
MySQL Automatic Diagnostic System,
Mechanism and Usage

Shangshun Lei, Alibaba Cloud
Lixun Peng, Alibaba Cloud

More than just cloud

Agenda

More than just cloud

 Why CloudDBA

 Architecture

 SQL Advisor

 Online Diagnosis

 Offline Diagnosis

Why CloudDBA ?

 Reduce cost and we do care about it

More than just cloud

Focus your resources on business

Provide best technology

Database platform

• Spend time to find root cause
• Build team to optimize performance
• Unnecessary cost to scale hardware

resource
>80%

<20%

CloudDBA Architecture

More than just cloud

Knowledge
Base

MySQL PostGreSQLApsaraDB

KFK / JStorm

Log Agent

Error
Log Slow Log Audit Log CPU/IOPS/

Status/...

Offline data repository

Offline diagnosis

Top SQL
Analysis

Trx
Analysis

SQL
Review

Deadlock
Analysis …

SQLServer

SQL Advisor

Rule Engine

Online diagnosis

Realtime Event & advice

Slave
Delay

Config
Tuning

Active
Sessio

n

Lock
&

Trx
Resource …

Inference Engine

Rule
Start

+

cond1

executors Advice
Generator

cond2

Online diagnosis

 Rule Engine

More than just cloud

Rule Engine

1. Immediate detection of useful changes with low cost

2. Choose correct inference model

1. Database global status is maturity and easy to get

2. High frequency monitoring to make sure no useful info missed

3. Real time state change detection algorithms

4. Importance of database experience

Diagnosis Event

Online diagnosis

 Knowledge Base & inference Engine

More than just cloud

1. Ability to accumulate DBA experts’ experience in short time

2. Accurate issue detection & corresponding advice

DBA Expert

Knowledge
Base

Knowledge
Modeling tool

management
interface

Customer’s
MySQL

Inference Engine

Rule
Start

+

cond1

executors
Advice

Generator

Diagnosis
Event

cond2

Offline diagnosis

 Audit log does matter

More than just cloud

1. Record full SQLs for database

1. A feature of AliSQL, no performance impact

1. Can only be used with customer’s authorization

Offline diagnosis

 Transaction analysis

More than just cloud

1. Uncommitted transactions

1. Long transactions

1. Long interval between transaction SQLs

4. Big transactions

Offline diagnosis

 SQL review

More than just cloud

1. How many types of SQLs

2. How many types of Transactions

3. SQLs or sequence in transaction is expected or not

4. Scan rows, return rows, elapsed time & SQL advice

Offline diagnosis

 Top SQLs

More than just cloud

1. Need to get top SQLs before optimize

2. Help to explain questions such as "why my CPU is 100%

3. Different statistics dimensions & performance metrics

SQL Advisor

 Not kernel built in component, externally
 implemented

More than just cloud

 Not database optimizer, but help optimizer
 to find the best execution path

Query Rewriter

— What to do

Query Optimizer

— How to do

Parser

Semantics
 checking

Query
Rewrite

Query
Optimizer

Compiler

SQL Advisor

More than just cloud

 select name from (

 select name, action
 from mytest t
 where t.user = 'hello'
) t
 where t.action = 'push'

select list

Subquery
 from listwhere list

select name, action from mytest t where t.user = 'hello'

select list from list where listTable Scan

Project

Filter

Project

Filter

Project

from mytest
t

select name,
action

t.user = ‘hello’

select name,
action

t.action =
‘push’

select name

Different view for SQL

How to get SQL optimized ?
Parser

Semantics
 checking

Query
Rewrite

Query
Optimizer

Compiler

SQL Advisor

Rewrite SQL with rules

More than just cloud
Table Scan

Filter

Filter

Project

Project

Project

from mytest t

select name

user = ‘hello’
and
action =
‘push’

pushdown

Table Scan

Project

Filter

Project

Filter

Project

merge

merge

Table Scan

Filter

Project
pushdown

Parser

Semantics
 checking

Query
Rewrite

Query
Optimizer

Compiler

SQL Advisor

Follow rules to detect scenarios that index
can not be applied

More than just cloud

1. Like expression with leading wildcards

 first_name LIKE concat(‘%’, ‘lei’);
2. Column as function argument

 UPPER(first_name)
3. Implicit conversion due to data type mismatch

 a = 123
4. Character set /collation mismatch

 t1.utf8_string = t2.utf8_bin_string

Parser

Semantics
 checking

Query
Rewrite

Query
Optimizer

Compiler

SQL Advisor

More than just cloud

1. Selectivity: estimated by sampling latest data

id = 1

Rec 1 Rec M Rec N

id = nid = n - 10000

1000 rows
user : 200
action: 800
create_time: max/min(800)

user : 180
action: 810
creat_time: max/min(900)

Predicate selectivity:
 user, action: 1/ 220, 1/810
 create_time: 10000 / (n * 805)

User : 220
Action: 810
Create_time: max/min:1700

Get sample data with lowest cost:
 select * from tab order by id limit 10000, 1000

1000 rows

Distinct values:
 user or action: max distinct values
 create_time: (total records) * (avg distinct values) /
10000

Parser

Semantics
 checking

Query
Rewrite

Query
Optimizer

Compiler

Follow rules to create index with lowest cost

SQL Advisor

Follow rules to create index with lowest cost

More than just cloud

1. Selectivity

Conjunction: selectivity 1 * selectivity 2

Disjunction: selectivity 1 + selectivity 2

——Special handling for “LIMIT N”

Parser

Semantics
 checking

Query
Rewrite

Query
Optimizer

Compiler

SQL Advisor

Follow rules to create index with lowest cost

More than just cloud

filter 2Filter 1

join

2. Join method & order

1. For nest loop, small table drive big table

2. Once drive table chosen, join filter replace filter2 for index

Table1 Table2

Join
filterReturn

10 rows
Return
1000 rows

Parser

Semantics
 checking

Query
Rewrite

Query
Optimizer

Compiler

SQL Advisor

Follow rules to create index with lowest cost

More than just cloud

Table Scan

Filter

Project

TableIndex
Scan

Fetch

Project

• Lower selectivity predicate first

• Only 1 range predicate after equal

• Consider use index for sort

• Covered index

• Limit index card

Rewritten Advice:

 select name from mytest where user = 'hello' and action = 'push'

Index Advice:

 ALTER TABLE `mytest` ADD INDEX rds_idx_1(user, action)

3. Create index with predicates candidates

Parser

Semantics
 checking

Query
Rewrite

Query
Optimizer

Compiler

SQL Advisor

More than just cloud

Example

SQL Advisor

More than just cloud

Example

select `t`.`user`, `t`.`action`, count(*) as `cnt`

from `mydb`.`sys_access_log` `t`

where `t`.`action` =‘GetSampleSQL'

and `t`.`user` like concat('%', ‘asdf')

group by `t`.`user`, `t`.`action`

Rewrite advice:

ALTER TABLE `mydb`.`sys_access_log` ADD
INDEX rds_idx_0 (`action`);

Index advice:

Other advice:

LiKE expression CONCAT(‘%’, ‘asdf’) for column “user”
of table “sys_access_log” with leading wildcard can not
use index.

Q&A

More than just cloud

Thank you !

