
Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Oracle	NoSQL	Database	at	OOW	2017
• CON6544	– Oracle	NoSQL	Database	Cloud	Service
–Monday	3:15	PM,	Moscone	West	3008

• CON6543	– Oracle	NoSQL	Database	Introduction
– Tuesday,	3:45	PM,	Moscone	West	3008

• CON6545	– Oracle	NoSQL	Database	Data	Modelling
–Wednesday,	11:00	AM,	Moscone	West	3008

• HOL7611	– Oracle	NoSQL	Database	– Cloud	Service
– Tuesday,	5:45	PM	Hilton	Union	Square	– Continental	Ballroom	6
–Wednesday,	4:45	PM	Hilton	Union	Square	– Continental	Ballroom	6

• Demo	Station	– Moscone	West

1

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Data	Modelling	in	Oracle	NoSQL	
Database

Dave	Rubin
Director	of	NoSQL	Database	Development

Oracle
October,	2017

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Safe	Harbor	Statement
The	following	is	intended	to	outline	our	general	product	direction.	It	is	intended	for	
information	purposes	only,	and	may	not	be	incorporated	into	any	contract.	It	is	not	a	
commitment	to	deliver	any	material,	code,	or	functionality,	and	should	not	be	relied	upon	
in	making	purchasing	decisions.	The	development,	release,	and	timing	of	any	features	or	
functionality	described	for	Oracle’s	products	remains	at	the	sole	discretion	of	Oracle.

3

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Oracle	NoSQL	Database	– Overview

• Highly	available,	horizontally	scalable,	distributed	shared	nothing	database
• Predictable	low	latencies
• Automatic	sharding
• Online	elastic	scale	out/scale	in
• Multi-model
– Key/Value
– Table
– Document	(ad-hoc	JSON)
– Property	Graph

• Multi-datacenter	support

4

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Oracle	NoSQL	Database	– Overview

• Security
– Kerberos	for	authentication,	SSL	for	confidentiality
– Roles,	groups,	and	privileges	at	the	table	level	for	authorization

• Time-to-live	– Automatic	aging	of	data
– Default	at	table	level
–Override	for	each	record	if	desired

• Streaming	subscriptions
– Subscribe	to	inserts,	updates,	deletes	on	a	table
– Delivered	to	client	process	via	ReactiveStreams API
– Horizontally	scalable
– Highly	available	via	checkpointing

5

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Oracle	NoSQL	Database	– Overview

• Large	object	streaming
– Split	large	objects	into	256k	chunks
– Spray	across	cluster	for	writes
– Re-assemble	for	reads

• Scalar	datatypes
– Integer,	binary,	boolean,	double,	enum,	float,	long,	number,	string,	timestamp

• Non-scalar	datatypes
– Array,	map,	record,	JSON

• Parent-child	table	traversal
– Child	records	live	on	same	shard	with	parent

6

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Oracle	NoSQL	Database	– Overview

• Rich	secondary	indexing
– Secondary	indexes	updated	atomically	with	primary	data
– Full	JSON	path	expression	support
– Indexes	on	non-scalar	datatypes
– Range	scans,	forward	or	reverse

• Access	via	API	or	SQL
– Get,	put,	scan	APIs	for	raw	key/value	pairs	and	tables
– SQL	for	rich	access	to	JSON,	more	complex	filtering	expressions
– Support	for	conjunctions	and	disjunctions	in	filter	expressions

7

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Availability	Zone	2 Availability	Zone	3

Oracle	NoSQL	Database	– Distributed	Systems	Concepts

8

Availability	Zone	1

Shard	with	3	
replicas

Get(shardKey=4567)

MD5Hash(4567)

Application

NoSQL	Database	Driver

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Oracle	NoSQL	Database	– Data	Modeling	Concepts

• Data	distribution	and	shard	keys
• ACID	Transactions
• Non-scalar	datatypes	versus	child	tables
• Workload	characteristics
– Read/write	mix
– Durability	and	consistency	tradeoffs

• Flexibility	versus	performance	and	cost
– Scalar	versus	non-scalar	attributes
– Ad-hoc	JSON	versus	fixed	schema

9

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Data	Distribution	– Shard	Keys	Matter

10

CREATE TABLE user(id INTEGER, surname STRING, familiarName STRING,
gender ENUM (male, female),
PRIMARY KEY (SHARD(id))

CREATE TABLE user.folders.inbox(folderID INTEGER, msgID INTEGER,
PRIMARY KEY(folderID))

CREATE TABLE user.folders.deleted(folderID INTEGER, msgID INTEGER,
PRIMARY KEY(folderID))

• Determines	how	data	is	distributed	and	ultimately	scaled	out
• Choose	a	shard	key	that	has	large	cardinality
– Gender	is	bad	(very	small	range	of	values)
– ID	is	good	(scales	out	with	number	of	users)

• ACID	transactions	are	shard	local

Similar	to	Oracle	Database	Hash	Partitioning

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

ACID	Transactions

• Shard	local	only	– Choose	your	shard	key	wisely
– Single	writes	are	ACID	be	default
– Collection	level	transactions	via	API	call	– All	records	must	have	the	same	shard	key
• Example	– Multi-select	ten	emails,	move	from	inbox	to	another	folder	(shard	key	is	userID)
–Must	be	atomic	
–Must	exhibit	consistent	reads	when	UI	is	refreshed

• Relaxed	consistency
– To	favor	latency	over	data	recency
– Increase	throughput	- scale	the	reads	across	replicas

• Relaxed	durability
– To	favor	latency	over	data	recoverability

11

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

ACID	Transactions	– Tune-ability

12

• Configurable	Durability	Policy

• Configurable	Consistency	Policy

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Non-Scalar	Datatypes	versus	Child	Tables

• Non-scalar	datatypes
– Embedded	objects
–Modeling	1	to	N	relationships
• A	person	with	multiple	addresses	(home,	office,	bill-to,	ship-to)

• Non-scalar	types	supported	in	Oracle	NoSQL	Database	
– JSON	document	– Most	flexible,	highest	cost
– Arrays	– Good	flexibility,	less	costly
– Records	– ”Fixed	format”	document…		Good	tradeoff	for	JSON

• Convenient	and	easy	to	use
• Not	the	best	for	extreme	velocity	updates

13

Similar	to	master-detail	relationships	in	the	Oracle	Database

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Non-Scalar	Datatypes	versus	Child	Tables

• Child	Tables
–Modeling	1	to	N	relationships
• A	sensor	with	1000	events	per	second	

• Very	efficient	for	extreme	velocity	data
– Everything	is	an	insert	– Optimal	for	“append	only”	storage	system

• Not	as	flexible	as	non-scalar	datatypes

14

CREATE TABLE sensor(sensorID INTEGER, sensorType INTEGER,
PRIMARY KEY(sensorID))

CREATE TABLE sensor.sensorEvents (eventTime TIMESTAMP, eventType INTEGER,
eventValue DOUBLE

PRIMARY KEY(eventTime, eventType))

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Secondary	Indexes

• Very	useful	for	JSON	documents
–When	there	is	no	“natural”	primary	key
– JSON	path	expressions	and	arrays	are	supported
– Utilized	by	rich	JSON	SQL	via	heuristics

• Each	secondary	will	cause	overhead	for	writes
– Balancing	replica	ack durability	may	be	an	acceptable	tradeoff
–May	not	be	suitable	for	very	low	write	latency	sensitive	applications

• Primary	key	encoding	can	alleviate	secondary	index	overhead
– Key	prefix	searches
• Shard	local	if	full	shard	is	specified	in	filter	expression
• B-tree	prefix	scan	at	storage	layer

15

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Workload	Characteristics
• High	volume	data	ingest,	limited	simple	queries,	temporal	data
– Use	TTL	to	delete	old	data	very	efficiently
– Favor	child	tables	over	non-scalar	datatypes
– Utilize	primary	keys	for	queries
• Key	prefixing	 for	partition	pruning	 – Attributes	for	query	as	leading	columns	 in	primary	key
• Key	only	 scans	as	much	as	possible
• Embed	time	in	primary,	range	scan	on	primary	key	columns

• High	volume	reads,	limited	writes
– Singleton	primary	key	reads	whenever	possible
• Key	prefixed	range	scans	also	perform	very	well	(using	 entire	shard	key)

– Secondary	index	scans	good	when	primary	key	not	usable
– Loosely	consistent	reads	when	possible
– Avoid	non-indexed	table	scans

16

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Summary	- Flexibility	versus	Performance	and	Cost
• Scalar,	non-scalar,	and	parent/child	tables	for	1	to	N	relationships
– Scalar	attributes	perform	best,	least	flexible
– Keep	arrays	and	maps	as	small	as	possible
• Arrays	of	scalars	are	preferable
• Maps	are	expensive	– contain	attribute	names	redundantly
• Records	– less	expensive	than	maps.		Embedded	objects	with	fixed	schema.

– Parent	child	tables		
• Very	efficient	for	write-heavy	workloads	– artifact	of	log	structured	storage
• More	flexible	for	fine	grained	authorization
• More	challenging	 for	queries

• Ad-hoc	JSON
– Extremely	flexible
– Schema	redundancy
• Higher	cost	on	storage	and	compute

17

Knowledge	 is	power

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Oracle	NoSQL	Database	Cloud	Service	– Coming	Soon
• Fully	managed,	multi-tenant,	provisioned	throughput	service
• Buy,	connect,	and	go
– Purchase	cloud	credits
–Write	your	application
– Connect	to	the	service,	create	table	with	reads/sec,	writes/sec,	GB	storage
– Start	writing	and	reading	data

• Scaling	the	service	is	our	problem
• Maintaining	predictable	latencies	is	our	problem
• Maintaining	high	availability	is	our	problem
• You	focus	on	delivering	business	value	to	your	customers	

18

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Safe	Harbor	Statement
The	preceding	is	intended	to	outline	our	general	product	direction.	It	is	intended	for	
information	purposes	only,	and	may	not	be	incorporated	into	any	contract.	It	is	not	a	
commitment	to	deliver	any	material,	code,	or	functionality,	and	should	not	be	relied	upon	
in	making	purchasing	decisions.	The	development,	release,	and	timing	of	any	features	or	
functionality	described	for	Oracle’s	products	remains	at	the	sole	discretion	of	Oracle.

19

