
Kubernetes 1.3 +

Caicloud 邓德源

Kubernetes overview

● Basic Unit: Pod, Node, Volume, Labels, Endpoint, Binding,etc

● Aggregation: ReplicaSet, DaemonSet, PetSet, Deployment,etc

● Control loop: kube-proxy, scheduler, replica controller,etc

Kubernetes overview

Kubernetes 1.3+

- Infrastructure support for diverse application workloads
- E.g. Legacy application, Stateful application, etc

- Enhanced cluster management policies andtoolchains
- E.g. Federation, Network policy, etc

- Performance and Performance
- E.g. Protocol buffer serialization, etcd 3, etc

Diverse
workloads

● Init Container
● PetSet
● Scheduled Job
● Disruption budget

Init container - alpha

Goal: Perform tasks before normal containers

1

2

A B

Pod

Init Containers

Regular Containers

Behavior:

● Init containers run insequence
● One failed container fails entire pod
● Regular containers wait until all init containers complete

Use Cases:

● Dependency, Self-registration, Volume initialization, Decouple from application images,etc

Init container apiVersion: v1
kind: Pod
metadata:
name: nginx
annotations:
pod.alpha.kubernetes.io/init-containers: '[

{
"name": "install",
"image": "busybox",
"command": ["wget", "-O", "/work-dir/index.html", "http:

//kubernetes.io/index.html"],
"volumeMounts": [

{
"name": "workdir",
"mountPath": "/work-dir"

}
]

}
]'spec:

containers:
- name: nginx
image: nginx
ports:
- containerPort: 80

alpha

Spec:
initContainers:
- name: install
Image: busybox
command: ["wget", "-O", "/work-dir/index.html", "http:

//kubernetes.io/index.html"]
volumeMounts:
- name: workdir
- mountPath: “/work-dir”

containers:
- name: nginx
image: nginx
ports:
- containerPort: 80

stable

Init container

● Discussion Points
○ Pod status?
○ Health check?
○ Resources and QoS?
○ Update to init container?

PetSet - alpha

● Goal: Support stateful/clustered application which requires stronger identity

● Three identities:
○ Name (index)
○ Network
○ Storage

● Use cases:
○ Quorums with leader election: zookeeper, etcd
○ Decentralized Quorums: Cassandra
○ Databases like MySQL

PetSet

●

● Network identity
○ Stable hostname across cluster, across podrestart

○ Stable domain name using headlessservice

0
Name (index)
$ kubectl getpods

1

NAME READY STATUS RESTARTS AGE
web-m63f0 1/1 Running 0 1d
Web-a29s4 1/1 Running 0 1d 0 1

$ kubectl getpods
NAME READY STATUS RESTARTS AGE
web-0 1/1 Running 0 1d
web-1 1/1 Running 0 1d 0 1

web-1.nginx.default.svc.cluster.local

PetSet

● Network identity Cont.

apiVersion: apps/v1alpha1
kind: PetSet
metadata:
name: web
spec:
serviceName: "nginx"
replicas: 2
template:
metadata:
labels:

app: nginx
annotations:
pod.alpha.kubernetes.io/initialized: "true"

spec:
containers:
- name: nginx
Image: nginx-slim:0.7

PetSet Controller

Node

hostname: web-0
subdomain: nginx

0

Node

1

PetSet

● Network identity Cont.

apiVersion: v1
kind: Service
metadata:
name: nginx
labels:

app: nginx
spec:
ports:
- port: 80
name: web

*.nginx.default.svc.cluster.local
clusterIP: None
selector:
app: nginx

KubeDNS
Endpoint Controller

Name: web-0.nginx.default.svc.cluster.local
Address: 10.244.2.5

Name: web-1.nginx.default.svc.cluster.local
Address: 10.244.3.4

Name: nginx.default.svc.cluster.local
Address: 10.244.3.4
Name: nginx.default.svc.cluster.local
Address: 10.244.2.5

Node

hostname: web-0
subdomain: nginx

0

Node

1

PetSet

● Storage identity
○ Each pet has its own persistent volumes

apiVersion: apps/v1alpha1
kind: PetSet
metadata:
name: web
spec:
template:

spec:
containers:
-name: nginx
image: nginx-slim:0.7
volumeMounts:
-name: www
mountPath: /usr/share/nginx/html

volumeClaimTemplates:
-metadata:
name: www
spec:
accessModes: ["ReadWriteOnce"]
resources:
requests:
storage: 1Gi

PetSet Controller

Ask k8s
for PV!

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
name: myclaim
spec:
accessModes:

-ReadWriteOnce
resources:
requests:

storage: 1Gi

PetSet

● Storage identity Cont.

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
name: myclaim
spec:
accessModes:

-ReadWriteOnce
resources:
requests:

storage: 1GiPV Controller
Attach/Detach Controller

0

Node

Attach/Detach Controller
1

Node
kubelet

PetSet

● Peer discovery
○ Query kubernetes api-server

○ Query DNS SRV records

● Important issues
○ Local storage

○ Public network identities

○ Pet upgrade

○ and more

Scheduled Job - 1.3+

● Goal:
○ Run Jobs at a given time
○ Run Jobs periodically at given time points

● Cron for thecluster
○ Use standard cron syntax

● Example:
○ kubectl run cleanup -image=cleanup --runAt="0 1 0 0 *" -- /scripts/cleanup.sh

Disruption Budget - 1.3+

● Guard against infrastructure initiated disruptions
○ Not unplanned, not self-inflicting problems

● Declarative policy around disruptions app will tolerate
apiVersion: policy/v1alpha1
kind: PodDisruptionBudget
metadata:
name: web

spec:
minAvailable: 3
selector:

app: nginx
status:
disruptionAllowed: true
currentHealthy: 4
desiredHealthy: 3
expectedPods: 5

Disruption Controller

● List allPodDisruptionBudget
● List all podsmanaged via RC/RS/Deployment
● Update PodDisruptionBudget.status

Disruption Budget - 1.3+

● Related topics:
○ Rescheduling: move pods around

■ How pod specify its tolerance for disruptions

■ Where and how is the decision made

○ Node eviction

■ Evict pods from overloaded nodes to preserve stability

■ More on later section

○ QoS and Priority
■ Low QoS app but strict tolerance? Quota and Admission Control !

Enhanced
Cluster

Management

● Cascading Deletion
● Kubelet/Node Eviction
● Network Policy

Cascading Deletion - alpha

● Server side cleanup of all resources

● Example:

● Delete Deployment results in orphaned ReplicaSet

● Delete Deployment and ReplicaSet results in orphaned Pods

● Delete Service won’t touch Pods

Deployment

ReplicaSet

Pod Pod

Service

Cascading Deletion

● Client side: reaper

● Server side: garbage collection

Garbage collector
Controller

Pod

Service

Job

…...

One store for each resource,
e.g Pod, ConfigMap

Deployment

ReplicaSet

Pod Pod

Service

Event Queue

DirtyQueue Orphan Queue

Propagator

list of owners whose
dependents will be orphanedlist of objects to gc (or not)

Kubelet/Node Eviction - opt-in

● Proactively evict pods from overloaded nodes to preserve stability

● Current
○ Memory: OOMkiller
○ Disk: Image/container GC

● Desired
○ Memory

■ memory.available
■ soft vs hard

○ Disk
■
■

nodefs.available, nodefs.inodesFree, imagefs.available, imagefs.inodesFree
soft vs hard

Kubelet/Node Eviction

● Policy
○ Low QoS pod first

○ Pod use most of its requested resources

● Problems?
○ Repeatedly schedule back

○ Oscillation

○ DaemonSet, Host Pin

○ Repeatedly reclaim for small resources

Network Policy - beta

● Define rules controlling podtraffic

● Expose only certain pods, andports

● Implementation leaves to networkvendors

apiVersion: extensions/v1beta1
kind: NetworkPolicy
metadata:
name: test-network-policy
spec:
podSelector:
matchLabels:
role: db
ingress:
- from:
podSelector:
matchLabels:
role: frontend
ports:
-protocol: tcp
port: 6379

frontend frontend

db

others

6379

External LB

Federation - beta

● Motivation
○ High-availability
○ CloudBursting
○ Avoid vendor lockin
○ Sensitive workflow

● Requirement
○ Location affinity
○ Cross-cluster scheduling
○ Cross-cluster service discovery
○ Cross-cluster monitoring and auditing
○ Cross-cluster load balancing
○ Application migration

Federation

● Federation-lite
○ kubernetes cluster nodes can span differentzones
○ scheduler: take zone into consideration
○ kube-proxy: make sure packets do not bounce back and forth between different zone
○ volumes: add zone info label to volume
○ nodes: add zone info label to nodes

● Federation
○ A central control panel

■ scheduler, cluster controller, etc
○ Stock, dum kubernetes cluster

Performance
● etcd v3
● Protobuf serialization
● Controller shared caches
● Watch throughput optimization
● More

Performance

● Increased number of nodes
100 nodes > 250 nodes > 1000 nodes -> 2000 nodes

● Increased number of pods
30 pods per node >40 pods per node > 100 pods per node ->60000 pods

Performance

● etcd3 (sock testing)
○ https://coreos.com/blog/etcd3-a-new-etcd.html

● Protobuf serialization
○ The binary serialization for most API objects

○ For inter-component communication

○ 5 - 10x performance boost (compared to JSON)

● A lot others
○ Cluster shared cache

○ Watch throughput optimization

○ etc

Thank you!

