
TiDB Theory and Practice

liuqi@pingcap.com



• Qi	Liu	(刘奇)

• Co-founder	&	CEO	of	PingCAP

• JD/Wandoulabs

• Infrastructure	software	engineer	/	Open	source	hacker

• Codis /	TiDB /	TiKV

Who am I



• NewSQL database	inspired	by	Google	Spanner	/	F1

• Open	source,	of	course

https://github.com/pingcap/tidb

What’s TiDB



• TiDB

– Open	source	for	1+	years

– 5300+	stars

– 58+	people

– 4000+	commits

– 31	meetups

– Alpha	→	Beta	→	RC1

What’s new at the end of 2016



• Game	companies	need	new	technology

• Internet	companies

• Other	traditional	companies

What surprises me?



First,	I	want	to	ask	one	question:

Why TiDB?

How to scale your MySQL database? 



• No	more:
– splitting	DB/Table

– choosing	sharding keys

– workarounds	for	cross-shard	transaction	support

– inconsistent	data

– waking	up	at	midnight	to	do	DDL	or	re-shard	:)

– slow	queries	that	can’t	scale

Why TiDB?



MySQL	grammar	and	protocol	compatibility	

Complex	query	support:	Join	/	Subquery	/	Group	By	/	…	

ACID	Transaction

Elastic	scaling

Auto-failover

Why TiDB?



Patterns.
All	come	from	real	user	cases.



• At	first,	you	got	a	MySQL	and	one	application	server.

Pattern 1: 100x MySQL 

Application	Server



• And	then,	workload	continuously	increases.	

Pattern 1: 100x MySQL 

Application	Server

Application	Server



• And	then,	workload	continuously	increases.	

Pattern 1: 100x MySQL 

Application	Server

Application	Server

Application	Server



• To	cope	with	the	continuously	increasing	workload,	
you	add	more	and	more	application	servers.	

Pattern 1: 100x MySQL 

Application	Server

Application	Server

Application	Server

Application	Server



• One	day,	shit	happens.

Pattern 1: 100x MySQL 

Application	Server

Application	Server

Application	Server

Application	Server



Pattern 1: 100x MySQL 

Application	Server

Application	Server

Application	Server

Application	Server

Application	Server Application	Server



Pattern 1: 100x MySQL 

Application	Server

Application	Server

Application	Server

Application	Server

Application	Server Application	Server



Pattern 1: 100x MySQL 

Application	Server

Application	Server

Application	Server

Application	Server

Application	Server Application	Server



Pattern 1: 100x MySQL 

Application	Server

Application	Server

Application	Server

Application	Server

Application	Server Application	Server



Pattern 1: 100x MySQL 

• TiDB supports	elastic	scaling.

• Adding	more	machines,	TiDB will	

rebalance	the	load	and	data.

• Thanks	to	the	Raft	consensus	

algorithm.

Remember	that,	as	your	business	grows	
rapidly,	you	don’t	want	to	waste	time	on	
refactoring	your	code...	

Manual	
sharding



Pattern 1: 100x MySQL

Scale	without	changing	a	single	line	of	code.



Pattern 2: Real-time backup

Old	days:

Master

Slave

Master

Slave

Master

Slave



Pattern 2: Real-time backup

Now:

Slave	cluster

Master Master MasterMaster Master

syncer syncer syncer syncersyncer



Pattern 3: Read/Write splitting

• Write	to	MySQL,	Read	on	TiDB

Master

Write	workload	

Read	workload

syncer



Pattern 4: Ad-Hoc OLAP

TiDB	Elapse MySQL	Elapse

5.07699437s 19.93s

10.524703077s 43.23s

10.077812714s 43.33s

10.285957629s >20	mins

10.462306097s 36.81s

9.968078965s 1	min	0.27	sec

9.998030375s 44.05s

10.866549284s 43.18s

• Why	MySQL?

• Why	MySQL	sucks?



Tools	matter.
Make	miracles	happen



• MySQL	row-based	binlog parser	and	real-time	data	

synchronization	to	any	point	which	is	compatible	

with	MySQL	protocol,	like	MySQL,	TiDB.

• Auto	reconnection,	high	concurrent	and	savepoint

support.

• For	more	information,	see syncer.

syncer



syncer

MySQL
(master)

Syncer

Save	Point
(disk)

Rule	Filter

MySQL

TiDB	Cluster

TiDB	Cluster

TiDB	Cluster

SyncerSyncerbinlog

Fake	slave

Syncer



● Collect	TiDB's binlogs for	quasi	real-time	data	
backup	and	synchronization.	Of	course,	it’s	
distributed.

● Self-description,	support	syncing	from	any	point

● Awesome	tool	for	production	with	
mydumper/myloader.

TiDB binlog



TiDB binlog



TiDB binlog

• pump

Pump is a daemon that receives real-time binlog from tidb-server 
and writes in sequential disk files synchronously.

• cistern

Cistern collects binlog from each pump in cluster, and stores them 
on disk in order of commitTS.

• drainer

Drainer transforms binlog to various dialects of SQL, and applies 
to downstream database or filesystem. (Not only MySQL :) ) 



• Pros:

– Multithread/Fast

– Not	LSM	engine	friendly

• Cons:

– Lacks	of	retry	logic.

mydumper / myloader



Reliable

More	friendly	to	LSM	engine

The reason we rewrite myloader with go



Work	with	Spark.

More	raw	KV	interfaces：get/set/cas

More	and	more	documents

Community matter



Thanks

Project	Repo:

https://github.com/pingcap/tidb

https://github.com/pingcap/tikv

Documents:

https://github.com/pingcap/docs English

https://github.com/pingcap/docs-cn 简体中文

TiDB 交流群


