
Drive Extreme
Concurrency for Data
Center Software
Software and Services Group

Tony Wu

October 17, 2017

About the speaker

2

Vehicle Design & Dynamics Control & Autonomous Navigation

Computer Architecture
& Distributed Computing

Software Optimization for
Performance & Scalability

Joined Intel at Silicon Valley

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No computer system
can be absolutely secure. Check with your system manufacturer or retailer or learn more at [intel.com].

For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more
complete information visit www.intel.com/benchmarks.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate
performance as you consider your purchase. For more complete information about performance and benchmark results, visit www.intel.com/benchmarks

Cost reduction scenarios described are intended as examples of how a given Intel- based product, in the specified circumstances and configurations, may affect future costs and provide cost savings. Circumstances
will vary. Intel does not guarantee any costs or cost reduction.

Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your system hardware, software or
configuration may affect your actual performance.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are accurate.

​Intel processors of the same SKU may vary in frequency or power as a result of natural variability in the production process.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

No computer system can be absolutely secure.

Intel, the Intel logo, Xeon, Intel vPro, Intel Xeon Phi, Look Inside., are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Microsoft, Windows, and the Windows logo are trademarks, or registered trademarks of Microsoft Corporation in the United States and/or other countries.

© 2017 Intel Corporation.

Legal Disclaimers

3

Optimization Notice

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-
Intel microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations.
Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel
microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved
for Intel microprocessors. Please refer to the applicable product User and Reference
Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Intel, the Intel logo, Intel Experience What’s Inside, the Intel Experience What’s Inside logo, Intel Inside, the Intel Inside logo, Intel Xeon, Intel Xeon Phi, Intel Atom, and Intel Optane are
trademarks of Intel Corporation in the U.S. and other countries.

4

Agenda

§  Introduction to Performance & Scalability

§  Methodology

§  Case study

§  Summary

5

6

Software Performance & Scalability

§  Performance: an indicator of how well a software application meets its
requirements for timeliness

o  Response time: how long it take to respond to a request

o  Throughput: how many requests that can be processed per unit of time

§  Scalability: the ability of a system to continue to meet its objective (response
time/throughput) as the load increases

o  Extremely important to maintain the responsiveness of a datacenter
application as more and more users converge on a site

7

Why Performance & Scalability Matters?

2011

2016

2014

2013

2017

8

Performance & Scalability on Multicore

§  Concurrency is being able to run multiple tasks in parallel, which can increase the
efficiency of an application

§  Some problems are parallelism friendly

o  If 1 painter takes 10 hours, 10 painters take 1 hour

§  Some aren’t…

o  If 1 boat crosses river in 10 days, 10 boats cross in 10 days

o  But you get 10 boats every 10 days
•  If you pipeline you can get 1 boat per day

o  Bandwidth increase, no latency drop

§  May need new algorithms

To achieve high Concurrency is the key

9

Concurrency Challenge

§  More and more cores are added into a single system
§  more cores = better performance ?

o  multi-threaded code is difficult to write and difficult to test
o  Even multi-threaded enterprise applications do not *automatically* run faster on multi-core servers

Software must be optimized in order to take fully advantage of multicore

a real-world enterprise application

10

How to Increase Concurrency?

§  Identify performance & scalability bottlenecks

§  Bottlenecks are the slowest parts of system

§  Points of serialization exist when work must wait for other work to be finished

§  The bottleneck eventually determines how much work a system can do per unit time

§  The primary bottleneck determines the maximum throughput in a system

Merge Right
Pay Toll

Point of
Serialization

Agenda

§  Introduction to Performance & Scalability

§  Methodology

§  Case study

§  Summary

11

Methodology Overview

12

Baseline

Identify Bottlenecks

Collect Data

Explore Alternatives

Simplify Problem Test

Apply Solution

Understand the Workload

§  A workload reproduces typical stress on a system

o  for individual component

o  for end-to-end system

§  A good workload exhibits these characteristics:

o  Measurable: A performance metric exists and can be quantified

o  Reproducible: The measurement is repeatable and consistent

o  Static: The measurement does not vary with time

o  Representative: The work being performed is typical of the stress put on the
system under normal operating conditions

13

Use the Right Tools

§  Large variety of tools available to collect data

§  Intel® VTune, perf, oprofile tools

o  Powerful tools: maps processor events to source code

§  Linux related

o  vmstat, mpstat, sar, iostat, lockstat, strace

§  JVM related

o  Java Mission Control, Java Flight Recorder, jcom, Jconsole, ...
https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/tooldescr025.html

o  Garbage Collection (GC log)

§  Application specific

o  Example: Automatic Workload Repository (AWR) in Oracle Database

14

Follow the Top-Down Data-driven Technique

§  Let the results of one iteration direct the next

§  Backup and document your data completely and consistently

o  Example: CPU info, BIOS configuration, OS build and customizations, compiler drop and
options, software version, environment changes

§  Automate whenever possible

o  allow precise repetition of process

o  remove tedium of single steps

q System-level
Ø CPU
Ø Memory
Ø  I/O
Ø Network Usage
Ø Context Switch Rate
Ø …

q Software-level
Ø  Application
Ø  Process
Ø Module
Ø  Function
Ø  Instruction

q Microarchitecture-level
Ø  Frontend Bound
Ø  Bad Speculation
Ø  Backend Bound
Ø  Retiring
Ø  Cache optimization
Ø …

15

§  A highly complicated real-world
workload running on the latest Intel
Xeon Server
o  Hundreds of processes running

concurrently

o  Many JVM instances of application servers

o  Several database instances

§  50% performance drops when
concurrent user # exceeds certain
threshold
o  iowait CPU time suddenly jumps to >50%

An Example: to Simplify the Problem

#	
of
	c
on

cu
rr
en

t	u
se
rs

CP
U
	u
til
iza

tio
n	
%

time

user	CPU	% kernel	CPU	% iowait	CPU	% #	of	users

of users
goes up 10%

a hugh jump
CPU iowait %

Reduce the problem set by identifying problematic application or process

16

Processes that are waiting for I/O are commonly in an "uninterruptible sleep" state or "D“

for x in `seq 1 1 10`; do ps -eo state,pid,cmd | grep "^D"; echo "----"; sleep 5; done

D 84587 xyz_abc9200 (LOCAL=NO)
D 85002 xyz_abc9200 (LOCAL=NO)
D 85811 xyz_abc9200 (LOCAL=NO)
……
D 11460 xyz_lgwr_abc9200
D 88163 xyz_abc9200 (LOCAL=NO)
D 93066 xyz_abc9200 (LOCAL=NO)

xyz_abc application needs more investigation, as IO Waiting processes are from xyz_abc

Agenda

§  Introduction to Performance & Scalability

§  Methodology

§  Case study

§  Summary

17

18

Case 1: Lock Granularity

Identify concurrency
(algorithmic, manual…)

Manage concurrency
(locks, …)

Correctness Performance

Hard to Write Fast and Correct Multi-Threaded Code

19

Need for Synchronization

Sophie wants $50 from A
•  A == $100, A set to $50

Peter wants $60 from A
•  A == $100, A set to $40

A should be -10

use lock
A $100 A $100

Lock

Sophie wants $50 from A
�  Sophie locks table
�  A == $100, A set to $50
Peter wants $60 from A
�  Peter waits till lock release
�  A == $50, Insufficient funds

Developer

Table

Peter and Sophie saw A == $100. Locks prevent such data races

20

Lock Granularity Optimization

A $100

B $200

A $100

B $200

Lock

Developer

Sophie withdraws $20 from A
•  Sophie locks table

Peter wants $30 from B
•  Waits for Sophie to free table

Sophie withdraws $20 from A
•  Sophie locks A

Peter wants $30 from B
•  Peter locks B

Coarse grain locking
(lock per table)

Fine grain locking
(lock per element)

Lock
Lock

Lock

Lock

Lock

Lock

Such Tuning is Time Consuming and Error Prone

0

1

2

3

4

5

6

7

8

no
rm

al
iz
ed

	re
sp
on

se
	ti
m
e

#	of	concurrent	users	(low	->	high)

original lock-granularity-optimization

0.0

0.5

1.0

1.5

2.0

2.5

N
or
m
al
iz
ed

	T
hr
ou

gh
pu

t

#	of	concurrent	users	(low	->	high)

original lock-granularity-optimization

0

10

20

30

40

50

60

70

80

90

to
ta
l	C
PU

	u
til
iz
at
io
n	
%

#	of	concurrent	users	(low	->	high)

original lock-granularity-optimization

21

A real-world Enterprise Application

Lock granularity optimization leads to +50% performance gain

22

§  Most existing state-of-the-art server
platforms are NUMA-based (Non-
Uniform Memory Access)

§  As # of sockets increase, remote
latency increases nonlinearly

§  Monitor # of HITM event when load or #
of sockets varies

o  HITM occurs when the snooped address
at the responder's cache is in a Modified
state

Case 2: Lock Locality

Locality becomes critical in large machines

Before optimization
readLockProctection

(*(myLock[++myIndex & lockCountMinus1].Get()), …);

§  Totally N readLock

§  A readLock is pseudo-randomly assigned

§  <++myIndex & lockCountMinus1> is how the N locks
are distributed

o  <myIndex> is a global variable

o  <lockCountMinus1> is set as (N-1)

Optimized with Lock Affinity
readLockProctection (myLockType *lock, int mask, bool enabled, …)
 {
 int index;
……
 index = apicid(); //get the local CPU id
 index &= mask;
……
 myLock = myLock[index].Get();
 myLock->AcquireRead();
 }

Solution: Lock Affinity

For a real-world enterprise application

o  20% performance gain on a 4-socket Xeon platform

o  2x performance gain on a 8-socket Xeon platform

23

24

Let The CPU Handle the Locks

§  Intel® Transactional Synchronization Extensions (TSX): Instruction set
extensions for IA

o  Transactionally execute lock-protected critical sections

o  Execute without acquiring lock à expose hidden concurrency

o  Hardware manages transactional updates – All or None

§  Hardware does the work of figuring out concurrency

o  No worry about fine granular locking

o  No worry about lock locality / affinity

§  Intel® Architecture Instruction Set Extensions Programming Reference

o  https://software.intel.com/sites/default/files/m/9/2/3/41604

Intel TSX make Parallel Programming Easier and Faster

Running a real-world enterprise application on
a 2-socket Xeon with 2-UPI

§  Load increases: L1àL2
o  throughput increases 12%

o  total CPU utilization increases 40%

§  Load increases: L2àL3
o  throughput increases 3% only

o  but total CPU utilization increases 30%

§  Load increases: L3àL4
o  throughput increases 3% only

o  but total CPU utilization increases 25%

Case 3: Pick right hardware

	-

	10

	20

	30

	40

	50

	60

	70

	80

	90

	100

	-

	0.2

	0.4

	0.6

	0.8

	1.0

	1.2

	1.4

CP
U	
ut
ili
za
tio

n	
%

no
rm

al
ize

d	
th
ro
ug
hp

ut

#	of	concurrent	users	(low	->	high)	

throughput CPU	utilization	%

L1
L2 L3 L4

Why scales poorly?

25

§  CLK (CPU cycle) and INST
(instruction retired) are normalized
by throughput

§  For perfect scaling, the scaling ratio
(i.e. L4/L3) should close to 1

§  Top 20 functions account for ~70%
of total CPU utilization

§  From L3àL4, CPU cycles per
transaction increase similarly for all
functions

Case 3: Pick right hardware (2)

No single function stands out as the load increases

L3 L4 L4/L3
Function CLK(B) INST(B) CLK(B) INST(B) CLK INST
fcn01 655 1065 779 1060 1.19 1.00
fcn02 440 654 537 690 1.22 1.06
fcn03 407 676 469 683 1.15 1.01
fcn04 229 325 276 286 1.20 0.88
fcn05 201 275 238 258 1.18 0.94
fcn06 207 331 236 322 1.14 0.97
fcn07 174 276 216 290 1.24 1.05
fcn08 148 194 172 185 1.17 0.95
fcn09 113 208 132 196 1.17 0.94
fcn10 97 135 126 176 1.30 1.30
fcn11 102 166 123 169 1.21 1.02
fcn12 91 172 123 226 1.34 1.32
fcn13 103 146 122 150 1.18 1.03
fcn14 89 124 111 125 1.25 1.00
fcn15 75 91 96 109 1.29 1.20
fcn16 86 109 93 91 1.09 0.84
fcn17 74 106 89 99 1.20 0.93
fcn18 69 85 84 85 1.21 1.00
fcn19 69 94 78 90 1.12 0.96
fcn20 59 96 74 98 1.25 1.02

26

§  The hardware is a 2S Xeon with only
2-UPI

§  UPI: Intel® Ultra Path Interconnect
o  a coherent interconnect for scalable

systems containing multiple processors

§  As load increases, UPI Data
Transmit bandwidth utilization goes
up quickly and close to saturation

Case 3: Pick right hardware (3)

2S Xeon with 3-UPI improves the scalability

27

28

Agenda

§  Introduction to Performance & Scalability

§  Methodology

§  Case study

§  Summary

29

Summary

§  Use your experience and intuition

o  Grow your expertise on concurrency and synchronization

§  Understand your application and workload

o  How resource changes impact workload

o  How workload changes impact resources

§  Follow a precise process

o  Top-down and data-driven

§  Develop your knowledge on hardware

o  Choose hardware wisely

© 2017 Intel Corporation

Intel, the Intel logo, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Java is a registered trademark of Oracle and/or its affiliates.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components,
software, operations and functions. Any change to any of those factors may cause the results to vary. You should
consult other information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products. For more complete information visit
http://www.intel.com/performance.

​Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should
visit the referenced web site and confirm whether referenced data are accurate.

refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

31

