

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

2

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

MySQL Optimizer: What’s New in 8.0

Manyi Lu
Director

Øystein Grøvlen
Senior Principal Software Engineer

MySQL Optimizer Team, Oracle
October, 2017

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Program Agenda

4

 Common table expressions

 Window functions

 UTF8 support

 GIS

 SKIP LOCKED, NOWAIT

 JSON functions

 Index extensions

 Cost model

 Hints

 Better IPv6 and UUID support

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Program Agenda

5

 Common table expressions

 Window functions

 UTF8 support

 GIS

 SKIP LOCKED, NOWAIT

 JSON functions

 Index extensions

 Cost model

 Hints

 Better IPv6 and UUID support

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Common Table Expression

• A derived table is a subquery in the FROM clause

 SELECT … FROM (subquery) AS derived, t1 ...

• Common Table Expression (CTE) is just like a derived table, but its
declaration is put before the query block instead of in FROM clause

 WITH derived AS (subquery)
 SELECT … FROM derived, t1 ...

• A CTE may precede SELECT/UPDATE/DELETE including sub-queries

 WITH derived AS (subquery)
 DELETE FROM t1 WHERE t1.a IN (SELECT b FROM derived);

6

Alternative to derived table

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Common Table Expression vs Derived Table

Better readability

Can be referenced multiple times

Can refer to other CTEs

Improved performance

7

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Better Readability

• Derived table:

 SELECT …
 FROM t1 LEFT JOIN ((SELECT … FROM …) AS dt JOIN t2 ON …) ON …

• CTE:

 WITH dt AS (SELECT ... FROM ...)
 SELECT ...
 FROM t1 LEFT JOIN (dt JOIN t2 ON ...) ON ...

8

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Can Be Referenced Multiple Times

• Derived table can not be referenced twice:

 SELECT ...
 FROM (SELECT a, b, SUM(c) s FROM t1 GROUP BY a, b) AS d1
 JOIN (SELECT a, b, SUM(c) s FROM t1 GROUP BY a, b) AS d2 ON d1.b = d2.a;

• CTE can:

 WITH d AS (SELECT a, b, SUM(c) s FROM t1 GROUP BY a, b)
 SELECT ... FROM d AS d1 JOIN d AS d2 ON d1.b = d2.a;

• Better performance with materialization:

– Multiple references only materialized once

– Derived tables and views will be materialized once per reference.

9

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Can Refer to Other CTEs

• Derived tables can not refer to other derived tables:
 SELECT …
 FROM (SELECT … FROM …) AS d1, (SELECT … FROM d1 …) AS d2 …

 ERROR: 1146 (42S02): Table ‘db.d1’ doesn’t exist

• CTEs can refer other CTEs:
 WITH d1 AS (SELECT … FROM …),
 d2 AS (SELECT … FROM d1 …)
 SELECT
 FROM d1, d2 …

10

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Recursive CTE

• A recursive CTE refers to itself in a subquery

• The “seed” SELECT is executed once to create the initial data subset, the
recursive SELECT is repeatedly executed to return subsets of.

• Recursion stops when an iteration does not generate any new rows
– To limit recursion, set cte_max_recursion_depth

• Useful to dig in hierarchies (parent/child, part/subpart)

11

WITH RECURSIVE cte AS
(SELECT ... FROM table_name /* "seed" SELECT */
 UNION [DISTINCT|ALL]
 SELECT ... FROM cte, table_name) /* "recursive" SELECT */
SELECT ... FROM cte;

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Recursive CTE

12

A simple example

Print 1 to 10 :

WITH RECURSIVE qn AS
 (SELECT 1 AS a
 UNION ALL
 SELECT 1+a FROM qn WHERE a<10
)
SELECT * FROM qn;

a
1
2
3
4
5
6
7
8
9
10

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Hierarchy Traversal

13

Employee database

CREATE TABLE employees (
 id INT PRIMARY KEY,
 name VARCHAR(100),
 manager_id INT,
 FOREIGN KEY (manager_id)
 REFERENCES employees(id));

INSERT INTO employees VALUES
(333, "Yasmina", NULL), # CEO
(198, "John", 333), # John reports to 333
(692, "Tarek", 333),
(29, "Pedro", 198),
(4610, "Sarah", 29),
(72, "Pierre", 29),
(123, "Adil", 692);

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Hierarchy Traversal

14

List reporting chain

WITH RECURSIVE
emp_ext (id, name, path) AS (
 SELECT id, name, CAST(id AS CHAR(200))
 FROM employees
 WHERE manager_id IS NULL
 UNION ALL
 SELECT s.id, s.name,
 CONCAT(m.path, ",", s.id)
 FROM emp_ext m JOIN employees s
 ON m.id=s.manager_id)
SELECT * FROM emp_ext ORDER BY path;

 id name path
333 Yasmina 333
198 John 333,198
692 Tarek 333,692
29 Pedro 333,198,29
123 Adil 333,692,123
4610 Sarah 333,198,29,4610
72 Pierre 333,198,29,72

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Hierarchy Traversal

15

List reporting chain

WITH RECURSIVE
emp_ext (id, name, path) AS (
 SELECT id, name, CAST(id AS CHAR(200))
 FROM employees
 WHERE manager_id IS NULL
 UNION ALL
 SELECT s.id, s.name,
 CONCAT(m.path, ",", s.id)
 FROM emp_ext m JOIN employees s
 ON m.id=s.manager_id)
SELECT * FROM emp_ext ORDER BY path;

 id name path
333 Yasmina 333
198 John 333,198
29 Pedro 333,198,29
4610 Sarah 333,198,29,4610
72 Pierre 333,198,29,72
692 Tarek 333,692
123 Adil 333,692,123

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Program Agenda

16

 Common table expressions

 Window functions

 UTF8 support

 GIS

 SKIP LOCKED, NOWAIT

 JSON functions

 Index extensions

 Cost model

 Hints

 Better IPv6 and UUID support

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Window Functions: What Are They?

• A window function performs a calculation across a set of rows that are
related to the current row, similar to an aggregate function.

• But unlike aggregate functions, a window function does not cause rows to
become grouped into a single output row.

• Window functions can access values of other rows “in the vicinity” of the
current row

17

Aggregate function Window function

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Window Function Example

18

PARTITION == disjoint
set of rows in result set

name dept_id salary dept_total

Newt NULL 75000 75000

Dag 10 NULL 370000

Ed 10 100000 370000

Fred 10 60000 370000

Jon 10 60000 370000

Michael 10 70000 370000

Newt 10 80000 370000

Lebedev 20 65000 130000

Pete 20 65000 130000

Jeff 30 300000 370000

Will 30 70000 370000

Sum up total salary for each department:

SELECT name, dept_id, salary,
 SUM(salary) OVER (PARTITION BY
 dept_id) AS dept_total
FROM employee
ORDER BY dept_id, name;

The OVER keyword
signals a window function

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

name dept_id salary total

Newt NULL 75000 75000

Dag 10 NULL NULL

Ed 10 100000 100000

Fred 10 60000 160000

Jon 10 60000 220000

Michael 10 70000 190000

Newt 10 80000 210000

Lebedev 20 65000 65000

Pete 20 65000 130000

Jeff 30 300000 300000

Will 30 70000 370000

19

Window Function Example: Frames

ORDER BY name

within each partition
moving window frame:
SUM(salary) ...
ROWS 2 PRECEDING

A frame is a subset of a
partition

SELECT name, dept_id, salary,
 SUM(salary)
 OVER (PARTITION BY dept_id
 ORDER BY name
 ROWS 2 PRECEDING) total
FROM employee
ORDER BY dept_id, name;

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 20

Window Function Example: Frames

SELECT name, dept_id, salary,
 SUM(salary)
 OVER (PARTITION BY dept_id
 ORDER BY name
 ROWS 2 PRECEDING) total
FROM employee
ORDER BY dept_id, name;

name dept_id salary total
Newt NULL 75000 75000
Dag 10 NULL NULL
Ed 10 100000 100000
Fred 10 60000 160000
Jon 10 60000 220000
Michael 10 70000 190000
Newt 10 80000 210000
Lebedev 20 65000 65000
Pete 20 65000 130000
Jeff 30 300000 300000
Will 30 70000 370000

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Program Agenda

21

 Common table expressions

 Window functions

 UTF8 support

 GIS

 SKIP LOCKED, NOWAIT

 JSON functions

 Index extensions

 Cost model

 Hints

 Better IPv6 and UUID support

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Improved UTF-8 Support in MySQL 8.0

• Support for the latest Unicode 9.0

• utf8mb4 made default character set!

–utf8mb4_0900_ai_ci default collation

• Accent and case sensitive collations

– Including 20+ language specific collations

–Now also Japanese and Russian

• Significantly improved performance

22

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

What Is in MySQL 5.7 and Earlier Versions?

• Default charset is “latin1” and default collation is “latin1_swedish_ci”

• utf8 = utf8mb3: support BMP only

• utf8mb4 character set:

–Only accent and case insensitive collations

–Default collation is utf8mb4_general_ci, compares all characters beyond
BMP, e.g. emojis, to be equal

–20+ language specific collations

–Recommend to use: utf8mb4_unicode_520_ci

23

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

New Default Character Set

• No changes to existing tables

• Only has effect on new tables/schemas where character set is not
explicitly defined.

• Separating character set/collation change from server upgrade

– Upgrade first, change charset/collation afterwards

• Recommend users to not mixing collations

– Error “Illegal mix of collations”

– Slower query because index can no longer be used

24

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Program Agenda

25

 Common table expressions

 Window functions

 UTF8 support

 GIS

 SKIP LOCKED, NOWAIT

 JSON functions

 Index extensions

 Cost model

 Hints

 Better IPv6 and UUID support

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

GIS
• Geography Support

– longitude/latitude

• Spatial Reference Systems (SRS) Support
– SRID 4326 = WGS 84 (“GPS coordinates”)

• Information Schema views
– ST_GEOMETRY_COLUMNS

• Standard compliant axis ordering : longitude-latitude

• Example functions :
– ST_Distance(g1, g2)
– ST_SwapXY(g)
– ST_SRID(g [, new_srid_val])

26

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Program Agenda

27

 Common table expressions

 Window functions

 UTF8 support

 GIS

 SKIP LOCKED, NOWAIT

 JSON functions

 Index extensions

 Cost model

 Hints

 Better IPv6 and UUID support

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

SELECT ... FOR UPDATE SKIP LOCKED

• Common problem:

– Hot row contention, multiple worker threads accessing the same rows

• Solution 1:

– Only read rows that are not locked

– InnoDB skips a locked row, and the next one goes to the result set

• Example:

– Booking system: Skip orders that are pending

28

START TRANSACTION;
SELECT * FROM seats WHERE seat_no BETWEEN 2 AND 3 AND booked = 'NO'
 FOR UPDATE SKIP LOCKED;

SKIP LOCKED modifier which can be used to non-deterministically read rows from a table while skipping over the rows which are locked.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

SELECT… FOR UPDATE NOWAIT

• Common problem:

– Hot row contention, multiple worker threads accessing the same rows

• Solution 2:

– If any of the rows are already locked, the statement should fail immediately

– Without NOWAIT, have to wait for innodb_lock_wait_timeout (default: 50 sec) while
trying to acquire lock

• Usage:

29

START TRANSACTION;
SELECT * FROM seats WHERE seat_no BETWEEN 2 AND 3 AND booked = 'NO'
 FOR UPDATE NOWAIT;
ERROR 3572 (HY000): Statement aborted because lock(s) could not be acquired …

SKIP LOCKED modifier which can be used to non-deterministically read rows from a table while skipping over the rows which are locked.
Without NOWAIT, this query would have waited for innodb_lock_wait_timeout (default: 50) seconds while attempting to acquire the shared lock on seat_rows Without NOWAIT, this query would have waited for innodb_lock_wait_timeout (default: 50) seconds while attempting to acquire the shared lock on seat_rows

https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_lock_wait_timeout
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_lock_wait_timeout
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_lock_wait_timeout

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Program Agenda

30

 Common table expressions

 Window functions

 UTF8 support

 GIS

 SKIP LOCKED, NOWAIT

 JSON functions

 Index extensions

 Cost model

 Hints

 Better IPv6 and UUID support

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

JSON Aggregation

31

Combine JSON documents in multiple rows into a JSON array

CREATE TABLE t1 (id INT, grp INT,
jsoncol JSON);

 INSERT INTO t1 VALUES (1, 1,
'{"key1":"value1","key2":"value2"}');

INSERT INTO t1 VALUES (2, 1,
'{"keyA":"valueA","keyB":"valueB"}');

INSERT INTO t1 VALUES (3, 2,
'{"keyX":"valueX","keyY":"valueY"}');

SELECT JSON_ARRAYAGG(jsoncol)
FROM t1;

[{"key1":"value1","key2":"value2"},
{"keyA":"valueA","keyB":"valueB"},
{"keyX":"valueX","keyY":"valueY"}]

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

JSON Aggregation

32

Combine JSON documents in multiple rows into a JSON object

CREATE TABLE t1 (id INT, grp INT,
jsoncol JSON);

 INSERT INTO t1 VALUES (1, 1,
'{"key1":"value1","key2":"value2"}');

INSERT INTO t1 VALUES (2, 1,
'{"keyA":"valueA","keyB":"valueB"}');

INSERT INTO t1 VALUES (3, 2,
'{"keyX":"valueX","keyY":"valueY"}');

SELECT grp, JSON_OBJECTAGG(id, jsoncol)
FROM t1
GROUP BY grp;

1 | {"1":{"key1":"value1","key2":"value2"},
"2":{"keyA":"valueA","keyB":"valueB"}}
2 | {"3":{"keyX":"valueX","keyY":"valueY"}}

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

JSON_TABLE

• Table t1 has a column json_col with content like this:

{ "people": [
 { "name":"John Smith", "address":"780 Mission St, San Francisco, CA 94103"},
 { "name":"Sally Brown", "address":"75 37th Ave S, St Cloud, MN 94103"},
 { "name":"Paul Johnson", "address":"1262 Roosevelt Trail, Raymond, ME 04071"},
…] }

• Convert JSON column into a table with 2 columns:

SELECT people.* FROM t1, JSON_TABLE(json_col, '$.people[*]' COLUMNS (
 name VARCHAR(40) PATH '$.name',
 address VARCHAR(100) PATH '$.address')) people
WHERE people.address LIKE '%San Francisco%';

33

Convert JSON documents to relational tables Labs release

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

34

JSON_TABLE – Nested Arrays

id father married child_id child age

1 John 1 1 Eric 12

1 John 1 2 Beth 10

2 Paul 0 1 Sarah 9

2 Paul 0 2 Noah 3

2 Paul 0 3 Peter 1

[
 { "father":"John", "mother":"Mary",
 "marriage_date":"2003-12-05",
 "children": [
 { "name":"Eric", "age":12 },
 { "name":"Beth", "age":10 }] },

 { "father":"Paul", "mother":"Laura",
 "children": [
 { "name":"Sarah", "age":9},
 { "name":"Noah", "age":3} ,
 { "name":"Peter", "age":1}] }
]

, ...]}, ...]

Labs release

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

35

JSON_TABLE – Nested Arrays

id father married child_id child age

1 John 1 1 Eric 12

1 John 1 2 Beth 10

2 Paul 0 1 Sarah 9

2 Paul 0 2 Noah 3

2 Paul 0 3 Peter 1

JSON_TABLE (families, '$[*]' COLUMNS (
 id FOR ORDINALITY,
 father VARCHAR(30) PATH '$.father',
 married INTEGER EXISTS PATH
 '$.marriage_date',
 NESTED PATH '$.children[*]' COLUMNS (
 child_id FOR ORDINALITY,
 child VARCHAR(30) PATH '$.name',
 age INTEGER PATH '$.age‘))

Labs release

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

JSON_TABLE

SELECT father, COUNT(*) "#children", AVG(age) "age average"
FROM t, JSON_TABLE (families, '$[*]' COLUMNS (
 id FOR ORDINALITY,
 father VARCHAR(30) PATH '$.father',
 NESTED PATH '$.children[*]' COLUMNS (age INTEGER PATH '$.age‘)) AS fam
GROUP BY id, father;

36

SQL aggregation on JSON data

father #children age average

John 2 11.0000

Paul 3 4.3333

Labs release

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

JSON Utility Functions

• JSON_PRETTY(json_value)

– Pretty-print the JSON value

• JSON_STORAGE_SIZE(json_value)

– The number of bytes used to store the binary representation of a JSON document

• JSON_STORAGE_FREE(json_value)
– The number of bytes in its binary representation that is current not used.

– The binary representation may have unused space after a JSON column was updated
in place using JSON_SET()

37

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Program Agenda

38

 Common table expressions

 Window functions

 UTF8 support

 GIS

 SKIP LOCKED, NOWAIT

 JSON functions

 Index extensions

 Cost model

 Hints

 Better IPv6 and UUID support

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Invisible Index

• Index is maintained by the SE, but ignored by the Optimizer

• Primary key cannot be INVISIBLE

• Use case: Check for performance drop BEFORE dropping an index

• To see an invisible index: set optimizer_switch='use_invisible_indexes=on';

39

ALTER TABLE t1 ALTER INDEX idx INVISIBLE;
mysql> SHOW INDEXES FROM t1;
+---------+------------------+----------------------+---------------+
| Table | Key_name | Column_name | Visible |
+---------+------------------+----------------------+---------------+
| t1 | idx | a | NO |
+---------+------------------+----------------------+---------------+

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Descending Index

• In 5.7: Index in ascending order is created, server scans it backwards

• In 8.0: Index in descending order is created, server scans it forwards

• Works on B-tree indexes only

• Benefits:

– Use indexes instead of filesort for ORDER BY clause with ASC/DESC sort key

– Forward index scan is slightly faster than backward index scan

 40

CREATE TABLE t1 (
 a INT,
 b INT,
 INDEX a_b (a DESC, b ASC)
);

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Program Agenda

41

 Common table expressions

 Window functions

 UTF8 support

 GIS

 SKIP LOCKED, NOWAIT

 JSON functions

 Index extensions

 Cost model

 Hints

 Better IPv6 and UUID support

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Motivation for Improving the MySQL Cost Model

• Produce more correct cost estimates

– Better decisions by the optimizer should improve performance

• Adapt to new hardware architectures

– SSD, larger memories, caches

• More maintainable cost model implementation
– Avoid hard coded “cost constants”

– Refactoring of existing cost model code

• Configurable and tunable

• Make more of the optimizer cost-based

Faster
queries

42

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

• Time to do a table scan of 10
million records:

• Adjust cost model to support
different storage technologies

• Provide configurable cost constants
for different storage technologies

New Storage Technologies

Memory 5 s

SSD 20 - 146 s

Hard disk 32 - 1465 s

Provide a program that could
measure performance and
suggest good cost constant
configuration for a running

MySQL server?

43

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

• Storage engines:

– Estimate for how much of data and
indexes are in a memory buffer

– Estimate for hit rate for memory buffer

• Optimizer cost model:
– Take into account whether data is

already in memory or need to be read
from disk

Memory Buffer Aware Cost Estimates

Server

Storage
engine

Disk data

Query
executor

Database
buffer

44

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

MySQL 8.0: Disk vs Memory Access

• New defaults for const constants:

• InnoDB reports for each table/index percentage of data cached in buffer
pool

• Note: Query plan may change between executions

Confidential – Oracle Internal/Restricted/Highly Restricted 45

Cost MySQL 5.7 MySQL 8.0

Read a random disk page 1.0 1.0

Read a data page from memory buffer 1.0 0.25

Evaluate query condition 0.2 0.1

Compare keys/rows 0.1 0.05

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

DBT-3 Query 8

SELECT o_year, SUM(CASE WHEN nation = 'FRANCE' THEN volume ELSE 0 END) / SUM(volume) AS
mkt_share

FROM (

SELECT EXTRACT(YEAR FROM o_orderdate) AS o_year,
 l_extendedprice * (1 - l_discount) AS volume, n2.n_name AS nation
FROM part
 JOIN lineitem ON p_partkey = l_partkey
 JOIN supplier ON s_suppkey = l_suppkey
 JOIN orders ON l_orderkey = o_orderkey
 JOIN customer ON o_custkey = c_custkey
 JOIN nation n1 ON c_nationkey = n1.n_nationkey
 JOIN region ON n1.n_regionkey = r_regionkey
 JOIN nation n2 ON s_nationkey = n2.n_nationkey
WHERE r_name = 'EUROPE' AND o_orderdate BETWEEN '1995-01-01' AND '1996-12-31'
 AND p_type = 'PROMO BRUSHED STEEL'

) AS all_nations GROUP BY o_year ORDER BY o_year;

National Market Share Query

High selectivity

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 47

Alternative query plans

Plan A

Plan B

DBT-3 Query 8

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Execution time (MySQL 8.0.3)

In-memory Disk-bound

Plan A 5.8 secs 9 min 47 secs

Plan B 77.5 secs 3 min 49 secs

Selected plan

In-memory Disk-bound

MySQL 5.6 Plan B

MySQL 5.7 Plan A

MySQL 8.0 Plan A Plan B

48

DBT-3 Query 8

DBT-3 Scale factor 10
In-Memory: innodb_buffer_pool_size = 32 GB
Disk-bound: innodb_buffer_pool_size = 1 GB

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Histograms

• Provides the optimizer with information about column value distribution

• To create/recalculate histogram for a column:

ANALYZE TABLE table UPDATE HISTOGRAM ON column WITH n BUCKETS;

• May use sampling
– Sample size is based on available memory (histogram_generation_max_mem_size)

• Automatically chooses between two histogram types:
– Singleton: One value per bucket

– Equi-height: Multiple value per bucket

49

Column statistics

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Histograms

EXPLAIN SELECT *
FROM customer JOIN orders ON c_custkey = o_custkey
WHERE c_acctbal < -1000 AND o_orderdate < '1993-01-01';

50

Example query

id
select
type

table type possible keys key
key
len

ref rows filtered extra

1 SIMPLE orders ALL
i_o_orderdate,
i_o_custkey

NULL NULL NULL 15000000 31.19
Using
where

1 SIMPLE customer
eq_
ref

PRIMARY PRIMARY 4
dbt3.orders.
o_custkey

1 33.33
Using
where

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Histograms

ANALYZE TABLE customer UPDATE HISTOGRAM ON c_acctbal WITH 1024 buckets;

EXPLAIN SELECT *
FROM customer JOIN orders ON c_custkey = o_custkey
WHERE c_acctbal < -1000 AND o_orderdate < '1993-01-01';

51

Create histogram to get a better plan

id
select
type

table type possible keys key
key
len

ref rows filtered extra

1 SIMPLE customer ALL PRIMARY NULL NULL NULL 1500000 0.00
Using
where

1 SIMPLE orders ref
i_o_orderdate,
i_o_custkey

i_o_custkey 5
dbt3.
customer.
c_custkey

15 31.19
Using
where

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Comparing Join Order

0

2

4

6

8

10

12

14

16

Q
u

e
ry

 E
xe

cu
ti

o
n

 T
im

e
 (

se
co

n
d

s)

orders → customer customer → orders

Performance

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Program Agenda

53

 Common table expressions

 Window functions

 UTF8 support

 GIS

 SKIP LOCKED, NOWAIT

 JSON functions

 Index extensions

 Cost model

 Hints

 Better IPv6 and UUID support

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Hints: Join Order

• Hints to control table order for join execution

• 5.7: STRAIGHT_JOIN to force the listed order in FROM clause

• 8.0:

– JOIN_FIXED_ORDER /* replacement for STRAIGHT_JOIN*/

– JOIN_ORDER /* use specified order */

– JOIN_PREFIX /* use specified order for first tables */

– JOIN_SUFFIX /* use specified order for last tables */

– No need to reorganize the FROM clause to add join order hints like you will for
STRAIGHT_JOIN

54

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Join Order Hints - Example

EXPLAIN SELECT /*+ JOIN_ORDER(customer, orders) */ *
FROM customer JOIN orders ON c_custkey = o_custkey
WHERE c_acctbal < -1000 AND o_orderdate < '1993-01-01';

55

Change join order with hint

id
select
type

table type possible keys key
key
len

ref rows filtered extra

1 SIMPLE customer ALL PRIMARY NULL NULL NULL 1500000 33.33
Using
where

1 SIMPLE orders ref
i_o_orderdate,
i_o_custkey

i_o_custkey 5
dbt3.
customer.
c_custkey

15 31.19
Using
where

Alternatives with same effect for this query:
 JOIN_PREFIX(customer) JOIN_SUFFIX(orders) JOIN_FIXED_ORDER()

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Hints: Index Merge

• Index merge: Merge rows from multiple range scans on a single table

• Algorithms: union, intersection, sort union

• Users can specify which indexes to use for index merge

– /*+ INDEX_MERGE() */

– /*+ NO_INDEX_MERGE() */

56

10 INDEX(a)

10 INDEX(b)

a=10 AND b=10 Result:

Intersection

SELECT * FROM t1 WHERE a=10 AND b=10

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Index Merge Hint - Example

EXPLAIN SELECT count(*) FROM users
WHERE user_type=2 AND status=0 AND parent_id=0;

57

id
select
type

table type
possible
keys

key
key
len

ref rows Extra

1 SIMPLE users
index_
merge

parent_id,
status,
user_type

user_type,
status,
parent_id

1,1,4 NULL 2511
Using intersect (user_type,
status, parent_id);
Using where; Using index

mysql> SELECT count(*) FROM users WHERE user_type=2 AND status=0 AND parent_id=0;

...

1 row in set (1.37 sec)

mysql> SELECT /*+ INDEX_MERGE(users user_type, status) */ count(*)

 -> FROM users WHERE user_type=2 AND status=0 AND parent_id=0;

...

1 row in set (0.18 sec)

Low selectivity

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Hints: Set session variables

• Set a session variable for the duration of a single statement

• Examples:

SELECT /* SET_VAR(sort_buffer_size = 16M) */ name FROM people ORDER BY name;

INSERT /* SET_VAR(foreign_key_checks = OFF) */ INTO t2 VALUES (1, 1), (2, 2), (3, 3);

SELECT /* SET_VAR(optimizer_switch = 'condition_fanout_filter = off') */ *
FROM customer JOIN orders ON c_custkey = o_custkey
WHERE c_acctbal < 0 AND o_orderdate < '1993-01-01';

• NB! Not all session variables are settable through hints:
mysql> SELECT /*+ SET_VAR(max_allowed_packet=128M) */ * FROM t1;

Empty set, 1 warning (0,01 sec)

Warning (Code 4537): Variable 'max_allowed_packet' cannot be set using

SET_VAR hint.

58

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Program Agenda

59

 Common table expressions

 Window functions

 UTF8 support

 GIS

 SKIP LOCKED, NOWAIT

 JSON functions

 Index extensions

 Cost model

 Hints

 Better IPv6 and UUID support

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Improved Support for UUID

• Five “-” separated hexadecimal numbers

• MySQL uses version 1, the first three numbers are generated from the low,
middle, and high parts of a timestamp.

• 36 characters, inefficient for storage

 Convert to BINARY(16) datatype, only 16 bytes

60

mysql> select uuid();
+---+
| uuid() |
+---+
| aab5d5fd-70c1-11e5-a4fb-b026b977eb28 |
+---+

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Improved Support for UUID

• UUID_TO_BIN(string_uuid, swap_flag)

• BIN_TO_UUID(binary_uuid, swap_flag)

• IS_UUID(string_uuid)

61

Functions to convert UUID to and from binary

Feature Request
from Developers

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

UUID_TO_BIN Optimization

• Binary format is now smaller

• Shuffling low part with the high part improves index performance

62

25 26 27 28 29

Insert Performance Optimized

Original

11e678fe53303f87a4778c89a52c4f3b

53303f87-78fe-11e6-a477-8c89a52c4f3b From VARCHAR(36)

To BINARY(16)

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

IPv6

• New! Bit-wise operations on binary data types

– Designed with IPv6 in mind:

– INET6_ATON(address) & INET6_ATON(network)

– No longer truncation beyond 64 bits

63

Feature Request
from Developers

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

• Improved Query Scan Performance

• GROUPING()

• Hint: Merge/materialize derived
table/view

• JSON:

– Partial update

– Improved performance of sorting and
grouping of JSON values

– Path expressions: Array index ranges

– JSON_MERGE_PATCH()

• Skip index dives for FORCE INDEX

• Parser Refactoring

64

All These Features and More…

Try it out!

Give us feedback!

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement

The preceding is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

65

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 66

