(intel)

Hubert Nueckel Principal Engineer, Intel

Doug Nelson Technical Lead, Intel

September 2017

SCALING ORACLE DATABASE PERFORMANCE ON LINUX TO FABULOUS NEW LEVELS

Legal Disclaimer

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at intel.com.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessor Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase.

For more complete information about performance and benchmark results, visit <u>http://www.intel.com/benchmarks</u>

Intel, the Intel logo, Intel Inside, Xeon are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.

© 2016 Intel Corporation.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice Revision #20110804

- Intel and Oracle How we work together
- The New Intel[®] Xeon[®] Scalable Processor (Formerly Skylake-SP)
- OLTP performance improvements over time
- NVME Storage can take performance to the next level
- In-Memory Database improvements
- Future Work
- Performance Monitoring Tools
- Questions

INTEL AND ORACLE DATABASE COLLABORATION

5

Collaboration Introduction

Oracle Open World 2013

Hardware and Software Engineered to Work Together

Intel started close collaboration with Oracle late '90s

Both companies realized potential of engagement

Intel/Oracle Collaboration Model

Intel/Oracle Collaboration

- How can software leverage hardware features
- Any gaps between hardware and software
- Regular architecture meetings
 - Where does Oracle go with regards to their software and engineered systems
 - Where does Intel go with processor, platform and infrastructure
 - Several years in advance planning
- Close and open collaboration

Intel and Oracle Collaboration

- Test each CPU generation with a variety of database workloads
- Feedback to CPU architects influences future CPUs
- Work together to implement new CPU/platform features
- Test the whole system with new storage, memory, CPUs, network to give you the best possible performance... and catch any issues before product release

THE NEW INTEL® XEON® SCALABLE PROCESSOR (Formerly Skylake-SP)

Intel[®] Xeon[®] Scalable Processor Overview

Re-architected from the ground up

- Skylake core microarchitecture with data center specific enhancements
- Intel[®] AVX-512 with 32 DP flops per cycle per core
- Datacenter optimized cache hierarchy
 1MB L2 per core, non-inclusive L3

- New mesh interconnect architecture
- Enhanced memory subsystem
- Modular IO with integrated devices
- New Intel[®] Ultra Path Interconnect (Intel[®] UPI)

- Intel[®] Speed Shift Technology
- Security & Virtualization enhancements (MBE, PPK, MPX)
- Optional Integrated Intel[®] Omni-Path Fabric (Intel[®] OPA)

Features	Intel® Xeon® Processor E5/E7 v4	Intel [®] Xeon [®] Scalable Processor	6 Channels D	DR4	
Availability	Q2 2016	Q3 2017	DDR4	Coro	
Cores Per Socket	Up to 22 or 24	Up to 28	DDR4	Core	
Threads Per Socket	Up to 44 or 48 threads	Up to 56 threads		Core	Co
Last-level Cache (LLC)	Up to 55MB or 60 MB	Up to 38.5 MB (non-inclusive)	DDR4		
QPI/UPI Speed (GT/s)	2x or 3x QPI channels @ 9.6 GT/s	Up to 3x UPI @ 10.4 GT/s	DDR4	Core	Co
PCIe* Lanes/ Controllers	40 / 10 / PCIe* 3.0 (2.5, 5, 8 GT/s)	48 / 12 / PCIe 3.0 (2.5, 5, 8 GT/s)	DDR4	DDR4 Shared L	
Memory Population	4 channels of up to 3 RDIMMs, LRDIMMs, or 3DS LRDIMMs	6 channels of up to 2 RDIMMs, LRDIMMs, or 3DS LRDIMMs	DDR4	Omni-	Path H
Max Memory Speed	Up to 2400	Up to 2666	PCle* 3.0		••••
TDP (W)	55W-145W	70W-205W		***	

2 or 3 UPI UPI

UPI

UPI

Omni-Path

DMI3

512-bit wide vectors, 32 operand registers, 8 64b mask registers, Embedded broadcast & rounding

Source as of June 2017: Intel internal measurements. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. Configuration Summary: 1-Node, 2 x Intel® Xeon® Platinum 8180 Processor on Purley-EP (Lewisburg) (S2600WF) with 384 GB (12x32GB DDR4-2666) Total Memory, Intel S3610 800GB SSD, BIOS: SE5C620.86B.01.00.0471.040720170924, 04/07/2017, RHEL Kernel: 3.10.0-514.16.1.el7.x86_64 x86_64, Benchmark: Intel® Optimized MP LINPACK

2016: INTEL[®] XEON[®] PROCESSOR E7 V4, 14_{NM} (BROADWELL EX 24-CORE DIE)

2017: INTEL[®] XEON[®] SCALABLE PROCESSOR, 14NM (SKYLAKE-SP 28-CORE DIE)

CHA- Caching and Home AgentSF- Snoop Filter LLC- Last Level Cache SKX Core- Skylake Server CoreUPI- Intel® UltraPath Interconnect

INTEL® MESH IMPROVES SCALABILITY WITH HIGHER BANDWIDTH AND REDUCED LATENCIES

Architectural innovations to unlock data center performance

- Up to 60% increase in compute performance per socket with Intel® AVX-512
- Improved performance and scalability with Mesh on-chip interconnect
- L2 and L3 cache hierarchy optimized for data center workloads
- Improved memory subsystem with up to 60% higher memory bandwidth
- Faster and more efficient Intel[®] UPI interconnect for improved scalability
- Improved integrated IO with up to 50% higher aggregate IO bandwidth

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to http://www.intel.com/performance Intel does not control or audit the design or implementation of third party benchmark data or Web sites referenced web sites or others where similar performance benchmark data are reported and confirm whether the referenced benchmark data are accurate and reflect performance of systems available for purchase. See pages 7, 13, and 16 for supporting performance data and configuration details.

Balanced Hardware Configuration

- Always populate all memory channels ۲
- Make sure you have sufficient storage for IOPs/BW and redundancy (not just ۲ capacity)
- Make sure you have enough CPU power
- Run an OS that supports your CPU

User controllable things you can check

- Intel[®] Memory Latency Checker
- Use HT
- Use 2MB large pages
- Use process binding for better numa locality
- check queue depth and latency on storage
- Check c-states
 - Always a battle between power saving and maximum performance
- Check that you are using clocksource tsc (hpet can kill your perf)

OLTP PERFORMANCE IMPROVEMENTS OVER TIME

Generational OLTP Performance

ORACLE

Generational OLTP Performance (Disk IO scalin

Device Type	Intel SSD X25-E	Intel SSD X25-E	Intel SSD 710	Intel SSD 710	Intel DC S3700	Intel DC S3700	Intel DC P46xx
# SSDs	272	325	200	384	96	96	14
# rack unit	44	48	24	48	24	24	2

NVME STORAGE CAN TAKE PERFORMANCE TO THE NEXT LEVEL

Intel P46xx NVMe storage

- Intel P4608 NVMe device
 - 6.4TB storage capacity
 - x8 PCIe add in card → 6GB/sec read bandwidth
 - Actually measured!

Intel[®] Optane[™] Technology: 3D XPoint[™] Memory Media

Cross Point Structure

Selectors allow dense packing and individual access to bits

Scalability

Memory layers can be stacked in a 3D manner

Breakthrough Material Advances

Compatible switch and memory cell materials

High Performance

Cell and array architecture that can switch states much faster than NAND

Intel[®] Optane[™] Memory for Clients

Intel[®] Optane[™] Memory **End-User Value** Intel Controller, Hardware Fast Accelerate System Performance and Interconnect IP Media Accelerate day-to-day tasks with intuitive software that continually customizes and improves computer experience 3D XPoint[™] Memory Media **Keep Your HDD Capacity** Standard M.2 connector Memory Module Pair Intel® Optane™ memory with an HDD for SSD-like speed PCIe* Gen3 x2 M.2 2280 & M.2 2242, and HDD capacity NVMe* **Platform Confidence Intelligent Software** The performance of a 7th Gen Intel® Core® processor coupled Intel[®] Rapid Storage Technology with the speed of Intel[®] Optane[™] memory delivers amazing desktop computer responsiveness

*Other names and brands may be claimed as the property of others.

Intel[®] Optane[™] SSDs for Data Center

Technology claims are based on comparisons of latency, density and write cycling metrics amongst memory technologies recorded on published specifications of in-market memory products against internal Intel specifications. Intel® Optane[™] SSD prototype compared to the Intel® SSD DC P3700 Series (NAND)

INTEL[®] OPTANE[™] TECHNOLOGY

PCIe*/NVMe* Delivered in Many Form Factors

M.2

*Other names and brands may be claimed as the property of others.

Add-in Card

"Ruler" form factor

BUILDING AN OPEN-MEMORY-CENTRIC Computing Architecture USING Intel Optane

Tuesday, Oct 03, 11:30 a.m. - 12:15 p.m. | Moscone West - Room 3003

In-Memory Database improvements

In-memory collaboration

- Intel Xeon vector instructions
- Oracle utilizes SSE4.2 and now AVX, AVX2, AVX512
- Why is that important?
 - Vector instructions enable Oracle to operate on multiple data elements with 1 instructions instead of multiple
- Transparent to customer, advantages with Intel Xeon processors
 - Wider registers, more operations per instruction

In-memory collaboration

- Doesn't stop there
 - Intel architects working with Oracle
 - Modify current algorithms to work better with vector instructions
 - Identify gaps in instructions and investigate additional vector instructions in future processors
- Great collaboration leads to great results

Performance Monitoring Tools

- Performance Co-Pilot
 (<u>http://www.pcp.io/</u>)
- Intel[®] Storage Snapshot tool (<u>https://software.intel.com/sites/products/snapshots/storage-snapshot/</u>)
- Intel[®] Memory Latency Checker

(https://software.intel.com/en-us/articles/intelr-memory-latency-checker)

Performance Monitoring Tools (cont.)

- Linux Perf
- toplev tool (Top Down methodology with linux perf) (<u>https://github.com/andikleen/pmu-tools/wiki</u>)
- Turbostat
- Intel[®] Vtune Amplifier
- Intel[®] PCM

Future Work

- Persistent memory
- Acceleration of database features
- Fabric, including NVMEoF
- Security (very important in Cloud usage)

Acknowledgements

Frank Ober: (Intel) Optane and Intel SSD expertise.

