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Why CloudDBA ?

 Reduce cost and we do care about it

More than just cloud

Focus your resources on business

Provide best technology

Database platform

• Spend time to find root cause
• Build team to optimize performance
• Unnecessary cost to scale hardware 

resource
>80%

<20%



CloudDBA Architecture

More than just cloud
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Online diagnosis

 Rule Engine

More than just cloud

Rule Engine

1. Immediate detection of useful changes with low cost

2. Choose correct inference model

1. Database global status is maturity and easy to get 

2. High frequency monitoring to make sure no useful info missed

3. Real time state change detection algorithms

4. Importance of database experience

Diagnosis Event



Online diagnosis

 Knowledge Base & inference Engine

More than just cloud

1. Ability to accumulate DBA experts’ experience in short time

2. Accurate issue detection & corresponding advice
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Offline diagnosis

 Audit log does matter

More than just cloud

1. Record full SQLs for database

1. A feature of AliSQL, no performance impact

1. Can only be used with customer’s authorization



Offline diagnosis

 Transaction analysis

More than just cloud

1. Uncommitted transactions

1. Long transactions

1. Long interval between transaction SQLs

4.    Big transactions



Offline diagnosis

 SQL review

More than just cloud

1. How many types of SQLs

2. How many types of Transactions

3. SQLs or sequence in transaction is expected or not

4. Scan rows, return rows, elapsed time & SQL advice



Offline diagnosis

 Top SQLs

More than just cloud

1. Need to get top SQLs before optimize

2. Help to explain questions such as "why my CPU is 100%

3. Different statistics dimensions & performance metrics



SQL Advisor

 Not kernel built in component, externally 
 implemented

More than just cloud

 Not database optimizer, but help optimizer
 to find the best execution path

Query Rewriter 

— What to do

Query Optimizer 

— How to do
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SQL Advisor

More than just cloud

  select name from (

        select name, action
        from mytest t 
        where t.user = 'hello'
  ) t 
  where t.action = 'push'

select list

Subquery
 from listwhere list

select name, action from mytest t where t.user = 'hello'

select list from list where listTable Scan

Project

Filter

Project

Filter

Project

from mytest 
t

select name, 
action

t.user = ‘hello’

select name, 
action

t.action = 
‘push’

select name

Different view for SQL

How to get SQL optimized ?
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SQL Advisor

Rewrite SQL with rules

More than just cloud
Table Scan
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from mytest t

select name
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and 
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SQL Advisor

Follow rules to detect scenarios that index 
can not be applied

More than just cloud

1.   Like expression with leading wildcards

      first_name LIKE concat(‘%’, ‘lei’);
2.   Column as function argument 

      UPPER(first_name)
3.   Implicit conversion due to data type mismatch

      a = 123
4.   Character set /collation mismatch

      t1.utf8_string = t2.utf8_bin_string
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SQL Advisor

More than just cloud

1. Selectivity:  estimated by sampling latest data

id = 1

Rec 1 Rec M Rec N

id = nid = n - 10000

1000 rows
user : 200
action: 800
create_time: max/min(800)

user : 180
action: 810
creat_time: max/min(900)
 

Predicate selectivity: 
       user, action:  1/ 220, 1/810 
       create_time: 10000 / (n * 805)

User : 220
Action: 810
Create_time: max/min:1700

Get sample data with lowest cost:
     select * from tab order by id limit 10000, 1000

1000 rows

Distinct values: 
       user or action:  max distinct values  
       create_time: (total records) * (avg distinct values) / 
10000
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Follow rules to create index with lowest cost



SQL Advisor

Follow rules to create index with lowest cost

More than just cloud

1. Selectivity

Conjunction:  selectivity 1  * selectivity 2

Disjunction:  selectivity 1 + selectivity 2

——Special handling for “LIMIT N”
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SQL Advisor

Follow rules to create index with lowest cost

More than just cloud

filter 2Filter 1

join

2. Join method & order

1. For nest loop, small table drive big table

2. Once drive table chosen,  join filter replace filter2 for index

Table1 Table2

Join 
filterReturn 

10 rows
Return 
1000 rows
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Compiler



SQL Advisor

Follow rules to create index with lowest cost

More than just cloud

Table Scan

Filter

Project

TableIndex 
Scan

Fetch

Project

• Lower selectivity predicate first

• Only 1 range predicate after equal

• Consider use index for sort

• Covered index

• Limit index card

Rewritten Advice:

      select name from mytest where user = 'hello' and action = 'push'

Index Advice:

      ALTER TABLE `mytest` ADD INDEX rds_idx_1(user, action) 

3. Create index with predicates candidates
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SQL Advisor

More than just cloud

Example



SQL Advisor

More than just cloud

Example

select `t`.`user`, `t`.`action`, count(*) as `cnt`

from `mydb`.`sys_access_log` `t`

where `t`.`action` =‘GetSampleSQL'

and `t`.`user` like concat('%', ‘asdf')

group by `t`.`user`, `t`.`action`

Rewrite advice:

ALTER TABLE `mydb`.`sys_access_log` ADD 
INDEX rds_idx_0 (`action`);

Index advice:

Other advice:

LiKE expression CONCAT(‘%’, ‘asdf’) for column “user” 
of table “sys_access_log” with leading wildcard can not 
use index. 



Q&A

More than just cloud

Thank you !


