
Cloud Native Applications

主讲人：Capital One 首席工程师 Kevin Hoffman 



Agenda

● Define Cloud Native

● Cloud Native practices and the “15 factors”

● From Monoliths to the Cloud

● Q&A



What is Cloud Native?

● Contract between application and infrastructure

● Designed to scale elastically and horizontally

● No host dependencies

● Application conforms to the “12 (or 15) factors”

● Container-based*



Team Discipline

● Structure around rapid, continuous delivery

● Embrace agility

● Embrace the cloud

● Adopt practices aimed at thriving on cloud platforms

云道



The Way of the Cloud

● Favor Simplicity

● Test First, Test Everything

● Release Early, Release Often

● Automate Everything

● Build Ecosystems, not Monoliths

云道



15 Factors of Cloud Native

● Based on Heroku’s original “12 factor” list (12factor.net)

● Characteristics of a cloud native application

● Some easier to adopt than others

● Adopting all factors pays huge dividends

十五个因素



One codebase, One App

● Single version-controlled codebase, many deploys

● Multiple apps should not share code

○ Microservices need separate release schedules

○ Upgrade, deploy one without impacting others

● Tie build and deploy pipelines to single codebase

第一



API First

● Service ecosystem requires a contract

○ Public API

● Multiple teams on different schedules

○ Code to contract/API, not code dependencies

● Use well-documented contract standards

○ Protobuf IDL, Swagger, Apiary, etc

● API First != REST First

○ RPC can be more appropriate in some situations

第二



Dependency Management

● Explicitly declare dependencies

● Include all dependencies with app release

● Create immutable build artifact (e.g. docker image)

● Rely on smallest docker image

○ Base on scratch if possible

● App cannot rely on host for system tools or libraries

第三



Design, Build, Release, Run

● Design part of iterative cycle

○ Agile doesn’t mean random or undesigned

● Mature CI/CD pipeline and teams

○ Design to production in days not months

● Build creates immutable artifact

● Release automatically deploys to environment

○ Environment contains config, not release artifact

第四



Configuration, Credentials, Code

● “3 Cs” volatile substances that explode when combined

● Password in a config file is as bad as password in code

● App must accept “3 Cs” from environment and only use 

harmless defaults

● Test - could you expose code on github and not reveal 

passwords, URLs, credentials?

第五



Logs

● Emit formatted logs to stdout

● Code should not know about destination or purpose of log emissions

● Use downstream log aggregator

○ collect, store, process, expose logs

○ ELK, Splunk, Sumo, etc

● Use structured logs to allow query and analysis

○ JSON, csv, K=V, etc

● Logs are not metrics

第六



Disposability

● App must start as quickly as possible

● App must stop quickly and gracefully

● Processes start and stop all the time in the cloud

● Every scale up/down disposes of processes

○ Slow dispose == slow scale

● Slow dispose or startup can cause availability gaps

第七



Backing Services

● Assume all resources supplied by backing services

● Cannot assume mutable file system

○ “Disk as a Service” (e.g. S3, virtual mounts, etc)

● Every backing service is bound resource

○ URL, credentials, etc -> environment config

● Host does not satisfy NFRs

○ Backing services and cloud infrastructure

第八



Environment Parity

● “Works on my machine”

○ Cloud-native anti-pattern. Must work everywhere*

● Every commit is candidate for deployment

● Automated acceptance tests

○ Provide no confidence if environments don’t match

第九



Administrative Processes

● Database migrations

● Run-once scripts or jobs

● Avoid using for batch operations, consider instead:

○ Event sourcing

○ Schedulers

○ Triggers from queues, etc

○ Lambdas/functions

第十



Port Binding

● In cloud, infrastructure determines port

● App must accept port assigned by platform

● Containers have internal/external ports

○ App design must embrace this

● Never use reserved ports

● Beware of container “host mode” networking

第十一



Stateless Processes

● What is stateless?

● Long-term state handled by a backing service

● In-memory state lives only as long as request

● Requests from same client routed to different instances

○ “Sticky sessions” cloud native anti-pattern

第十二



Concurrency

● Scale horizontally using the process model

● Build disposable, stateless, share-nothing processes

● Avoid adding CPU/RAM to increase scale/throughput

● Where possible, let platform/libraries do threading
○ Many single-threaded svcs > 1 multi-threaded monolith

第十三



Telemetry 第十四

● Monitor apps in the cloud like satellite in orbit

● No tether, no live debugger

● Application Perf Monitoring (APM)

● Domain Telemetry

● Health and system logs



Authentication & Authorization

● Security should never be an afterthought

● Auth should be explicit, documented decision

○ Even if anonymous access is allowed

○ Don’t allow anonymous access 😄

● Bearer tokens/OAuth/OIDC best practices

● Audit all attempts to access

第十五



Migrating Monoliths to the Cloud

● Make a rule - stop adding to the monolith

○ All new code must be cloud native

● Prioritize features

○ Where will you get most benefit from cloud native?

● Come up with a plan

○ Decompose monolith over time

○ Fast, agile iterations toward ultimate goal

● Use multiple strategies and patterns



Monolith Migration - “Lift and Shift”



Monolith Migration - Isolate and Break



Monolith Migration - Event Sourcing



Cloud Native Go

● Lightweight

● Easily learning curve

● Compiles to native binaries

● Very fast

● Large, thriving, engaged community

○ http://gopherize.me



Questions 问题



THANKS


