

ASYNCHRONOUS PROGRAMMING IN
SWIFT

@GUANSHANLIU SWIFTCON CHINA 2016

ABOUT ME

> Guanshan Liu
> Senior iOS Developer at Alibaba Music

> Twitter: @guanshanliu
> Medium: @guanshanliu

> Organizer of CocoaHeads Shanghai
Meetup

https://twitter.com/guanshanliu
https://medium.com/@guanshanliu/
http://www.meetup.com/CocoaHeads-Shanghai/
http://www.meetup.com/CocoaHeads-Shanghai/

http://www.meetup.com/CocoaHeads-Shanghai/

http://www.meetup.com/CocoaHeads-Shanghai/

SCHEDULE

1. Reality
2. Demo

3. Traditional / Reactive

4. The Future

REALITY

APPLE

Swift 3.0 relies entirely on platform concurrency
primitives (libdispatch, Foundation, pthreads, etc.) for

concurrency. Language support for concurrency is an
often-requested and potentially high-value feature, but

is too large to be in scope for Swift 3.0.

Swift Thread Safety

https://github.com/apple/swift/blob/master/docs/proposals/Concurrency.rst

GRAND CENTRAL
DISPATCH

GCD FOR SHORT, A LOW-LEVEL C API

 SOMEONE MAY THINK
ASYNCHRONOUS PROGRAMMING WITH GCD IS EASY

dispatch_async(utilityQueue) {
 // Download image
 dispatch_async(mainQueue, {
 // Update UI
 })
}

THE CALLBACK HELL
dispatch_async(utilityQueue) {
 // Download image
 dispatch_async(mainQueue, {
 // Update UI
 dispatch_async(utilityQueue) {
 // Cache image
 }
 })
}

THE CALLBACK HELL
> Difficult to read

> Difficult to maintain
> Synchronization is painful

WHAT IS HARD IN ASYNCHRONOUS PROGRAMMING?

SYNCHRONIZATION

// Bad solution
dispatch_async(firstQueue) {
 dispatch_sync(secondQueue) {
 // Code requiring both queues, may risk dead-lock
 }
}

EXAMPLE FROM JUSTIN SPAHR-SUMMERS

https://gist.github.com/jspahrsummers/dbd861d425d783bd2e5a

// Good solution
let concurrentQueue = dispatch_queue_create("concurrent",
 DISPATCH_QUEUE_CONCURRENT)
dispatch_set_target_queue(firstQueue, concurrentQueue)
dispatch_set_target_queue(secondQueue, concurrentQueue)
dispatch_barrier_async(concurrentQueue) {
 // Code requiring both queues
}

EXAMPLE FROM JUSTIN SPAHR-SUMMERS

https://gist.github.com/jspahrsummers/dbd861d425d783bd2e5a

NSOperation
NSOperationQueue

AN OBJECTIVE-C API ON TOP OF GRAND CENTRAL DISPATCH

NSOperation & NSOperationQueue
> Dependencies

> Observe the state using KVO

> More Controls:
maxConcurrentOperationCount

ERRORS HANDLING IN

ASYNCHRONOUS SCENARIOS

1. Apple uses completion handlers to handle errors in

asynchronous scenarios.
2. Apple's use of completion handlers is they are always

called.
3. Completion handlers are called either with a result or

an error.

enum Result<T> {
 case Success(T)
 case Failure(ErrorType)
}

1. No guarantee that an asynchronous function always

calls a callback
2. No guarantee that an asynchronous function only

calls a callback once
3. Do not know on which queue that a callback will be

called

STATE MANAGEMENT

The less state we have to manage, and the more
declarative code we can write, the better.

> Brent Simmons

3RD PARTY FRAMEWORKS

BRIGHTFUTURE
FUTURES / PROMISES

https://github.com/Thomvis/BrightFutures

REACTIVE

1. RxSwift
2. ReactiveCocoa

3. Bond
4. VinceRP

5. Interstellar

https://github.com/ReactiveX/RxSwift
https://github.com/ReactiveCocoa/ReactiveCocoa
https://github.com/SwiftBond/Bond
https://github.com/bvic23/VinceRP
https://github.com/JensRavens/Interstellar

>

>

>

DEMO

DEMO

> 4

> 0.3

>

> button

DEMO

THE FUTURE

ASYN - AWAIT
func getAvatar() -> async UIImage
do {
 let image = await getAvatar()
 // Do something with the image
} catch {
 // Handle error
}
// Or
imageView.image <~ getAvatar()

 SLIDES + DEMO ARE ON GITHUB

https://github.com/GuanshanLiu/SwiftCon-2016

THANK YOU

QUESTIONS?

