presentations - Thick Database

• Mike Smithers’ Blog
– https://mikesmithers.wordpress.com/tag/thick-database-paradigm/

• Toon Koppelaars, Oracle Real World Performance Group
– https://www.youtube.com/watch?v=8jiJDflpw4Y

– http://www.prohuddle.com/webinars/ToonKoppelaars/ThickDB.php

• Bryn Llewellyn, Distinguished Product Manager (Oracle)
– https://blogs.oracle.com/plsql-and-ebr/entry/why_use_pl_sql

6

Guiding Principles for Code

• Database code that implements business rules
in PL/SQL

• Database views to represent complex business
objects (SQL)
– Each view has an accompanying application

programming interface (API)
• Written in PL/SQL

– Interaction is with view and API

OOW 2017© Peter Koletzke, 2017

Leveraging Oracle SQL and PL/SQL to Simplify
User Interface Application Development Using Thick Database Techniques

4

7

What is a Business Rule?
• A statement of a behavior, definition, or constraint that

allows an organization to achieve its goals.
• Systems analysis is all about determining business rules

– Often business requirements are equated with business rules
– Business rules used to communicate business with business

users

• A full definition of business rules can identify all aspects
of an application
– Possible exceptions: technical details like development

software, server specifics
Topic is expanded in Appendix A.

8

Options for Business Rule Systems
• Simple

– Store definition in a table (statement, name, ID)
– Reference definition to an application specification
– Represent the rule in a test plan

• Moderate
– Everything in “Simple” plus…
– A home-grown code generator creates application code (and optionally UI

code) from business rule definitions
– Requires setting up a “language” to represent all rules
– Changing the BR definition requires only regenerating the application code

• Extreme
– Everything in “Moderate” plus…
– Instead of a code generator, a home-grown runtime engine that reads

business rule definitions at runtime and creates application on the fly
– Changing the BR definition immediately affects the application runtime

Co
m

pl
ex

it
y,

 F
le

xi
bi

lit
y

OOW 2017© Peter Koletzke, 2017

Leveraging Oracle SQL and PL/SQL to Simplify
User Interface Application Development Using Thick Database Techniques

5

9

Thick Benefits
• Application accuracy

– Business rules match application code
– Test plans can be generated from business rules

• Productivity
– Can greatly simplify user interface code

• Code reusability
– Ease of application maintenance

• Better performance
– Code is close to data storage – fewer messages, easy access
– Views also reduce the number of round trips needed

• Proper use of staff
– User interface developers can concentrate on UI code
– Database code developers can concentrate on database code

to support the UI

10

Simplifies User Interface Work
• Database views can represent multiple tables

– Arbitrarily complex logic
– Aggregate functions: MAX(), COUNT()
– Set operators: UNION, MINUS
– Calculation functions: first_salary()
– Even: a PL/SQL function cast as a table

• One view per application UI page
– The page submit commits the entire page
– Reminds one of mainframe “block submit”
– Back end code deals the data into

the proper tables

OOW 2017© Peter Koletzke, 2017

Leveraging Oracle SQL and PL/SQL to Simplify
User Interface Application Development Using Thick Database Techniques

6

11

Some Changes Require Less Rewriting

• UI technology changes
– If code is in database, only UI needs rewriting

– Application logic in database can carry forward

• Table refactoring
– For example, if a set of tables used in UI views is

normalized into more tables
• Joins and query of view can be updated

• UI may not need to change

12

View 1

Table 1

Table 2

Table 3

Table 4

Thick Database UI Screen

View 1

Table 2Table 4

Table 3 Table 1

Database

Table 1

Table 2

Table 3

Table 4

Traditional Client UI Screen

Traditional vs. Thick Database UIs

OOW 2017© Peter Koletzke, 2017

Leveraging Oracle SQL and PL/SQL to Simplify
User Interface Application Development Using Thick Database Techniques

7

13

Front-end Tool “Agnostic”
• Application Express (APEX)
• Application Development Framework (ADF)
• Mobile Application Framework (MAF)
• Forms
• JavaScript

– JavaScript Extension Toolkit (JET)
– Mobile Application Accelerator (MAX)
– Visual Builder Cloud Service (VBCS, formerly ABCS)

• PL/SQL Toolkit
• PHP: Hypertext Processor (PHP)
• Rails
• ColdFusion
• (whatever)

14

ADF

Tools’ Use of Thick Database

Database

View 3

ADF BC

APEX

Forms

MAF

JavaScript
(all types)

(others)

Table 1
Table 2

Table 3

View 4

REST
Services

Web
Services

(something
or nothing)

View 1 View 2

OOW 2017© Peter Koletzke, 2017

Leveraging Oracle SQL and PL/SQL to Simplify
User Interface Application Development Using Thick Database Techniques

8

15

Drawbacks
• Time and effort required

– Design and set up
– Documenting standards
– Instructing staff

• Requirements on the IT shop side
– Architect/database designer
– Expert coder

• Develop generic code “engines” to run and/or generate business rules
code

• Need buy-in from management
– For all of the above

16

When Not to Use Thick Database

• If your organization is dedicated to “database
independence”
– Changing from Oracle to SQL Server, for example

– This is a BIG DEAL

– Forces applications to use ANSI SQL only
• Applications are “thicker” than the database

• If your applications have few or simple business rules
– Overhead of Thick Database may not be worthwhile

OOW 2017© Peter Koletzke, 2017

Leveraging Oracle SQL and PL/SQL to Simplify
User Interface Application Development Using Thick Database Techniques

9

17

How Many Schemas?

• Normal set up these days
– One schema owns the data and code

– Another schema runs the application and accesses data and
code

– Control access by grants

• Variation (1)

– The data owner schema is separate from the code owner
schema

– Even more secure: another layer for grants

(1) Why Use PL/SQL? By Bryn Llewellyn

18

Agenda

• What is Thick Database?

• Thick Database techniques

• Level of Thick

OOW 2017© Peter Koletzke, 2017

Leveraging Oracle SQL and PL/SQL to Simplify
User Interface Application Development Using Thick Database Techniques

10

19

“The towels were so thick there
I could barely close my suitcase.”Yogi Berra

20

Database Components
• Tables – the usual

– No grants or synonyms to other schemas

• Table API packages
– INSERT, UPDATE, DELETE, (SELECT) procedures

– Call business rules validation code

• Views on the tables
– Queries can be arbitrarily complex

• INSTEAD OF triggers on the views
– Call the table API procedures

OOW 2017© Peter Koletzke, 2017

Leveraging Oracle SQL and PL/SQL to Simplify
User Interface Application Development Using Thick Database Techniques

11

21

Table API
• A PL/SQL package per table

– All data modification (“DML”) is accomplished through
procedures
• INS()

• UPD()

• DEL()

• LCK()

• Procedures are called only from INSTEAD OF
view triggers

• No grants to table at all

Demo 1

Code samples are available
in Appendix B.

22

Optional Table API Components
• A function can act as SELECT

– A bit trickier and not always necessary

– Virtual Private Database policies can filter data to all
SELECT statements instead

• Package enforcement global variable
– Trigger uses it to prevent “DML” statements outside of the

package
• Applies only to table owner because table has no grants

– Access only by Table API

OOW 2017© Peter Koletzke, 2017

Leveraging Oracle SQL and PL/SQL to Simplify
User Interface Application Development Using Thick Database Techniques

12

23

Package Enforcement Global Variable
CREATE OR REPLACE TRIGGER employees_trbr

BEFORE INSERT OR UPDATE OR DELETE
ON employees
FOR EACH ROW

BEGIN
--
IF NOT employees_pkg.g_allow_dml
THEN

RAISE_APPLICATION_ERROR(-20199,
'You may not issue INSERT, UPDATE, or ' ||
'DELETE statements to this table.');

END IF;

-- other code for validating rules
END employees_trbr;

24

Database Views and Triggers
• Views on tables requiring access

• INSTEAD OF triggers on the views
– INSERT, UPDATE, DELETE row-level trigger

• Call Table API procedures

– Exceptions
• Cross-row validation requires statement-level triggers on

tables or application code

• Cross-table validation requires application code

Demo 2

OOW 2017© Peter Koletzke, 2017

Leveraging Oracle SQL and PL/SQL to Simplify
User Interface Application Development Using Thick Database Techniques

13

25

SQL Flow

INSTEAD OF Trigger

View 1

Table 1 API

Table 2 API

Table 3 API

Database

“DML”
Table 1 Trigger

Table 1

Table 2 Trigger
Table 2

Table 3 Trigger
Table 3

“D
M

L”

26

Generate the Stub Code
• It’s all cookie cutter stuff at the start

– Table API – triggers and packages

– View INSTEAD OF trigger

• Use a prebuilt generator
– http://www.dbartisans.com/oracle/docs/

PLSQL_Frameworks_and_Libraries.pdf

– Steven Feuerstein
• https://community.oracle.com/community/

database/developer-tools/oddgen

• Or roll your own generator
Demo 3

OOW 2017© Peter Koletzke, 2017

Leveraging Oracle SQL and PL/SQL to Simplify
User Interface Application Development Using Thick Database Techniques

14

27

Agenda

• What is Thick Database?

• Thick Database techniques

• Level of Thick

28

Three Main Levels
• Light

– No grants to tables, multiple schemas
– Views to represent UI screens,
– Application logic handles business rules
– Simple business rules system

• Moderate
– Same as Light plus…
– INSTEAD OF triggers on views
– Table API
– Any type of business rules system

• Deep
– Same as Moderate plus…
– More complex business rules systems

• Requires skilled code architect

Co
m

pl
ex

it
y,

 F
le

xi
bi

lit
y

OOW 2017© Peter Koletzke, 2017

Leveraging Oracle SQL and PL/SQL to Simplify
User Interface Application Development Using Thick Database Techniques

15

29

Do You Need an Oracle Database?

• No, but…
– A central location for business rules code is necessary

• Best in a database

– Views are needed to hide details of the data storage
• INSTEAD OF triggers may not be available

• So application may be responsible for calling the central code

– Table API concept may be possible
• DB2 supports PL/SQL

• You can always just allow access to views not tables

30

How to Transition to Thick Database

• Like applying any other standard while “in flight”

• Apply it 100% to new applications

• Can apply it to existing application enhancements

• Can start small
– Incorporate user interface interaction with database views

OOW 2017© Peter Koletzke, 2017

Leveraging Oracle SQL and PL/SQL to Simplify
User Interface Application Development Using Thick Database Techniques

16

31

Summary
• Thick Database is driven by business rules

• Thick Database can improve productivity, system
performance, application accuracy, UI simplicity, security

• Leverage SQL: Database views, no grants to tables

• Leverage PL/SQL: View INSTEAD OF triggers, table triggers,
table APIs

• Different levels of thick depending on available time and talent

3 Membership Tiers
• Oracle ACE Director
• Oracle ACE
• Oracle ACE Associate

bit.ly/OracleACEProgram

500+ Technical Experts
Helping Peers Globally

Connect:

Nominate yourself or someone you know: acenomination.oracle.com

@oracleace

Facebook.com/oracleaces

oracle‐ace_ww@oracle.com

OOW 2017© Peter Koletzke, 2017

Leveraging Oracle SQL and PL/SQL to Simplify
User Interface Application Development Using Thick Database Techniques

17

33

Designer
Handbook
Designer

Handbook

Developer
Advanced
Forms &
Reports

Developer
Advanced
Forms &
Reports

JDeveloper 3
Handbook

JDeveloper 3
Handbook

ORACLE9i
JDeveloper
Handbook

ORACLE
JDeveloper 10g

Handbook

• Please fill out the session evaluation

• 7 of 8 books co-authored with Dr. Paul Dorsey,
Avrom Roy-Faderman, & Duncan Mills

• Slides and sample code on the OOW website.

1

What is a Business Rule?
• A statement of a behavior, definition, or

constraint that allows an organization to
achieve its goals.

• Systems analysis is all about determining
business rules
– Often business requirements are equated with

business rules
• Used to communicate business with

business users
• A full definition of business rules can

identify all aspects of an application
– Possible exceptions: technical details like

development software, server specifics

Appendix A: More About Business Rules

2

Business Rules Categories

• Business definition
– A statement that explains a fact relevant to

the business, for example:
• An employee is active in one and only one

department at a time.

• Data validation
– A statement that describes how data is

verified, for example:
• The employee’s job start date must be on

or after the job start date.

3

More Business Rule Categories
• Allowed values

– Related to data validation
– Defines field values from a fixed list (hard

coded or in a table) or range, for example,
• The value of the “State” portion of an address in the

United States must be from the list of US states
(including the District of Columbia).

• System Behavior
– A statement that guides the internal actions in

the system, for example:
• Saving a change to an employee record

archives the old version of the record in
a history table.

4

Another Business Rule Category
• Data privileges

– Selective to users or (better) roles
– Defines access to view or modify certain

data, for example,
• Only directors can update salaries for staff in

their division.
• Only managers can view salaries other than

their own for staff in their department.
• Personal data for clients, such as credit card

numbers and Medicaid IDs, are only visible to
staff who have been cleared to view it.

• Staff may only view profile information for
clients in the department’s territory.

5

Sample Business Rules
• An employee is active in one and only one

department at a time.
• The employee’s job end date must be on

or after the job start date.
• The value of the “State” portion of an address in

the United States must be from the list of US
states (including the District of Columbia).

• Saving a change to an employee record
archives the old version of the record in
a history table.

• Only managers can view salaries other than
their own for staff in their department.

6

Test Plans and Business Rules

• Business rules statements can be used
as or linked with test plans

• Generation of test plans is then just a
report

• Each business requirement will be
properly tested

Business
Requirement

Business Rule

Test Plan

Req #

1..1 1..*

7

Where to Place the
Business Rules Code?

• Environments these days are multi-tier
– Database tier

– Middle tier
• Application server/web server (SOA, web

services, ESB, etc.)

– Client tier
• Web browser

• Mobile device

• Code can be located on one
or more tiers

8

Primary Assumption
• Standard relational database constraints

are ALWAYS used to protect data integrity
– Primary key

– Foreign key

– Unique key

– Check constraints
• NOT NULL

• Value- or function-base (optional)

• This is true regardless of the
database vendor

9

Code on the Client Tier
• Web application consideration:

– Since HTML is not a programming language, you
need JavaScript for this

• Benefits
– Fast feedback to user: very friendly
– No processing at all on database or middle tiers

• Drawbacks
– Difficult to maintain business rules documentation
– Some browsers handle JavaScript differently
– Possible need to repeat code for each app

• Potential for omission in a single app

– Not centralized

10

Code on the Middle Tier
• Business rules code is in the middle tier

– That is, if there is a middle tier
• For example, APEX has none

– ADF
• Java and XML files for the application
• Declarative validation rules, EO, VO, App module code

• Benefits
– Saves database server CPU time
– Returns messages to user faster and friendlier

• Drawbacks
– Each app needs to repeat the code for a particular table
– Requires database roundtrip messages
– Documenting or checking business rules

requires visiting many files unless you
use a Rules Engine or other repository

11

Code on the Database Tier
• Thick Database approach

– Views
– Table API code

• Triggers and procedures (and policies) that enforce rules

• Benefits
– Data integrity is enforced for all applications
– Business rules code can be generated from metadata or, at

least, documented from one source
– Maintenance requires only database changes

• Application modification may not be needed
– Primary language is PL/SQL

• Drawbacks
– Handling return messages from the database in

a friendly way is not a default
– Places complete burden of validation of data on the

database server – possibly more CPU time taken

12

So, Which is Best?
• Depends on the application

• Database tier (Thick Database) ensures
data integrity
– Any application

• Middle tier saves database round trips
– If processing only on middle tier

• Client tier provides best interactivity
– Immediate feedback to user

– Also saves database round trips

13

Feature Comparison
Location of Business Rules Code

Feature
Client

Computer
Application

Server
Database

Server

User interactivity 10 7 5
Saves client computer resource usage ** 2 10 10
Saves roundtrip message to client computer 10 10
Saves application server resource usage ** 10 2 10
Saves roundtrip message to application
server 10 10

Saves database server resource usage ** 10 10 2
Saves roundtrip message to database server 10 10

Ease of maintenance (dependency analysis,
adding, updating, reporting) * 2 5 10

Reuse of code 2 5 10

Assurance that business rules are applied to
all applications 5 5 10

Total 61 64 77

1 (no support) to 10 (the best support)

* Assumes that the business rules repository is not used at
runtime or to generate code.

** This feature reflects use of that tier for business rules purposes 14

Suggestion
• Modified Database-centric Approach

– Always code rules in the database
– Selectively duplicate business rules

in the middle tier and client tier
• Carefully consider each rule
• Know and document that you are duplicating rules
• Can even turn off database rule for a transaction if it has been

run on the client side

– Consider using a BR repository tool
• Home grown or Oracle Business Rules

• Guiding principles
– Use database code when possible

• It is the closest to the data == most efficient

– Save database round trips when possible
• Client side can check data type, for example

Chapter 10

15

Some Challenges
• Identifying business rules
• Stating them accurately
• Representing the business rules in

system programmatic code
• Defining and maintaining business rules

statements
• Communicating rules to users
• Synchronizing programmatic code and

the business rules repository

Appendix B: Code Samples

1

EMP_DETAILS_VW View
CREATE OR REPLACE FORCE VIEW emp_details_vw
AS
 SELECT emp.employee_id,
 emp.job_id,
 emp.manager_id,
 emp.department_id,
 dept.location_id,
 loc.country_id,
 emp.first_name,
 emp.last_name,
 emp.salary,
 emp.commission_pct,
 emp.email,
 emp.phone_number,
 emp.hire_date,
 emp.created_date,
 emp.created_by,
 emp.modified_date,
 emp.modified_by,
 dept.department_name,
 jb.job_title,
 loc.city,
 loc.state_province,
 cntry.country_name,
 reg.region_name
 FROM employees emp, departments dept,
 jobs jb, locations loc,
 countries cntry, regions reg
 WHERE emp.department_id = dept.department_id
 AND dept.location_id = loc.location_id
 AND loc.country_id = cntry.country_id
 AND cntry.region_id = reg.region_id
 AND jb.job_id = emp.job_id;

COMMENT ON TABLE EMP_DETAILS_VW IS 'An all-inclusive view of an employee including all
organization levels and current job description.';

EMP_DETAILS_VW_TRBR Trigger
CREATE OR REPLACE TRIGGER emp_details_vw_trbr
 INSTEAD OF DELETE OR INSERT OR UPDATE
 ON emp_details_vw
 FOR EACH ROW
DECLARE
BEGIN
 IF INSERTING
 THEN
 employees_pkg.ins(
 :NEW.employee_id,

Appendix B: Code Samples

2

 :NEW.first_name,
 :NEW.last_name,
 :NEW.email,
 :NEW.phone_number,
 :NEW.hire_date,
 :NEW.job_id,
 :NEW.salary,
 :NEW.commission_pct,
 :NEW.manager_id,
 :NEW.department_id,
 :NEW.created_by,
 :NEW.created_date,
 :NEW.modified_by,
 :NEW.modified_date);
 ELSIF UPDATING
 THEN
 employees_pkg.upd(
 :NEW.employee_id,
 :NEW.first_name,
 :NEW.last_name,
 :NEW.email,
 :NEW.phone_number,
 :NEW.hire_date,
 :NEW.job_id,
 :NEW.salary,
 :NEW.commission_pct,
 :NEW.manager_id,
 :NEW.department_id,
 :NEW.created_by,
 :NEW.created_date,
 :NEW.modified_by,
 :NEW.modified_date);
 ELSE -- DELETING
 employees_pkg.del(
 :NEW.employee_id);
 END IF;
 --
END emp_details_vw_trbr;

EMPLOYEES_PKG Package
CREATE OR REPLACE PACKAGE employees_pkg
IS
 --
 g_allow_dml BOOLEAN DEFAULT FALSE;
 --
 PROCEDURE ins (
 p_employee_id employees.employee_id%TYPE,
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_email employees.email%TYPE,
 p_phone_number employees.phone_number%TYPE,

Appendix B: Code Samples

3

 p_hire_date employees.hire_date%TYPE,
 p_job_id employees.job_id%TYPE,
 p_salary employees.salary%TYPE,
 p_commission_pct employees.commission_pct%TYPE,
 p_manager_id employees.manager_id%TYPE,
 p_department_id employees.department_id%TYPE,
 p_created_by employees.created_by%TYPE,
 p_created_date employees.created_date%TYPE,
 p_modified_by employees.modified_by%TYPE,
 p_modified_date employees.modified_date%TYPE);
 --
 PROCEDURE upd(
 p_employee_id employees.employee_id%TYPE,
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_email employees.email%TYPE,
 p_phone_number employees.phone_number%TYPE,
 p_hire_date employees.hire_date%TYPE,
 p_job_id employees.job_id%TYPE,
 p_salary employees.salary%TYPE,
 p_commission_pct employees.commission_pct%TYPE,
 p_manager_id employees.manager_id%TYPE,
 p_department_id employees.department_id%TYPE,
 p_created_by employees.created_by%TYPE,
 p_created_date employees.created_date%TYPE,
 p_modified_by employees.modified_by%TYPE,
 p_modified_date employees.modified_date%TYPE);
 --
 PROCEDURE del (
 p_employee_id employees.employee_id%TYPE);
 --
 PROCEDURE lck (
 p_employee_id employees.employee_id%TYPE);
 --
END employees_pkg;
CREATE OR REPLACE PACKAGE BODY employees_pkg
IS
 --
 --
 FUNCTION check_insert_rules(
 p_employee_id employees.employee_id%TYPE,
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_email employees.email%TYPE,
 p_phone_number employees.phone_number%TYPE,
 p_hire_date employees.hire_date%TYPE,
 p_job_id employees.job_id%TYPE,
 p_salary employees.salary%TYPE,
 p_commission_pct employees.commission_pct%TYPE,
 p_manager_id employees.manager_id%TYPE,
 p_department_id employees.department_id%TYPE,
 p_created_by employees.created_by%TYPE,

Appendix B: Code Samples

4

 p_created_date employees.created_date%TYPE,
 p_modified_by employees.modified_by%TYPE,
 p_modified_date employees.modified_date%TYPE)
 RETURN VARCHAR2
 IS
 v_error_message VARCHAR2(10000);
 BEGIN
 IF p_hire_date < jobs_pkg.job_start_date(p_department_id)
 THEN
 -- "Employee Hire Date must be on or after the job start date."
 v_error_message := message_pkg.message_text(500);
 END IF;
 --
 IF NOT util_pkg.check_list_value(
 'US_STATE', departments_pkg.address_state(p_department_id))
 THEN
 v_error_message := v_error_message || ' ' || message_pkg.message_text(501);
 END IF;
 --
 RETURN v_error_message;
 END check_insert_rules;
 --
 --
 PROCEDURE ins (
 p_employee_id employees.employee_id%TYPE,
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_email employees.email%TYPE,
 p_phone_number employees.phone_number%TYPE,
 p_hire_date employees.hire_date%TYPE,
 p_job_id employees.job_id%TYPE,
 p_salary employees.salary%TYPE,
 p_commission_pct employees.commission_pct%TYPE,
 p_manager_id employees.manager_id%TYPE,
 p_department_id employees.department_id%TYPE,
 p_created_by employees.created_by%TYPE,
 p_created_date employees.created_date%TYPE,
 p_modified_by employees.modified_by%TYPE,
 p_modified_date employees.modified_date%TYPE)
 IS
 v_error_message VARCHAR2(10000);

 BEGIN
 g_allow_dml := TRUE;
 -- Or put this call in the table trigger
 v_error_message := check_insert_rules(
 p_employee_id,
 p_first_name,
 p_last_name,
 p_email,
 p_phone_number,
 p_hire_date,

Appendix B: Code Samples

5

 p_job_id,
 p_salary,
 p_commission_pct,
 p_manager_id,
 p_department_id,
 p_created_by,
 p_created_date,
 p_modified_by,
 p_modified_date);
 --
 IF v_error_message IS NULL
 THEN
 INSERT INTO employees(
 employee_id,
 first_name,
 last_name,
 email,
 phone_number,
 hire_date,
 job_id,
 salary,
 commission_pct,
 manager_id,
 department_id,
 created_by,
 created_date,
 modified_by,
 modified_date)
 VALUES (
 p_employee_id,
 p_first_name,
 p_last_name,
 p_email,
 p_phone_number,
 p_hire_date,
 p_job_id,
 p_salary,
 p_commission_pct,
 p_manager_id,
 p_department_id,
 p_created_by,
 p_created_date,
 p_modified_by,
 p_modified_date);
 ELSE
 RAISE_APPLICATION_ERROR(-20298, v_error_message);
 END IF;
 --
 g_allow_dml := FALSE;
 EXCEPTION
 WHEN OTHERS
 THEN

Appendix B: Code Samples

6

 g_allow_dml := FALSE;
 --
 RAISE_APPLICATION_ERROR(-20299, 'Error inserting: '||SQLERRM);
 END ins;
 --
 --
 PROCEDURE upd(
 p_employee_id employees.employee_id%TYPE,
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_email employees.email%TYPE,
 p_phone_number employees.phone_number%TYPE,
 p_hire_date employees.hire_date%TYPE,
 p_job_id employees.job_id%TYPE,
 p_salary employees.salary%TYPE,
 p_commission_pct employees.commission_pct%TYPE,
 p_manager_id employees.manager_id%TYPE,
 p_department_id employees.department_id%TYPE,
 p_created_by employees.created_by%TYPE,
 p_created_date employees.created_date%TYPE,
 p_modified_by employees.modified_by%TYPE,
 p_modified_date employees.modified_date%TYPE)
 IS
 BEGIN
 g_allow_dml := TRUE;
 --
 -- TODO: Add call to check_update_rules() when it is created. See ins().
 --
 UPDATE employees
 SET
 first_name = p_first_name,
 last_name = p_last_name,
 email = p_email,
 phone_number = p_phone_number,
 hire_date = p_hire_date,
 job_id = p_job_id,
 salary = p_salary,
 commission_pct = p_commission_pct,
 manager_id = p_manager_id,
 department_id = p_department_id,
 created_by = p_created_by,
 created_date = p_created_date,
 modified_by = p_modified_by,
 modified_date = p_modified_date
 WHERE employee_id = p_employee_id;
 --
 g_allow_dml := FALSE;
 EXCEPTION
 WHEN OTHERS
 THEN
 g_allow_dml := FALSE;
 --

Appendix B: Code Samples

7

 RAISE_APPLICATION_ERROR(-20299, 'Error updating: '||SQLERRM);
 END upd;
 --
 --
 PROCEDURE del (
 p_employee_id employees.employee_id%TYPE)
 IS
 BEGIN
 g_allow_dml := TRUE;
 --
 --
 -- TODO: Add call to check_delete_rules() when it is created. See ins().
 --
 DELETE FROM employees
 WHERE employee_id = p_employee_id;
 --
 g_allow_dml := FALSE;
 EXCEPTION
 WHEN OTHERS
 THEN
 g_allow_dml := FALSE;
 --
 RAISE_APPLICATION_ERROR(-20299, 'Error deleting: '||SQLERRM);
 END del;
 --
 --
 PROCEDURE lck (
 p_employee_id employees.employee_id%TYPE)
 IS
 v_dummy PLS_INTEGER;
 BEGIN
 g_allow_dml := TRUE;
 --
 SELECT 1
 INTO v_dummy
 FROM employees
 WHERE employee_id = p_employee_id
 FOR UPDATE;
 --
 g_allow_dml := FALSE;
 EXCEPTION
 WHEN OTHERS
 THEN
 g_allow_dml := FALSE;
 --
 RAISE_APPLICATION_ERROR(-20299, 'Error locking: '||SQLERRM);
 END lck;
 --
 --
END employees_pkg;

Appendix B: Code Samples

8

EMPLOYEES_TRBR Trigger
CREATE OR REPLACE TRIGGER employees_trbr
 BEFORE INSERT OR UPDATE OR DELETE
 ON employees
 FOR EACH ROW
DECLARE
 v_error VARCHAR2(2000);
BEGIN
 --
 IF NOT employees_pkg.g_allow_dml
 THEN
 RAISE_APPLICATION_ERROR(-20199, 'You may not issue INSERT, UPDATE, or ' ||
 'DELETE statements to this table.');
 END IF;
 --
 -- Note: The following is an alternative to calling the
 -- business rules checks from the table API
 IF INSERTING
 THEN
 v_error := check_insert_rules(
 :NEW.employee_id,
 -- other column values
 ELSIF UPDATING
 THEN
 v_error := check_update_rules(
 :NEW.employee_id,
 -- other column values
 ELSE -- DELETING
 v_error := check_delete_rules(
 :NEW.employee_id,
 -- other column values
 END IF;
 --
 IF v_error IS NOT NULL
 THEN
 -- fails the trigger and the statement
 RAISE_APPLICATION_ERROR(-20199, v_error);
 END IF;
 --
END employees_trbr;

Table API Code Generation Snippets
-- Column list
SELECT LOWER(column_name)||',' col
FROM user_tab_columns
WHERE table_name = 'EMPLOYEES'
ORDER BY column_id;

-- VALUES list
SELECT 'p_'||LOWER(column_name)||',' col

Appendix B: Code Samples

9

FROM user_tab_columns
WHERE table_name = 'EMPLOYEES'
ORDER BY column_id;

-- Parameter list
SELECT 'p_'||LOWER(column_name)||' employees.'||LOWER(column_name)||'%TYPE,' col
FROM user_tab_columns
WHERE table_name = 'EMPLOYEES'
ORDER BY column_id;

-- Update columns
SELECT LOWER(column_name)||' = '||
 'p_'||LOWER(column_name)||',' col
FROM user_tab_columns
WHERE table_name = 'EMPLOYEES'
ORDER BY column_id;

-- INSTEAD OF trigger parameters
SELECT ':NEW.'||LOWER(column_name)||',' col
FROM user_tab_columns
WHERE table_name = 'EMPLOYEES'
ORDER BY column_id;

	Levaraging Oracle SQL and PL/SQL to Simplify User Interface App Dev
	Wat is Thick Database?
	Thick Database Techniques
	Levels of Thick

	Appendix A: More About Business Rules
	Appendix B: Code Samples
	EMP_DETAILS_VW View
	EMP_DETAILS_VW_TRBR Trigger
	EMPLOYEES_PKG Package
	EMPLOYEES_TRBR Trigger
	Table API Code Generation Snippets

