
How	to	setup	Orchestrator	to	manage	thousands	
of	MySQL	servers

Simon	J	Mudd |		3rd October	2017



Session	Summary

• What	is	orchestrator	and	why	use	it?
• What	happens	as	you	monitor	more	servers?
• Features	added	to	make	it	scale	and	improve	usability
• Using	orchestrator	at	smaller	scale
• Way	forward

1



Booking.com

• One	of	the	largest	travel	e-commerce	sites	in	the	world
• part of	the	Priceline	Group	(NASDAQ:	PCLN)
• We	offer	accommodation	in	228	countries
• Our	website	and	customer	service	in	40	languages	
• More	than	15,000	employees	in	204	offices	in	70	countries

• We	use	thousands	of	MySQL	servers:
• we	use	orchestrator	to	manage	the	topology	and	handle	master	and	
intermediate	master	failures

2



What	is	Orchestrator	and	why	use	it?

3



Orchestrator

4



Orchestrator

• Written	by	Shlomi Noach
• he	started	on	this	at	outbrain and	is	now	working	at	github.com
• He	introduced	booking.com to	orchestrator	about	3	years	ago	when	we	were	
looking	for	something	to	handle	failovers	automatically

5



Orchestrator

• Periodically	monitors	MySQL	servers	and	checks	their	health
• Handles	master	failover,	but	also	does	much	more…
• GUI	to	manage	and	visualise topology	– very	handy
• CLI	to	do	the	same	tasks	– used	for	scripting
• API	calls	to	run	at	a	distance
• Needs	a	DB	backend	to	store	state.

• Normally	MySQL	but	can	be	SQLite

• Written	in	go

6



Orchestrator

What	failures	does	it	handle?
• Master	failures

• Optional	hooks	to	external	systems	which	need	to	be	aware	of	these	failures

• Intermediate	master	failures
• Does	not care	about	leaf	slaves	or	applications
• Works	with	Oracle	or	MariaDB GTID
• Works	without	GTID:	Can	add	Pseudo-GTID (events	injected	on	the	
master	are	used	to	find	a	match)	so	no	need to	migrate

• Handles	multi-level	topologies
7



Orchestrator	GUI

8



Orchestrator	GUI

9



Orchestrator	GUI

10



Orchestrator

Topology	Management
• Drag	and	drop	using	the	GUI

• Move	one	slave	about
• Move	all	slaves

• Scriptable	relocation	from	the	command	line	or	using	API	calls	

11



What	happens	as	you	monitor	more	servers?

12



What	happens	as	you	monitor	more	servers?

• Integration	needed	with	internal	infrastructure
• Deployment:	tell	orchestrator	to	discover	and	forget	servers*
• Determine	candidate	masters
• Handle	special	cases:

• test	MySQL	versions,	special	setups	(black- or	white-list	servers	or	clusters)

• Make	orchestrator	HA
• Monitor	orchestrator	behaviour and	performance
• Provide	wider	access	to	different	types	of	user

13
*	It	can	automatically	detect	new	servers	in	an	existing	cluster	but	not	new	detect	new	clusters	without	help



Integration	with	Internal	Infrastructure

• Populate	the	metadata	db on	the	master	to:
• Map	host	or	instance	names	to	more	familiar	cluster	names
• How	to	determine	replication	delay
• Configuration	of	acceptable	levels	of	replication	delay

• Add	and	removal	of	servers/instances	as	they	are	deployed	or	
removed	from	service

• Setup	of	Pseudo-GTID	(if	not	using	GTID)

14



Integration	with	Internal	Infrastructure

• Add	failover	hooks	for	monitoring,	notification	and	to	take	site-
specific	actions	(tell	other	systems	about	the	new	master)

• Selection	of	candidate	masters
• Blacklisting	servers	which	are	not	suitable:	backup	servers,	test	
servers,	servers	in	the	wrong	network	areas	…

15



Better	Visibility

• Improve	orchestrator	deployment	visibility
• For	each	running	app:	show	host,	version,	uptime
• Show	the	active	node	and	how	long	it’s	been	active

• Auditing	of	MySQL	failures	and	recovery	via	the	GUI	is	good	and	
improving

• no	need	to	search	the	logs

16



Better	Visibility

17



Features	added	to	scale	and	improve	usability

18



Performance

We	found	bottlenecks	especially	on	startup
• Try	to	discover	several	thousand	mysql servers	at	once	and	update	
the	backend	at	the	same	time	àmax_connections exceeded

• Multiple	go	routines	trying	to	poll	the	same	stuck	server

Solution:
• FIFO	Discovery	queue	which	avoids	duplicates	and	limits	maximum	
discovery	concurrency

19



Performance

How	to	figure	out	what’s	going	on?
• Understanding	logging	is	hard	at	this	scale	– too	much	noise
• No	discovery	metrics	to	see	problems	at	server	or	aggregate	level

Solution:
• Collect	discovery	metrics	and	keep	for	N	seconds
• Log	discovery	times	in	debug	mode
• Provide	interface	to	retrieve	raw	or	aggregate	values	to	use	in	
monitoring	systems

20



Performance

Discovery	(Poll)	times

21



Performance

Discovery	(Poll)	counters

22



Performance

• A	client	upgrade	might	upgrade	the	database	which	other	older	apps	
were	still	using

Solution:
• Make	auto-upgrade	of	the	database	optional	so	the	DBA	controls	this

23



Performance

• Cross	zone	(dc)	access	changes	performance	profile	significantly	and	
caused	problems

• orchestrator	apps	are	supposed	to	be	easy	to	replace	and	location	should	not	
matter

• latency	can	be	a	real	enemy
Solution:
• Batch	updates	of	some	data	into	smaller	number	of	larger	inserts
• Collect	metrics	on	these	timings
• Catch	discoveries	which	take	too	long	(internal	code	bottlenecks)
• Visibility	of	the	metrics	made	it	easier	to	locate	causes

24



Performance

• Special	connections	settings
• "MySQLOrchestratorMaxPoolConnections":	control	go	pool	size	
• "MySQLConnectTimeoutSeconds":	1

• don’t	waste	time	waiting	to	connect	to	a	dead	server

25



Performance

golang specific	-isms
• Orchestrator	by	default	uses	database/sql and	by	default	sends	a	
query	with	parameters	using	MySQL’s	Prepare/Execute	syntax

• This	generates	2	rtt’s and	on	slower	connections	can	affect	the	elapsed	time	
to	complete	a	query

• Options	to	disable	this	by	interpolating	parameter	values	prior	to	sending	SQL

• Go	(orchestrator	code)	is	quite	happy	to	try to	poll	10,000	servers	at	
once

• Sometimes	that	is	not	sensible
• Throttling	to	avoid	thundering	herd	is	necessary

26



Orchestrator	HA

• More	then	one	orchestrator	server	per	zone/dc
• Some	upgrades	really	easy	– just	restart	with	new	binaries

• Common	end	point	via	load	balancer
• Simpler	for	users
• works	for	api calls	and	may	simplify	firewall	rules

27



28

Orchestrator	HA

L		o		a		d									B		a		l		a		n		c		e		r

app1 app2 app3 app4

nginx1 nginx2 nginx3 nginx4

backend

Zone	1 Zone	2



Orchestrator	HA

Might	I	have	more	than	one	orchestrator	cluster?
• Yes	for	active	development

• as	a	side-effect	gives	us	extra	redundancy
• Development	load	is	too	small	to	catch	many	issues
• Recoveries	disabled	globally on	this	cluster	but	monitoring	works	the	same

• Compliance	regulations	may	require	segregation	of	different	networks

29



Orchestrator	HA

Solution
• Move	from	using	orchestrator	binary	to	use	cluster	API	interface

• Recently	migrated	to	use	new	orchestrator-client	command	which	solves	the	
same	problem	and	was	needed	for	orchestrator/raft	access

• Simplifies	configuration
• Allows	easy	access	to	more	then	one	orchestrator	cluster
• Orchestrator	upgrades	with	db backend	changes	are	easier

30



Orchestrator	API

Enhancements	to	API	calls
• Bulk	retrieval	of	instance	information	and	promotion	rules
• Asynchronous	discovery	call	(e.g.	bootstrap	new	cluster)
• More	monitoring	information	available

• Discovery	timing	metrics
• Discovery	queue	metrics
• Backend	write	metrics

31



Special	Cases

• Testing	MySQL	8.0	or	MariaDB 10.3?
• “Let’s	not	promote	to	this	box”
• Same	applies	while	testing	new	minor	versions	of	course

• Some	topologies	have	slaves	with	aggregate	data
• Do	not treat	them	as	a	normal	box	– should	not be	candidate	masters

• Orchestrator	can	not	handle	GR	or	multi-source	replication	yet
• Best		to	avoid these	boxes	(for	automatic	failover)	until	we	have	solutions
• Patches	welcome	to	solve	such	missing	functionality

32



Special	Cases

Handling	TLS	connections
• Orchestrator	could	handle	using	TLS	or	not	using	it	but	…
• Some	servers	need	to	be	accessed	by	TLS,	others	don’t	(ODBC	access	
or	more	security	sensitive systems)

• Orchestrator	could	not	handle	this
• Code	added	to	recognise error	and	automatically	switch	to	TLS:

• Error 3159: Connections using insecure transport are prohibited while --
require_secure_transport=ON

• Global	OFF button	– gives	you	peace	of	mind

33



Provide	Wider	User	Access

• Orchestrator	fan	club
• Different	groups	of	users	like	orchestrator
• DBAs,	Developers,	Sysadmins,	Auditors,	Managers

• Use	nginx (or	similar)
• Provides	authentication
• Provides	TLS
• The	combination	can	be	used	with	unix groups	to	allow	user or	admin access	
to	orchestrator

• Combined	with	a	load	balancer	provides	easy	access	for	users	and	
also	for	applications	(using	api calls)

34



Monitoring

Some	things	to	monitor
• Orchestrator	process	(and	nginx)
• Orchestrator	cluster	endpoint
• Successful	or	failed	Discoveries	per	minute
• Discovery	queue	sizes
• Discovery	timings

• aggregate	data	gives	mean,	median	and	percentiles
• Discoveries	exceeding	InstancePollSeconds
• When	changing	active	orchestrator	node	these	values	may change

35



Booking.com contributions

Commits	to	public	orchestrator	repo
• Simon:	170
• Dmitry:	40
• Mauro:	15
• Daniël:	8
• Shlomi:	many	(while	working	at	booking)

36



Using	orchestrator	at	smaller	scale

37



Using	orchestrator	at	smaller	scale

Not	mentioned	here	but
• Consider	use	of	Sqlite – good	starting	point	– single	binary
• Consider	use	of	Sqlite/raft

• provides	HA
• all	nodesmonitor	all	MySQL	servers

• Only	difference	is	the	db backend
• Not	sure	where	scaling	limits

38



Configuration	settings

Settings	to	be	considered,	broken	down	by	function

39



Configuration	settings

• MySQL	backend
• "MySQLOrchestratorCredentialsConfigFile":	"/path/.my-orchestratordb.cnf"
• "MySQLOrchestratorDatabase":	"orchestrator”
• "MySQLOrchestratorHost":	"orchestratordb.example.com"
• "MySQLOrchestratorPort":	3306
• "MySQLOrchestratorMaxPoolConnections":	100
• "MySQLConnectTimeoutSeconds":	1

• Sqlite backend
• "BackendDB":	"sqlite”
• "SQLite3DataFile":	"/var/lib/orchestrator/orchestrator.db"

40



Configuration	settings

• Psuedo-GTID	Settings	(if	using	pseudo-gtid)
• PseudoGTIDPattern
• PseudoGTIDMonotonicHint
• DetectPseudoGTIDQuery

41



Configuration	settings

• Cluster	and	host	settings
• Query	metadata	db (populated	externally)	to	detect	clusters
• DetectClusterAliasQuery
• DetectClusterDomainQuery

42



Configuration	settings

• Recovery	settings
• Regexp filters	– very	site	dependent
• RecoverMasterClusterFilters – white-list	masters	by	cluster	name
• RecoverIntermediateMasterClusterFilters
• PromotionIgnoreHostnameFilters – ignore	servers	from	being	promoted*
• RecoveryIgnoreHostnameFilters – ignore	special	servers	from	recovery

43
*	Does	not	scale	well



Configuration	settings

• Failover	settings
• OnFailureDetectionProcesses – what	to	do	when	a	failure	is	detected
• PreFailoverProcesses – what	to	do	prior	to	starting	recovery
• PostFailoverProcesses – what	to	do	after	completing	recovery
• PostUnsuccessfulFailoverProcesses – what	to	do	if	recovery	fails
• PostMasterFailoverProcesses – what	to	do	after	IM	recovery
• PostIntermediateMasterFailoverProcesses – what	to	do	after	Master	recovery

44



Configuration	settings

• Authentication	settings	(e.g.	if	using	nginx with	LDAP)
• "AuthenticationMethod":	"proxy",	
• "HTTPAuthUser":	”user1",	
• "HTTPAuthPassword":	”pass1",
• "AuthUserHeader":	”SomeHeader",	
• “PowerAuthUsers":	[	"api-user1",	"api-user2",	”realuser1"	]
• PowerAuthGroups":	[	”special_sysadmins”,	“dbas”	],

45
*	Does	not	scale	well



Configuration	settings

• Environment	settings	(e.g.	shorten/simplify	hostnames)
• “DataCenterPattern”
• “PhysicalEnvironmentPattern”:
• “RemoveTextFromHostnameDisplay”:	“:.example.com:3306”

46



Way	Forward

47



Way	Forward

• Improvements	needed	to	tackle	problems	at	both	ends	of	the	scale
• Smaller	installations	– for	getting	on	board
• Larger	installations	– to	allow	for	further	scaling

48



Way	Forward

• Simplify	configuration	and	entry	to	orchestrator
• Shlomi is	doing	a	very	good	job	with	sqlite and	raft	setups
• Configuration	could	be	simpler	and	more	automatic	for	most	people
• Need	to	standardise orchestrator	setups	more?

• Extend	functionality	to	cover	more	of	the	MySQL	eco-system
• AWS	and	other	cloud	systems
• Group	Replication	or	Galera
• Multi-source

49



Way	Forward

• Distribution	of	discoveries	amongst	all	orchestrator	nodes
• Orchestrator/raft:	all	nodes	monitor	all	MySQL	servers

• Raft	usage	recommends	having	several	nodes
• Orchestrator/MySQL:	one	node	monitors	all	MySQL	servers
• Better:	distribute	monitoring	amongst	available	nodes

• Avoids	unnecessary	load	on	monitored	servers
• reduces	work	on	busy	orchestrator	apps
• Useful	for	small	and	large	installations

• efficient	balancing	is	harder

50



Way	Forward

• Reduce	recovery	time
• Speeding	up	detection	to	recovery	time would	be	good	as	reduces	downtime
• Should	be	possible	to	react	to	failure	event	(knowing	state	of	other	servers)	
immediately

• state	currently	stored	in	backend	db
• analysis	and	detection	phase	happens	independently	of	server	polling	

• With	reduced	default	poll	time	of	5	seconds	recovery	is	likely	to	be	triggered
within	10	seconds

• not	critical	for	most	people?

51



Way	Forward

• Further	work	needed	to	scale	more
• bottlenecks	still	exist
• Larger	installations	keep	growing

• Improve	monitoring
• External	API	calls
• Add	internal	metrics

52



Conclusion

53



Does	it	work?

I	checked	for	failures	over	a	recent	period
• 6	master	failures
• About	40	intermediate	master	failures
• No-one	called	up
• No	harm	was	done

54



Questions?



Thanks

Simon J Mudd
simon.mudd@booking.com


