
Ovais Tariq, Shriniket Kale & Yevgeniy Firsov

October 03, 2017

StorageTapper
Real-time MySQL Change Data
Streaming @ Uber

Overview
What we will cover today

• Background & Motivation

• High Level Features

• System Architecture

• System Components

• Implementation

• Using StorageTapper

• Current Status & Future Work

Background & Motivation

● MySQL stores majority of the operational data

● Schemaless is a scalable and highly available datastore on top of MySQL clusters
○ Schemaless storage system powers some of the biggest services at Uber

○ Many Schemaless instances consisting of more than 3,000 clusters

● MySQL-as-a-Service: full featured MySQL available to services in raw form
○ More than 500 services using it for their storage needs

● Currently running MySQL 5.6
○ Have our own fork uber/percona-server

○ Migrating to MySQL 5.7 soon

Background
MySQL @ Uber

https://github.com/uber/percona-server

● Export the entire dataset and import it to your analytics platform every 24 hours

● Doesn’t scale
○ With growth in size of dataset you can’t export and import quickly enough for your business

needs

● Data is no longer fresh
○ 24 hours is way too long!

○ Competitive pressure demands up-to-the-minute information

● Inefficient to read and write the same data over and over again

● Performance penalty on the source

Capturing Data Changes
The traditional way

● How Wikipedia defines it?
○ In databases, change data capture (CDC) is a set of software design patterns used to

determine (and track) the data that has changed so that action can be taken using the
changed data

● Deal with data changes incrementally
○ Only dealing with data that has changed

○ Possible to make changes available close to real-time

● Use cases at Uber
○ Data ingestion into analytics platform

○ Logical incremental backups

Change Data Capture
Motivation and use-cases

https://en.wikipedia.org/wiki/Change_data_capture

High Level Features

● Real-time change data streaming

● Multiple output formats (Avro, JSON, MessagePack)

● Multiple publishing destination (Kafka, File, S3, HDFS, SQL)

● REST API for automated operations

● Source performance-aware design

● Horizontally scalable

Key Features
What does StorageTapper provide?

● Guarantees
○ Data changes on the database consistent with what is published

○ Events guaranteed to be published at-least-once

○ Events guaranteed to be published with a pre-defined format

○ Events corresponding to the same row guaranteed to be published in commit order

● Restrictions & Limitations
○ Every table being ingested must have a Primary Key defined

○ Incompatible schema changes will break ingestion

○ MySQL binary log must be enabled with the RBR format

Guarantees & Limitations
What are the assurances & requirements?

System Architecture

StorageTapper

* MySQL
* Schemaless

* Binlog
* Raft log

Rows

* Avro
* JSON
* MsgPack
* SQL

High Level Design
Bird’s-eye View

* Kafka
* File
* S3
* HDFS

High Level Design
System components and their interaction

Binary
Logs

MySQL
snapshot

MySQL

Kafka

Input Buffer

Event
Transformer

Snapshot
Reader

Event
Streamer

Kafka

Output Pipe

State Manager

Table
Registry

Log
offsets

Pipe
offsets

Schema Manager

Schema
Registry

StorageTapper API

Log
Reader

Binlog
Reader

System Components

High Level Design
System Flow

Schema Manager

StorageTapper API
 /table (add)

State Manager

Table
Registry

Schema
Registry

Schema
Converter

MySQL

Binary Log
(in commit order)

MySQL
Table

MySQL Source

Snapshot
Reader

Event
Transformer

Event Streamer

Stream
rows

Log
Offset

Pipe
Offset

Output Pipe
Kafka

Input Buffer
Kafka

Stream
Binlogs

Log Reader
Binlog
reader

Buffer
binlogs

MySQL
consistent
snapshot

● Fetches binary log events from master

● Appears as a regular slave, no additional config

● Update master connection info on master
failover via API

● Publishes binary log events to Kafka input buffer
topic
○ Input topic acts as a persistent buffer

○ Binary log events buffered until consumed and
transformed by Event Streamer

Log Reader
MySQL binlog events reader

Database
Transaction
COMMITApplication

Append
Next
Event

Binary Log of Events in COMMIT
ORDER

First Event

● Snapshot Reader: a special type of event reader that reads rows from the table

● Takes transactionally consistent snapshot of the table together with
corresponding GTID

● Typically used when bootstrapping a table with existing data

● Allows all the existing rows to be transformed into the required format and
published

Event Streamer
Snapshot reader

● Events are transformed into messages according to the latest schema
○ Row Key: generated from the primary key column values in an event

○ Sequence Number: used by the consumer to read events for the same Row Key in order

○ Is Deleted flag: signals whether the row was deleted

Event Streamer
Events transformation

Event Transformation

DDL Avro Schema

Row INSERT Message encoded with Avro schema. Additional fields are row_key, ref_key & is_deleted set to FALSE.

Row UPDATE Additional fields as in INSERT. Update converted to DELETE + INSERT.

Row DELETE Message encoded with Avro schema. All fields set to NULL, except row_key, ref_key. is_deleted set to 1

● The events are published to Kafka as keyed messages

● The Row Key is used as the key of the message
○ Ensures that all events corresponding to the same row go to the same partition

○ Kafka provides ordering guarantees within a partition

● All messages written to Kafka correspond to a complete Row in MySQL

Event Streamer
Publishing events to Kafka

● StorageTapper doesn’t control MySQL schema creation or changes

● Converts MySQL schema to output schema, publishes to external or integrated
schema service

● Schema changes validated for backward compatibility

● Need for schema to be validated and registered before publishing events

● Maintains versioned history of MySQL and corresponding output schema

Schema Manager
Managing the schema

● Tracks the state of ingestion for every table that is being published

● State tracking involves:
○ tracking the latest GTID up to which binlog events have been consumed

○ tracking the Kafka input buffer offset

● Ensures stop/restart of StorageTapper without losing the current state

● Persistence
○ State updated after publishing a batch of binary log events

○ Ensures that we don’t impede the performance

State Manager
Managing and persisting state

Implementation

● Pluggable components
○ Schema services

○ Cluster resolvers

○ Metric reporters

○ Loggers

● Written in Go
● TravisCI integration
● Builds and tests with Go 1.6-1.8
● Score A+ at Go Report Card
● 9000 lines of code
● Overall code coverage is 62%

Overview
Implementation overview

https://goreportcard.com/report/github.com/uber/storagetapper
https://codecov.io/gh/uber/storagetapper

Zoom In
System components and their interaction

Binary
Logs

MySQL
snapshot

MySQL

Output

Schema Manager

Pipe

Cluster Resolver

Log Reader Event streamerInput Buffer

State Manager

PipeEncoder

 * registered tables
 * log offsets
 * pipe offsets
 * clusters
 * schemas

StorageTapper API
HTTP handlers:
* /table
* /schema
* /cluster

Lock Manager
GET_LOCK()

MySQL
API Integration

Logger /
Sentry

Metrics

StorageTapper

Zap or
Logrus

Noop

built-in

built-in

Encoder

{
 "Type": "insert", // Event type: “insert”, “delete”, “schema”
 "Key" : [1, 2], // Row key of the event
 "SeqNo": 1, // Monotonically increasing logical time
 "Timestamp" : 1506816319, // Wall clock time of the event creation
 "Fields": [// Array of all row fields
 { "Name" : "pk_field1", "Value" : 1 },
 { "Name" : "pk_field2", "Value" : 2 },
 { "Name" : "field3", "Value" : "value3" },
 ...
]
}

Event Format
Representation of the event in Go and JSON

● Encoders transform event to
specific format

● Implemented encoders
○ JSON

○ Avro

○ MessagePack

● Implementation in progress
○ SQL

Interfaces
Encoder abstraction

type Encoder interface {
Row(typ int, row []interface{}, seqNo uint64) ([]byte, error)
Event(cf *types.Event) ([]byte, error)

UpdateCodec() error

Schema() *types.TableSchema
Type() string

EncodeSchema(seqNo uint64) ([]byte, error)
DecodeEvent(b []byte) (*types.Event, error)

}

type Consumer interface {
FetchNext() bool
Pop() (interface{}, error)

SaveOffset() error

Close() error
}

● Pipes implement different event transports
● Implemented pipes

○ Kafka
○ Go channel
○ File

● Implementation in progress
○ HDFS
○ S3

Interfaces
Streaming abstraction

type Pipe interface {
RegisterConsumer(topic string) (Consumer, error)
RegisterProducer(topic string) (Producer, error)
CloseConsumer(p Consumer, graceful bool) error
CloseProducer(p Producer) error
Type() string

}

type Producer interface {
Push(key string, data interface{}) error

PushBatch(key string, data interface{}) error
PushBatchCommit() error

PushSchema(key string, data []byte) error
Close() error

}

StorageTapper instance
Streamer for table1

Reader for cluster1

Reader for cluster2

Streamer for tableX

State DB
Lock manager

...

StorageTapper instance
Streamer for table3

Streamer for table4

Streamer for table5

Streamer for tableX

...

...

StorageTapper instance
Streamer for tableN1

Reader for clusterN1

Reader for clusterN2

Streamer for tableX

...

Work Distribution

● Configurable number of workers
per instance

● Dynamic work distribution

● Worker (goroutine) per
streamer/reader

● Kafka topic per table

Who does what?

Using StorageTapper

● Dependencies: glide, gometalinter, local MySQL and Kafka.
○ Use scripts/install_deps.sh for installing all dependencies in TESTING environment

● Get the source, compile and install:

Try It Out
Setup and Installation

$ mkdir -p $GOPATH/src/github.com/uber && cd $GOPATH/src/github.com/uber

$ git clone https://github.com/uber/storagetapper.git

$ cd storagetapper

$ DEB_BUILD_OPTIONS=nocheck make deb && sudo dpkg -i ../storagetapper_1.0_amd64.deb

● Edit configuration file

Try It Out
Configuration

$ sudo vim /etc/storagetapper/production.yaml

● Replace the content with:

state_connect_url: "root@localhost"
kafka_addresses:

 - "localhost:9092"
 output_format: json

● Restart the service

$ sudo service storagetapper restart

● Create test database and table:

Try It Out
Create test data

$ echo 'create database oow_test_db1' | sudo mysql

$ echo 'create table oow_test_t1(f1 int primary key, f2 bigint)' | sudo mysql oow_test_db1

● Insert some rows, which will be snapshotted by bootstrap process:

$ echo 'insert into oow_test_t1 values (1, 1), (2, 2), (3, 3)' | sudo mysql oow_test_db1

● Add cluster connection information to built-in cluster resolver:

Try It Out
Register table for ingestion

$ curl --data \
 '{"cmd":"add", "name":"cluster1", "host":"localhost", "port":3306, "user":"root", "pw":""}' \
 http://localhost:7836/cluster

● Publish current table schema to built-in schema service (for Avro output format only):
$ curl --data \
 '{"cmd":"register", "service":"svc1", "db":"oow_test_db1", "table":"oow_test_t1"}' \
 http://localhost:7836/schema

● Register table for ingestion:
$ curl --data \
 '{"cmd":"add", "cluster":"cluster1", "service":"svc1", "db":"oow_test_db1", "table":"oow_test_t1"}' \
 http://localhost:7836/table

http://localhost:7836/cluster
http://127.0.0.1:7836/schema
http://127.0.0.1:7836/table

● Table is bootstrapped, time to test ingestion of binlog events

Try It Out
Run various DMLs to test binlog reader and test Kafka output

$ echo 'insert into oow_test_t1 values (10, 10)' | sudo mysql oow_test_db1
$ echo 'delete from oow_test_t1 where f1=2' | sudo mysql oow_test_db1
$ echo 'update oow_test_t1 set f2=555 where f1=1' | sudo mysql oow_test_db1

● Tail the topic and see published events stream:

 $ /home/kafka/bin/kafka-console-consumer.sh --zookeeper localhost --from-beginning \
 --topic hp-svc1-oow_test_db1-oow_test_t1 --from-beginning

1. {"Type":"insert","Key":[1],"SeqNo":0,"Timestamp":1506839585,"Fields":[{"Name":"f1","Value":1},{"Name":"f2","Value":1}]}

2. {"Type":"delete","Key":[1],"SeqNo":1000003,"Timestamp":1506839750}

3. {"Type":"insert","Key":[1],"SeqNo":1000004,"Timestamp":1506839750,"Fields":[{"Name":"f1","Value":1},{"Name":"f2","Value":555}]}

4. {"Type":"insert","Key":[2],"SeqNo":0,"Timestamp":1506839585,"Fields":[{"Name":"f1","Value":2},{"Name":"f2","Value":2}]}

5. {"Type":"delete","Key":[2],"SeqNo":1000002,"Timestamp":1506839738}

6. {"Type":"insert","Key":[3],"SeqNo":0,"Timestamp":1506839585,"Fields":[{"Name":"f1","Value":3},{"Name":"f2","Value":3}]}

 ….

Current Status & Future Work

● Currently in use at Uber for data ingestion into analytics platform
○ Primarily used by MySQL-as-a-Service internal customers

○ 50% rollout complete

○ Targeting 100% rollout by the end of 2017

● Open sourced on Github github.com/uber/storagetapper

Current Status
Where we are right now?

https://github.com/uber/storagetapper

Current Status
Per worker performance numbers

Peak of 22K events/sec/worker with 128b record size Peak of 70 MB/sec/worker with 32KB record size

These are initial numbers without any performance optimization.

● Logical incremental backup use-case at Uber
○ Implementing RAFT log reader

○ HDFS output pipe

○ SQL encoder

● Automated validation
○ Continuously running validation

○ Being implemented inside StorageTapper

● Performance optimization

In The Works
What to expect next?

Thank You
Ovais Tariq, Shriniket Kale, Yevgeniy Firsov

Explore further and contribute:
github.com/uber/storagetapper

Reach out to us directly:
ot@uber.com
skale@uber.com
firsov@uber.com

Contact us

The Architecture of
Schemaless, Uber
Engineering’s Trip Datastore
Using MySQL

Dockerizing MySQL at Uber
Engineering

MySQL @ Uber

We're bringing Uber to every
major city in the world. We
need your skills and passion to
help make it happen!

Reach out to ot@uber.com

We are hiring

https://github.com/uber/storagetapper
mailto:ot@uber.com
mailto:skale@uber.com
mailto:firsov@uber.com
https://eng.uber.com/schemaless-part-two/
https://eng.uber.com/schemaless-part-two/
https://eng.uber.com/schemaless-part-two/
https://eng.uber.com/schemaless-part-two/
https://eng.uber.com/dockerizing-mysql/
https://eng.uber.com/dockerizing-mysql/
mailto:ot@uber.com

