
GET POST ORDS JSON:
Web Services for APEX
Decoded

Welcome

2

3

About Me

@sspendol

scott@sumnertech.com

About Sumner Technologies
• Originally Established 2005

• Relaunched in 2015
– Focused exclusively on Oracle APEX solutions

• Provide wide range of APEX related Services
– Architecture Design & Reviews

– Security Reviews

– Health Checks

– Education
• On-site, On-line, On-Demand

• Custom & Mentoring

– Oracle Database Cloud Consulting

– Curators of APEX-SERT

4

Agenda
• Overview

• Definitions

• Demonstration

• Summary

5

Overview

6

Our Happy Place…
• As PL/SQL developers, we’re most comfortable when

we are where we know the most

– Inside the Oracle Database

• We can get and manipulate any data, so as long as we
can use:

– Views

– Tables

– SQL

– PL/SQL

7

Our Sad Place…
• Once we leave our Happy Place (i.e. the Oracle

Database), we’re outside of our comfort zone

• Simple things - like reading and writing data - become
insurmountable tasks

– We just don't even know where to start

– Even if we did, we don't speak the language

– We feel lost

– We are lost

8

Calling Procedures: Oracle to Oracle
• Same schema:

– Refer to the name of the procedure

• Different schema/same database:

– Create a grant

– Refer to the schema.name of the procedure

• Different schema/different database:

– Create a database link

– Create a grant

– Refer to the schema.name@link of the procedure

9

Calling Procedures: Oracle to Non-Oracle
• Things get complicated when we have to venture

outside of the Oracle Database

– No more simple procedure calls are possible

– Must turn to something else

– This is our Sad Place

• To bridge the gap, we can turn to Web Services

10

Web Services
• For most Oracle APEX & PL/SQL developers, Web

Services represent a sad place
– A place where their skills do them no good

– Major feelings of hopelessness and despair

• As IT and associated systems evolve, we can no longer
ignore web services and hope they go away

– They are here to stay and becoming more and more important

– It’s no longer if, but when you’ll have to learn how to use them

11

Web Services
• Web Services are nothing more than a procedure that

lives on another server
– Typically used when two computers exchange data

– Runs over HTTP or HTTPS
– Results typically contain data formatted in either XML or JSON

12

Non-Oracle
Database

Oracle
Database

Web Service via HTTP

Definitions

13

Definitions
• Most confusion surrounding Web Services lies in the

many, many acronyms used to define them

– We already used four!

• Let’s take a moment to define a few:

– HTTP/HTTPS
– XML
– JSON

– REST

– Methods
• GET, POST, PUT, DELETE

– ORDS
14

HTTP/HTTPS
• HyperText Transfer Protocol (Secure)

– Underlying protocol that is used by the web

– HTTP is clear text; HTTPS is encrypted

• Web Services use HTTP/S to communicate with one
another

– No need for SQL*Net or other protocols

• Note:

– On the Oracle side, may involve adding site certificates to Oracle
Wallet and adding entries to the database Access Control
List (ACL)

15

XML
• XML is basically a format for transmitting data
– It doesn’t really do anything; but rather provides an envelope for

and a description of the data which it transports

• Like HTML, XML is made up of two components:

– Tags
– Data

• Unlike HTML, you can create any tag you feel like in an XML
document

– Which is the source of much confusion

16

XML
• A simple XML document:

• It’s self-describing & readable
– You can extract that it’s Sunny and 84 degrees in Ashburn, VA

• The challenge is to write some code to  
extract the data and then display  
or use the results in your own applications

17

<weather>
 <location>Ashburn, VA</location>
 <temperature>84</temperature>
 <condition>Sunny</condition>
</weather>

JSON
• JSON - or JavaScript Object Notation - is another

popular format for data interchange

– Less payload than XML and fast becoming the “go to” alternative
for XML for this reason

• JSON uses key/value pairs to encapsulate data

– Value pairs are enclosed by " and delimited by a colon

– Document or arrays within document enclosed by { } and/or []

18

JSON Example
• Simple example of a JSON document:

• It’s self-describing & readable
– You can extract that the names of the band members

• The challenge is again to write some code to extract
the data and then display or use the results in your own
applications

19

"band":
 [
 {"firstName":"John", "lastName":"Lennon"},
 {"firstName":"Paul", "lastName":"McCartney"},
 {"firstName":"Ringo", "lastName":"Star"}
 {"firstName":"George","lastName":"Harrison"}
]

• Similar to XML in that:

– Both are “self describing” and easy to read

– Both can be hierarchical

– Both can easily be parsed and used by lots of programming
languages

– Both JSON and XML can be fetched with an XMLHttpRequest

XML vs. JSON

20

Winner: JSON

21

• JSON is different from XML in that:

– No closing/end tags

– Shorter

– Quicker to read & write

– Supports Arrays

• With most modern web applications, it just makes sense to
use JSON over XML

REST
• REST (Representational State Transfer)

– Exposes a named resource via HTTP/S

• Example: https://servername/service/emp/7839

– Data Format returned can be anything (CSV, JSON, XML, Text)

• REST eliminates some of the complexity that
came with SOAP-based web services

– Can just really refer to a URL and get data

– What you do with the data depends on a number of things

• Web Services based on the REST architecture that use
HTTP methods are referred to RESTful Web Services

22

HTTP Methods
• There are a number of ways or methods to interact

with a resource over HTTP

23

Method SQL Idempotent

GET SELECT Y

POST INSERT N

PUT UPDATE or
INSERT Y

DELETE DELETE Sort Of

GET
• A GET transaction is when you request a resource on

the server

– As simple as entering a URL/URI

– Possible to pass parameters, but not required

• Example:

– http://server/action.do?p_value=123&p_name=scott

24

GET
• GETs requests:

– Can be cached

– Will remain in your browser’s history

• Until you delete it or are running in incognito mode

– Can be bookmarked

– Should never be used when dealing with sensitive data

• As the data is readable in multiple places

– Should only be used to retrieve - or GET - data from a server

• Never for anything transactional

– Can be tampered with

25

POST
• A POST occurs when data is sent to a server

– Typically when a user clicks a button and submits a form

– Possible and likely to pass parameters, but not required

• Example:

– http://server/action.submit
– Item name & value pairs are sent in the body of the post

26

POST
• POST requests:

– Are never cached

– Do not remain in the browser’s history

– Cannot be bookmarked

27

Other Methods
• PUT
– Performs an update of the specified resource

• DELETE
– Deletes specified resource

• HEAD
– Same as GET, but only returns HTTP Header

information

• OPTIONS
– Returns the methods that the HTTP server supports

28

ORDS
• Oracle RESTful Data Services

– Formerly called Oracle APEX Listener
– Fully Supported feature of the Oracle Database since 2010

• Can log SRs against a corresponding Database License Provides HTTP/S Access
to Oracle Databases (and other databases)

– Maps HTTP(S) RESTful GETS and POSTS to SQL and
PL/SQL

– Declaratively returns results in JSON or CSV format

• Enables virtually every platform to easily  
and securely access an Oracle Database

29 30

ORDS

Oracle REST Data Services Oracle DB

SQLMap & BindURI

JSON Transform to JSON SQL Result Set

HTTP/S Client

Architecture
• Standard Web Server layout

• Implements Java Servlet

• Supported deployment for:

– Oracle WebLogic Server (OWS)

– Glassfish

– Tomcat

• Embedded Jetty for standalone operation

– New in Release 4.0

31 32

Architecture

Oracle DB

HTTP/S Client

WLS, Glassfish
or Tomcat

ORDS

Apache

Static Files
(HTML, CSS, JS)

JSON
Binary
HTML

/hr/emp

JDBC

Demonstration

33

Examples
• ORDS
– Same Server

– Different Server

• External Sites
– Weather

– Zip Code

34

ORDS: Same Server

35

ORDS: Same Server
• Why?
– Much easier to just create a grant to get data from another schema

– Can utilize all of the built-in functionality of APEX (DML Processes,
lost update detection, etc)

36

ORDS: Different Servers

37

ORDS: Different Servers
• Create a report & form based on data hosted on AWS via

ORDS

– Start with a Data Grid
– Build modal page for CRUD transactions

38

ORDS @ AWSLocal VM

Web Service via HTTP

Step to Implement
• Write some PL/SQL code to process the transaction

– One procedure for each DML transaction type

• Create a web service via ORDS for each transaction
type
– Can use APEX or SQL Developer

• Consume the web service in APEX

• Secure the web services

39

Web Service via ORDS
• Create a simple web service

– Method: GET

– Source Type: Query

– Format: JSON

– SQL:  
SELECT ename, empno, deptno, job, mgr, comm, sal,  
 TO_CHAR(hiredate,’DD-MON-YYYY') hiredate 
FROM emp

• Test the web service

– http://server.com/apex/ords/emp/listEmp

40

• Use tools such as Postman to facilitate testing

– Postman: https://www.getpostman.com/

– Free Chrome extension or standalone application

• Runs on Mac, Windows or Linux

• Pro version available with more features

• Facilitates testing of web services
– Support for authentication, header variables, scripts, etc.

– Essential when it comes to testing POST/PUT/DELETE

Testing Web Services

41

DATEs are Dumb
• All values in a JSON document are VARCHAR
– Thus, values that are DATEs need to be cast to VARCHAR first

• Date format needs to be as precise as you need it
– If you need seconds, then you better use the proper date format

mask to preserve them

• With ORDS, we can control the date format mask in our
SQL

– But many sites will use the JavaScript default mask:  
 
YYYY-MM-DDTHH:MI:SS.SSSZ 

42

Consuming the Web Service in APEX
• APEX contains a couple of APIs that are designed for use

with web services

• APEX_WEB_SERVICE
– Used to call and parse results of a web service

– Support for SOAP & RESTful web services

• APEX_JSON
– Parse & extract data stored in a JSON document

43

MAKE_REST_REQUEST
• Part of the APEX_WEB_SERVICE API

• Makes a simple REST request to the web service provided

– Result is returned as a CLOB

• Support for

– Basic Authentication

– OAuth

– Parameters

– Oracle Wallet Path

• Can also call MAKE_REST_REQUEST_B to get back
BLOB data

44

45

get_data

PROCEDURE get_data
IS
 l_response CLOB;
BEGIN

-- Remove the existing record
DELETE FROM ws WHERE key = 'EMP';

-- Get the REST response
l_response := apex_web_service.make_rest_request
 (
 p_url => 'http://server.com/apex/ords/listEmp',
 p_http_method => 'GET'
);

-- Save the response to the WS table
INSERT INTO ws (key, response) VALUES ('EMP', l_response);

<< Repeat process for DEPT >>

END get_data;

Selecting JSON Data
• To query data from the web service, we can use the API

APEX_JSON.TO_XMLTYPE
– And treat the JSON if it were XML

– Which allows us to us the XMLTABLE SQL command and
extract data from the table

46

47

to_xmltype
SELECT
 x.*
FROM
 xmltable
 (
 '/json/items/row'
 PASSING apex_json.to_xmltype(apex_web_service.make_rest_request
 (
 p_url => :G_URL || '/listEmp',
 p_http_method => 'GET'
)
)
 COLUMNS
 ename VARCHAR2(4000) PATH 'ename',
 empno NUMBER PATH 'empno',
 job VARCHAR2(255) PATH 'job',
 mgr NUMBER PATH 'mgr',
 hiredate VARCHAR2(255) PATH 'hiredate',
 sal NUMBER PATH 'sal',
 deptno NUMBER PATH 'deptno'
) x

Real Time vs. Cached
• There are a couple of ways to build a report on the results

of the web service

– Call the web service in real time

– Call the web service once and store a local copy of the data

• Either in an APEX collection on a CLOB/XML column

• Which you use depends on specific requirements
– Real time will be more up to date, but slower

– Cached will be faster, but only as recent as the last pull

48

DML Transactions on JSON Data
• Since a row of our data is nested inside a JSON document,

which is stored as a CLOB, we can’t rely on the APEX built-
in DML processes

– Thus we have to create our own using web services

49

Web Service Web Service Type PL/SQL Procedure

getEMP GET emp_pkg.get_emp

insEMP POST emp_pkg.ins_emp

updEMP PUT emp_pkg.upd_emp

delEMP DELETE emp_pkg.del_emp

get_emp: Web Service
• Method: GET

• Source Type: Query One Row

• Format: JSON

• URI:
– /getEmp/{empNo}

• PL/SQL:

– SELECT * FROM emp WHERE empno = :empno

50

APEX_JSON
• A new API, APEX_JSON extends a number of JSON-

oriented functions to Oracle

– Works in 11g as well as 12c

• Can both consume & generate JSON documents

– As well as parse and extract values

• This is used to parse the JSON document that we received
from the web service

– And also to extract the data from it

51

APEX_JSON: Parse, Count & Get
• PARSE
– Parses a JSON document and returns the values into a PL/SQL

array where we can more easily inspect and use them in PL/SQL

• GET_COUNT
– Returns the number of members in the array

• GET_NUMBER
– Returns a specific array value as a NUMBER

• GET_VARCHAR2
– Returns a specific array value as a VARCHAR2

• Similar functions for BOOLEAN, CLOB, DATE, etc.

52

53

get_emp: PL/SQL

PROCEDURE get_emp
 (
 p_empno IN NUMBER
)
IS
 l_response CLOB;
 l_val apex_json.t_values;
BEGIN

-- Get the REST response
l_response := apex_web_service.make_rest_request
 (
 p_url => ‘http://server.com/apex/ords/getEmp/' || p_empno,
 p_http_method => 'GET'
);

-- Parse the results
apex_json.parse(l_val, l_response);

-- Set the page items
apex_util.set_session_state('P5_ENAME', APEX_JSON.get_varchar2(p_path => 'ename', p0 => 1, p_values => l_val));
apex_util.set_session_state('P5_SAL', APEX_JSON.get_varchar2(p_path => 'sal', p0 => 1, p_values => l_val));
apex_util.set_session_state('P5_JOB', APEX_JSON.get_varchar2(p_path => 'job', p0 => 1, p_values => l_val));
apex_util.set_session_state('P5_DEPTNO', APEX_JSON.get_varchar2(p_path => 'deptno', p0 => 1, p_values => l_val));
apex_util.set_session_state('P5_MGR', APEX_JSON.get_varchar2(p_path => 'mgr', p0 => 1, p_values => l_val));

END get_emp;

del_emp: Web Service
• Method: DELETE

• Source Type: PL/SQL

• URI:
– /delEmp

• PL/SQL:

– BEGIN 
DELETE FROM EMP WHERE EMPNO = :EMPNO; 
END; 

54

G_REQUEST_HEADERS
• To set values when calling a POST, PUT, or DELETE, use the

global array G_REQUEST_HEADERS
– Which is part of the APEX_WEB_SERVICE API

• To set a variable, two calls are necessary

– One for the value name, and one for the value itself

– apex_web_service.g_request_headers(1).name := 'ename'; 
apex_web_service.g_request_headers(1).value := p_ename;

55 56

del_emp: PL/SQL

PROCEDURE del_emp
 (
 p_empno IN NUMBER
)
IS
 l_response CLOB;
BEGIN

-- Set the EMPNO
apex_web_service.g_request_headers(1).name := 'empno';
apex_web_service.g_request_headers(1).value := p_empno;

-- Get the REST response
l_response := apex_web_service.make_rest_request
 (
 p_url => 'http://server.com/apex/ords/delEmp',
 p_http_method => 'DELETE'
);

END del_emp;

ins_emp: Web Service
• Method: POST

• Source Type: PL/SQL

• Format: JSON

• URI:
– /getEmp/{empNo}

• PL/SQL:
– BEGIN 
INSERT INTO emp (ename, sal, job, deptno, mgr)  
VALUES (:ename, :sal, :job, :deptno, :mgr); 
htp.prn('OK'); 
END;

57 58

ins_emp: PL/SQL
PROCEDURE ins_emp
 (
 p_ename IN VARCHAR2,
 p_sal IN NUMBER,
 p_job IN VARCHAR2,
 p_deptno IN NUMBER,
 p_mgr IN NUMBER DEFAULT NULL
)
IS
 l_result CLOB;
BEGIN

-- Set the ENAME
apex_web_service.g_request_headers(1).name := 'ename';
apex_web_service.g_request_headers(1).value := p_ename;

-- Set the JOB
apex_web_service.g_request_headers(2).name := 'job';
apex_web_service.g_request_headers(2).value := p_job;

…

--Invoke the Web Service
l_result := apex_web_service.make_rest_request
 (
 p_url => 'http://server.com/apex/ords/insEmp',
 p_http_method => 'POST'
);

END ins_emp;

upd_emp: Web Service
• Method: PUT

• Source Type: PL/SQL

• URI:
– /updEmp

• PL/SQL:
– BEGIN 
UPDATE emp SET ename = :ename, sal = :sal,  
 job = :job, deptno = :deptno, mgr = :mgr 
WHERE empno = :empno; 
htp.prn('OK'); 
END;

59 60

upd_emp: PL/SQL
PROCEDURE upd_emp
 (
 p_empno IN NUMBER,
 p_ename IN VARCHAR2,
 p_sal IN NUMBER,
 p_job IN VARCHAR2,
 p_deptno IN NUMBER,
 p_mgr IN NUMBER DEFAULT NULL
)
IS
 l_result CLOB;
BEGIN

-- Set the EMPNO
apex_web_service.g_request_headers(1).name := 'empno';
apex_web_service.g_request_headers(1).value := p_empno;

-- Set the ENAME
apex_web_service.g_request_headers(2).name := 'ename';
apex_web_service.g_request_headers(2).value := p_ename;

…

--Invoke the Web Service
l_result := apex_web_service.make_rest_request
 (
 p_url => 'http://52.21.56.67/apex/ords/updEmp',
 p_http_method => 'PUT'
);

END upd_emp;

External Sites: GET

61

Weather

62

External Site/GET: Weather
• Create a web service call to return the weather for a given

ZIP code

– Parse results and set APEX page items

– Refresh regions to update content

63

api.openweathermap.orgLocal VM

Web Service via HTTP

ZIP Code

64

External Site/GET: Zip Code
• Create a web service call to get the city/state from a ZIP

code

– Create two Dynamic Actions:

• Use PL/SQL to set OUT parameters to values

• Use JavaScript and apex.server.process to set values

65

api.zippopotam.usLocal VM

Web Service via HTTP

Summary

66

Summary
• Your Happy Place should now include Web Services!
• They are no longer scary things, but rather another tool or method

to exchange data across unlike services

• There are several different methods to work with
data which they provide

• Choose the one you’re most comfortable with

• Consider the newer APIs when consuming web services

• Less code; more upgradable

67 68

