Future-proofing BI: an unexpected journey to leverage **'In-Chip'** analytics in IoT and AI

Ani Manian

E

Head of Product Strategy

SIMPLIFYING Business Analytics for COMPLEX Data

"The key strength of Sisense is the platform's capability to **easily handle and manage** large and diverse datasets, and analyze them in dashboards based on its proprietary In-Chip technology."

- Gartner Magic Quadrant

WHAT DO FIVE DATA GEEK STUDENTS DREAM ABOUT?

WELL, BELIEVING THEY'RE BADASS... THEY'RE DREAMING OF...

IN ORDER TO UNDERSTAND IN-CHIP ANALYTICS

LET'S ASSUME THAT:

MEMORY HIERARCHY IN MODERN CPUS

SO, WHY SHOULD WE EVEN CARE?

Slowdown when fetching new data to the CPU

L2 Cache	L3 Cache	Main Memory
x3 Slowdown	x10 Slowdown	x50 ^{Up to} slowdown
	ZZZZZ	<u> XXXX</u> X
		<u> XXXX</u> X
		ZZZZ

MEMORY BANDWIDTH

If data equals beer then data storage units equal all the places beer is kept!

THERE SHOULD HAVE BEEN A SLIDE HERE..

(it's the beer's fault...)

How does Sisense overcome the **memory bottleneck**?

60

E

QU)

63

HOW DOES SISENSE OVERCOME THE MEMORY BOTTLENECK?

VECTORIZATION

SISENS

JIT LLVM & SIMD

60

00

E

VECTORIZATION & CACHE AWARENESS

ISENSE | Talking data

L1 Cache

JIT LLVM COMPILATION WITH SIMD SUPPORT

"SIMD" (Single Instruction, Multiple Data) is the process of rewriting a loop so that instead of processing a single element of an array N times, it processes (say) 4 elements of the array simultaneously N/4 times.

int f {int a, int b){

- **SELECT** $(f_1 = "beer1" \text{ OR } f_1 = "beer2") \text{ AND}$
- **FROM** T1 (f2 = "customer1" **OR** f2 = "customer2") **AND**
- **WHERE** (f3 = "1" OR f3 = "2" **OR** f3 = "3") **AND**

(f4>"10" **OR** f4 = "0" **OR** f4 = "1")

Field Vector = Value

Mask Vector = True / False

NEXT: PERFORMANCE TUNING FOR MANY USERS

HOW CAN YOU DELAY USING THESE OPTIONS?

PROBLEM: THE WAITING LINE TO QUERY DATA

The queue means a user wait is extended by each user in front of them

0000

SECONDS

USERS

QUERY'S BUILDING BLOCKS: THE INSTRUCTION SETS

CROWD SPEED: MACHINE LEARNING ARCHITECTURE

Store each 'query part' and learn

Build new queries with matching parts to boost performance

QUERY EXECUTION SPEED

RE-USE REPEATING INSTRUCTION SETS ACROSS QUERIES

New Query

Already calculated units sold Already calculated units sold & Monthly breakdown of units

□ No match

Match found

MACHINE LEARNING BI

With Machine Learning BI, analytics get faster even when queries are not identical. The more questions you throw at it - the more efficient it gets! **More users = more queries = faster results**

IN-CHIP = POWER + MACHINE LEARNING

- Leverage the unique in-chip cache memory to perform faster than in-memory
 - Without the limitation of having to load the entire model into RAM
- In-Chip recognizes the CPU specs and applies its unique code to organize the query data in the CPU
 - When needed again, that piece of data exists in the CPU cache, which is much faster than RAM
- In-Chip machine-learns to fetch the associated compressed result sets in advance
 - Sub-query results **pre-loaded into L1 cache** as compressed data
- Decompressed images of that same data can be moved to the larger, but slower, L2 and L3 caches
 - **Decompression operations** (read from and write to cache) **are extremely fast**

IN-CHIP TECHNOLOGY

EMPOWERING GROWTH, ANYWHERE, EVERYWHERE, ON AFFORDABLE HW

BENCHMARK SETTINGS

Dataset: 120M rows 28GB

8 Analytical queries X 50 cycles

- Aggregations
- Grouping
- Top Ranking
- Large intermediate results

IN-CHIP BI BENCHMARK

SPEED! STRATA AWARD

Analyzing 10TB of data in 10 seconds

On a single node on a standard Dell Server

REVOLUTION: SCALE-OUT VS IN-CHIP

Architecture

Users Use Cases Interface Time to Implement Available Resources

Outcome

Scale-Out

Data Scientists, IT, Developers ETL, Batch Reports, Machine Learning JAVA, R, C, SQL Long Big

Big Data Infrastructure

In-Chip

Business Users Ad-Hoc Analytics Interactive Dashboards, SQL Short Small

> Agile Big Data Analytics

SISENSE | Talking data

SO...WHAT IS IT GOOD FOR?

FROM COMPLEXITY

TO SIMPLICITY

TECHNOLOGY HAS NO MEANING IF IT HAS NO IMPACT ON HUMAN LIFE

"If a tree falls in a forest and no one is around to hear it, does it make a sound?"

OVERHYPE OF BUZZWORDS

THE PERSONAL, INTELLIGENT AND CONTEXTUAL WEB

THE INTERNET OF ME

TRANSFORMATION OF BIG DATA ANALYTICS FOR IOM

WE ARE ALL UNIQUE

THE NEXT REALM OF BUSINESS ANALYTICS

- Analyzing data no longer requires being anchored to a screen
- Sisense Everywhere devices broadcast business KPIs to all the senses
- Making consumption of insights immediate and simple.

HOW IT ALL STARTED

The relationship between business professionals and their KPIs

(We asked hundreds of business professionals how they interact with their data and KPIs)

e

ALMOST HALF OF ALL RESPONDENTS CHECK KPIS DAILY

83% OF RESPONDENTS USE OR WANT TO USE COLOR CODING

VISUAL ALERTS ARE THE MOST EFFECTIVE, ACCORDING TO MORE THAN HALF OF RESPONDENTS

Which type of alert is best in driving you to action?

ACCORDING TO RESPONDENTS THE FUTURE OF BI CONSUMPTION **IS EVERYWHERE**

Revolutionizing The Way Business Users Consume Data

IMAGINE A SISENSE WORLD

Imagine you're driving to work and can ask your voiceoperated BI assistant: "What is my sales target for today?"

23

88

IMAGINE A SISENSE WORLD

Imagine being able to focus your entire team on improving customer satisfaction just by having them glance at the Sisense IoT bulb, **green** means on target and **red** means take action.

IMAGINE A SISENSE WORLD

Imagine stepping into a conference room for a quarterly business review and experiencing your data insights hovering around you.

SISENSE BRINGS IMAGINATION TO LIFE

Sisense-Enabled is a new line of devices that present data unlike any dashboard environment

SISENSE ENABLED ECHO

RESPOND TO CHANGES IN REAL-TIME

"I think I find it easier to relate to color and sound than a dashboard. I have seen a change in my behavior using these tools, specifically around time to react understand when something is changing and going to look at metrics to find out why."

act|on

REDEFINING HOW WE INTERACT WITH DATA

"When I see that bulb change, I get a real sense of satisfaction. It's provided a direct way for us to see how data is changing. The bulb gives me peace of mind because I can see a light change rather than monitoring a screen."

LIVE CLOSER TO YOUR DATA

"Bulb is the KPI that you don't need to load up on one of your screen, it's not just another browser window. It's this physical piece that's simply part of your life. It's a simple product with a powerful way of telling you whether things are going well."

Skullcandy

SIMPLIFYING COMPLEX DATA CONSUMPTION

MAINTAIN FOCUS

Keep teams focused on a common goal and in touch with your business.

GAIN CONSTANT VISIBILITY

Know what's happening, wherever you are, in an instant.

STAY CONNECTED

Keep your finger on the pulse and act on what's important.

THE FUTURE OF ENHANCED HUMANISM

TalkingData