
MySQL at Facebook

Yoshinori Matsunobu
Production Engineer, Facebook
Oct 2, 2017 – Oracle Open World

MySQL teams at Facebook
▪Production Engineering (SRE/PE)

▪MySQL Production Engineering

▪Data Performance

▪Based in Menlo Park and London

▪Software Engineering (SWE)

▪MySQL Engineering

▪MyRocks

▪Others (Replication, Client, InnoDB, etc)

▪Based in Menlo Park and Seattle

User Database (UDB) at Facebook
▪Storing Social Graph

▪Massively Sharded

▪Low latency

▪Automated Operations

▪Pure Flash Storage (Constrained by space, not by CPU/IOPS)

MySQL at Facebook
▪We upgraded from 5.1 to 5.6 in 2013-2014

▪Currently based on MySQL 5.6

▪Created many features on top of 5.6, to support our services

▪We started working with Oracle to take our patches into official
MySQL

▪Started evaluating MySQL 8.0

InnoDB Online Defragmentation
▪Added a new command

▪ ALTER TABLE table_name DEFRAGMENT INDEX index_name

▪Merging nearby fragmented pages and freeing up empty pages

▪Persisted defragmentation statistics in mysql.innodb_index_stats

▪Saved up to 20% used space

▪Writing more data to storage was negative impact

Reducing writes to InnoDB
Doublewrite▪Double write buffer is helpful to avoid torn-page problem

▪But write volume becomes 2x or even more
▪Writing the same number of pages as data files

▪Writing 16KB per page regardless of compression

▪Added “innodb_doublewrite=2” for “detecting” torn pages
▪Writing only page ids to doublewrite buffer (4B instead of 16KB)

▪On crash recovery, checking target pages are corrupted or not

▪ In many cases, pages are not corrupted

▪ If pages are corrupted, reimaging from other slaves

Improving full table scan in InnoDB

=< 40 Page #3
=< 100 Page #5230

Branch(Page#2)

>= 0 Page #2
Root (Page#1)

>= 100000Page #1350

PK Row
Leaf (#3)

1 …..
2 …..

40 …..
…

PK Row
Leaf (#5230)

61 …..
62 …..

100 …..
…

PK Row
Leaf (#4)

131 …..
132 …..

160 …..
…

=< 160 Page #4

Read Order

=< 10000Page #1351
=< 10040Page #7312

Branch(Page#1350)

=< 10080Page #1352
… …

Disk Order

InnoDB Logical Read-Ahead

=< 40 Page #3
=< 100 Page #5230

Branch(Page#2)

>= 0 Page #2
Root (Page#1)

>= 100000Page #1350

PK Row
Leaf (#3)

1 …..
2 …..

40 …..
…

PK Row
Leaf (#5230)

61 …..
62 …..

100 …..
…

PK Row
Leaf (#4)

131 …..
132 …..

160 …..
…

=< 160 Page #4

=< 10000Page #1351
=< 10040Page #7312

Branch(Page#1350)

=< 10080Page #1352
… …

….

3. Reading from disk by leaf page # order (loaded into InnoDB buf pool)
4. Reading rows by primary key order (no random disk read penalty since pages are in buf pool)

Got 10x faster full table scan throughput on typical fragmented tables

1. Reading decent amount of B+Tree branch pages
2. Collecting leaf page numbers

Other important Facebook extensions
▪Asynchronous MySQL client

▪Query throttling based on number of active threads

▪Super read-only

▪Per user default session variables

▪Crash safe slave/master when using GTID and Multi-
Threaded Slave with less durability

▪mysqlbinlog speaking Semisync protocol

▪START TRANSACTION WITH CONSISTENT $ENGINE
SNAPSHOT, returning consistent binlog state

Binlog Server

Binlog Server with Loss-Less
Semisync

Single copy per region, with Binlog Server
DC1 (primary master region) DC2 (secondary master region)

M1

Binlog Servers with Loss-Less Semisync

M2 M3 … S1

Binlog Servers with Loss-Less Semisync

S2 S2 …

S3 S3 S3 …

DC3

Async Repl
Semisync Semisync

- We created a “Binlog Server” that speaks semisync replication
protocol and stores binary logs locally

- No dedicated local semisync slave is needed (Single Copy per Region)

What is MyRocks
▪ MySQL on top of RocksDB (RocksDB storage engine)

▪ Taking both LSM advantages and MySQL features

▪ LSM advantage: Smaller space and lower write amplification

▪ MySQL features: SQL, Replication, Connectors and many tools

▪ Open Source

MySQL Clients

InnoDB RocksDB

Parser
Optimizer
Replication
etc

SQL/Connector

MySQL

http://myrocks.io/

MyRocks Initial Goal at Facebook

InnoDB in UDB

90%

SpaceIOCPU
Machine limit

15%20%

MyRocks in UDB

45%

SpaceIOCPU
Machine limit

15%21%

21%
15%

45%

Migration in Production
▪Continuous data consistency check between InnoDB and
MyRocks

▪Shadow traffics tests

▪Deployed on slaves

▪Deployed on masters

Towards MySQL 8.0
▪We started evaluating MySQL 8.0

▪We started working with Oracle to take our patches in official
MySQL

▪Planning to use Performance Schema and to drop Table
Statistics patches

▪Transactional DDL and better optimizer statistics are great for
us

Future Plans
▪Helping Oracle to take our patches

▪MySQL 8.0 Deployment

▪Supporting multiple storage engines

▪Supporting “Bigger Small Data”

(c) 2009 Facebook, Inc. or its licensors. "Facebook" is a registered trademark of Facebook, Inc.. All rights reserved. 1.0

