# (intel) Drive Extreme Concurrency for Data Center Software

Software and Services Group

Tony Wu

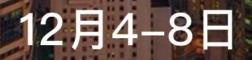
October 17, 2017





### 每天10分钟,邀请顶级技术专家,为你传道授业解惑。










## **APSEC 2017**

24th Asia-Pacific Software Engineering Conference 4-8 December 2017, Nanjing, Jiangsu, China



南

E

京





## 助力人工智能落地

2018.1.13 - 1.14 北京国际会议中心



扫描关注大会官网

#### About the speaker



#### Vehicle Design & Dynamics



Software Optimization for Performance & Scalability 

#### **Control & Autonomous Navigation**



Joined Intel at Silicon Valley

Computer Architecture & Distributed Computing



#### Legal Disclaimers

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at [intel.com].

For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit www.intel.com/benchmarks

Cost reduction scenarios described are intended as examples of how a given Intel- based product, in the specified circumstances and configurations, may affect future costs and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your system hardware, software or configuration may affect your actual performance.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are accurate.

Intel processors of the same SKU may vary in frequency or power as a result of natural variability in the production process.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

No computer system can be absolutely secure.

Intel, the Intel logo, Xeon, Intel vPro, Intel Xeon Phi, Look Inside., are trademarks of Intel Corporation in the U.S. and/or other countries.

\*Other names and brands may be claimed as the property of others.

Microsoft, Windows, and the Windows logo are trademarks, or registered trademarks of Microsoft Corporation in the United States and/or other countries.

© 2017 Intel Corporation.



#### **Optimization Notice**

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.

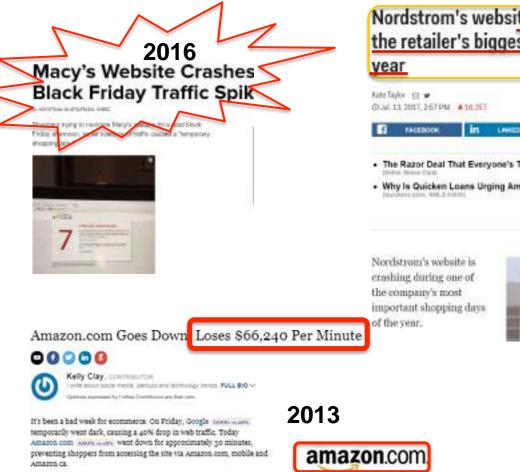
Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Intel, the Intel logo, Intel Experience What's Inside, the Intel Experience What's Inside logo, Intel Inside, the Intel Inside logo, Intel Xeon, Intel Xeon, Intel Xeon, Intel Atom, and Intel Optane are trademarks of Intel Corporation in the U.S. and other countries.

### Agenda

- Introduction to Performance & Scalability
- Methodology
- Case study
- Summary




#### Software Performance & Scalability

- Performance: an indicator of how well a software application meets its requirements for timeliness
  - Response time: how long it take to respond to a request
  - Throughput: how many requests that can be processed per unit of time
- Scalability: the ability of a system to continue to meet its objective (response time/throughput) as the load increases
  - Extremely important to maintain the responsiveness of a datacenter application as more and more users converge on a site

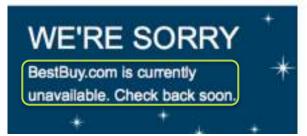


#### Why Performance & Scalability Matters?



During the outage, users were hit with an error message: " Oops! We're very sorry, but we're having trouble doing what you just asked us to do. Please give us another chance--click the Back button on your browser and try your request again. Or start from the beginning on our homepage."




Why Is Quicken Loans Urging Americans To...



Got 10min? That's Enough

JOSA DAAM DRY Best Buy's site crashes at the worst possible time 2014 B Burble | Email (HHVI' we site temp ment went dork to Black Poley, an embarraning ROST TO ministry for the electronics retailer on what is typically the biggest shapping day of the year. Visitors to BestBay.com this morning were growted with a with a message that said, "We're sorry: Best way rom is currently unavailable: Come Back Soon."

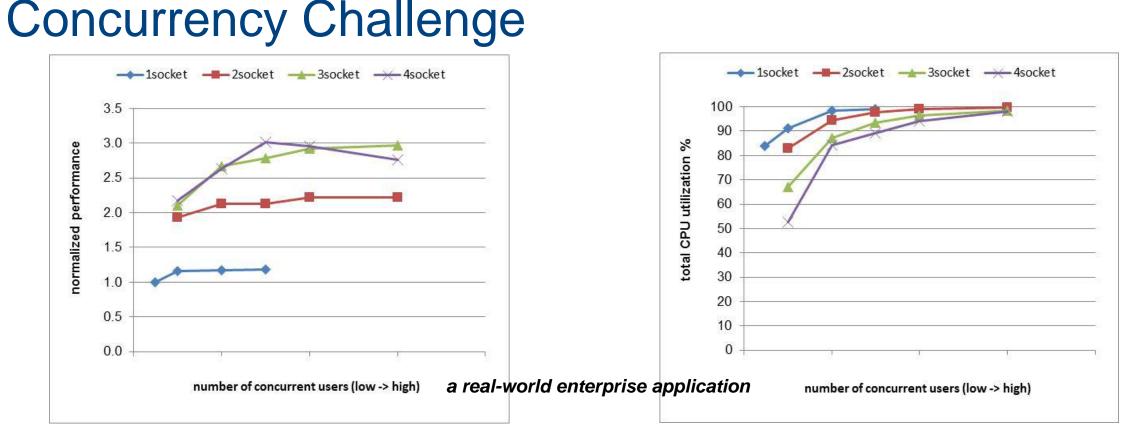
> Best Bay sold in a statement that it shut down the site after a "concentrated spike in mobile traffic triggered issues" that required the company to temporarily take it offline. BestBuy.com was down for roughly an hour before service was restored.



2011 Walmar

Fire sales turned into a Trestorm for Walmart this morning as the company's web servers. buckled under Black Friday traffic: Shoppers from around the country waited until the middle of the night for sales only to experience broken checkurut pages, emplied shopping. carts, and login errors. This caused their

desired items to go out of stock before they could buy them, leading to mast trustration and If will inwards the discount store chain. Meanwhile at its physical stores, 20 people were popper sprayed by a fellow customer, and 2 people were shot outside separate locations. Waimant will need to sort out its servers in preparation for the upcoming Cybermonday bills: or it risks losing customers to Amazon.

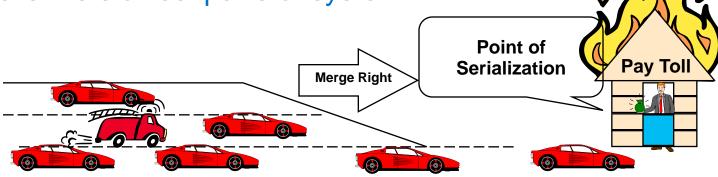





### Performance & Scalability on Multicore

- Concurrency is being able to run multiple tasks in parallel, which can increase the efficiency of an application
- Some problems are parallelism friendly
  - o If 1 painter takes 10 hours, 10 painters take 1 hour
- Some aren't…
  - o If 1 boat crosses river in 10 days, 10 boats cross in 10 days
  - But you get 10 boats every 10 days
    - If you pipeline you can get 1 boat per day
  - o Bandwidth increase, no latency drop
- May need new algorithms





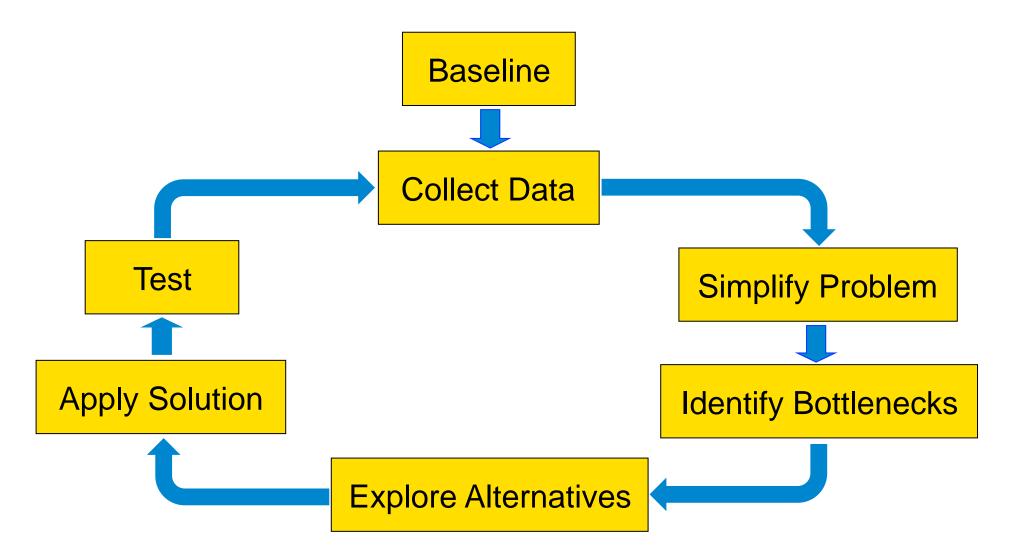

- More and more cores are added into a single system
- more cores = better performance ?
  - o multi-threaded code is difficult to write and difficult to test
  - Even multi-threaded enterprise applications do not \*automatically\* run faster on multi-core servers

#### Software must be optimized in order to take fully advantage of multicore

### How to Increase Concurrency?

- Identify performance & scalability bottlenecks
- Bottlenecks are the slowest parts of system




- Points of serialization exist when work must wait for other work to be finished
- The bottleneck eventually determines how much work a system can do per unit time
- The primary bottleneck determines the maximum throughput in a system



### Agenda

- Introduction to Performance & Scalability
- Methodology
- Case study
- Summary

#### Methodology Overview





#### Understand the Workload

- A workload reproduces typical stress on a system
  - o for individual component
  - o for end-to-end system
- A good workload exhibits these characteristics:
  - o Measurable: A performance metric exists and can be quantified
  - Reproducible: The measurement is repeatable and consistent
  - o Static: The measurement does not vary with time
  - Representative: The work being performed is typical of the stress put on the system under normal operating conditions



### Use the Right Tools

- Large variety of tools available to collect data
- Intel® VTune, perf, oprofile tools
  - Powerful tools: maps processor events to source code
- Linux related
  - o vmstat, mpstat, sar, iostat, lockstat, strace
- JVM related
  - o Java Mission Control, Java Flight Recorder, jcom, Jconsole, ... https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/tooldescr025.html
  - Garbage Collection (GC log)
- Application specific
  - o Example: Automatic Workload Repository (AWR) in Oracle Database



### Follow the Top-Down Data-driven Technique

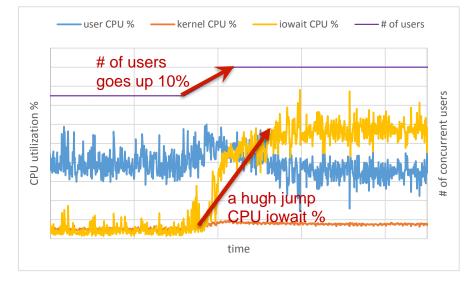
#### System-level

- CPU
- > Memory
- ► I/O
- Network Usage
- Context Switch Rate
- > ...

#### Software-level

- Application
- Process
- Module
- Function
- Instruction

#### □ Microarchitecture-level


- Frontend Bound
- Bad Speculation
- Backend Bound
- Retiring
- Cache optimization
- > ...

- Let the results of one iteration direct the next
- Backup and document your data completely and consistently
  - Example: CPU info, BIOS configuration, OS build and customizations, compiler drop and options, software version, environment changes
- Automate whenever possible
  - o allow precise repetition of process
  - o remove tedium of single steps



### An Example: to Simplify the Problem

- A highly complicated real-world workload running on the latest Intel Xeon Server
  - Hundreds of processes running concurrently
  - Many JVM instances of application servers
  - o Several database instances
- 50% performance drops when concurrent user # exceeds certain threshold
  - iowait CPU time suddenly jumps to >50%

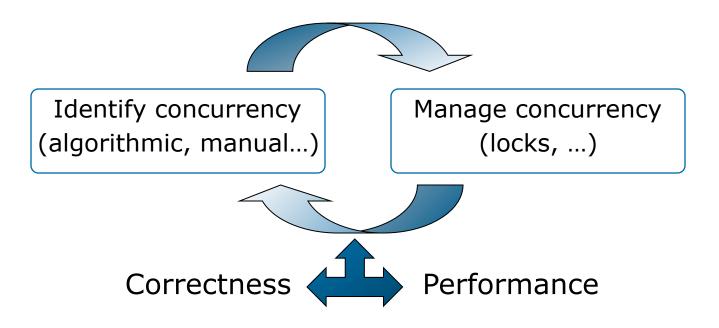


Processes that are waiting for I/O are commonly in an "uninterruptible sleep" state or "D"

for x in `seq 1 1 10`; do ps -eo state,pid,cmd | grep "^D"; echo "----"; sleep 5; done

- D 84587 xyz\_abc9200 (LOCAL=NO)
   D 85002 xyz\_abc9200 (LOCAL=NO)
   D 85811 xyz\_abc9200 (LOCAL=NO)
- D 11460 xyz\_lgwr\_abc9200 D 88163 xyz\_abc9200 (LOCAL=NO) D 93066 xyz\_abc9200 (LOCAL=NO)

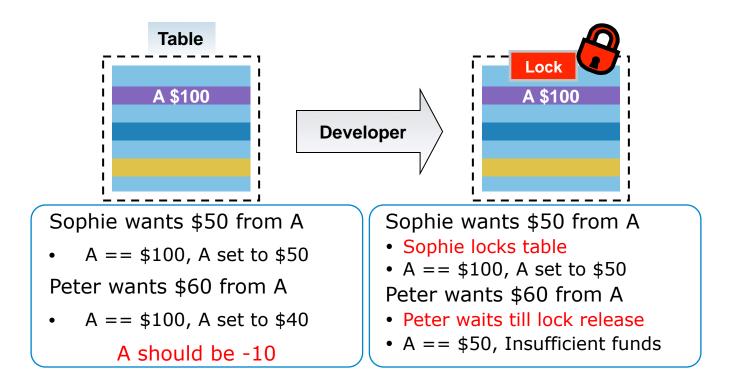
xyz\_abc application needs more investigation, as IO Waiting processes are from xyz\_abc


Reduce the problem set by identifying problematic application or process

\_\_\_\_

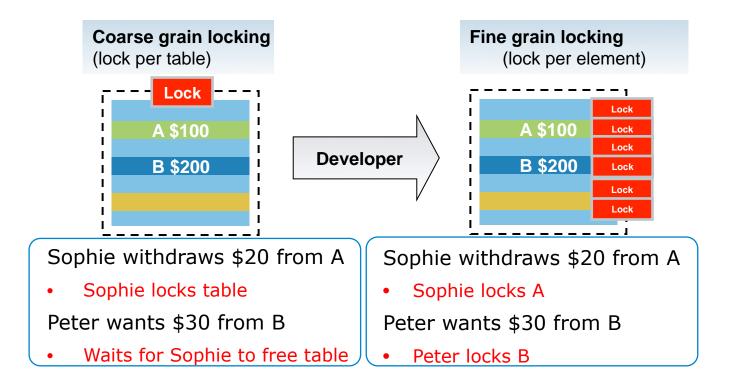
### Agenda

- Introduction to Performance & Scalability
- Methodology
- Case study
- Summary


#### Case 1: Lock Granularity



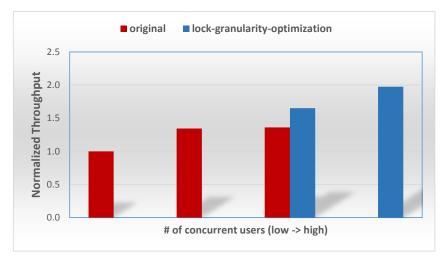
Hard to Write Fast and Correct Multi-Threaded Code

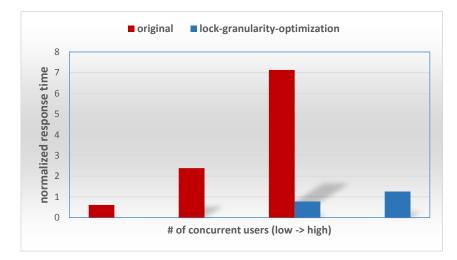


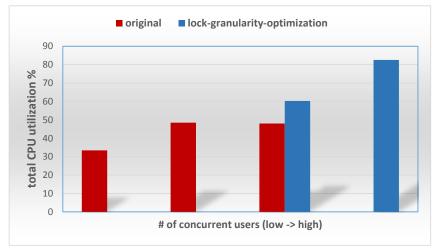

#### **Need for Synchronization**



#### **Peter and Sophie saw A == \$100. Locks prevent such data races**


### Lock Granularity Optimization

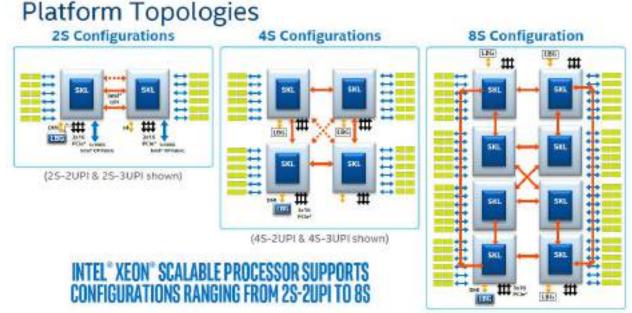




#### **Such Tuning is Time Consuming and Error Prone**



### A real-world Enterprise Application








Lock granularity optimization leads to +50% performance gain

#### Case 2: Lock Locality

- Most existing state-of-the-art server platforms are NUMA-based (Non-Uniform Memory Access)
- As # of sockets increase, remote latency increases nonlinearly
- Monitor # of HITM event when load or # of sockets varies
  - HITM occurs when the snooped address at the responder's cache is in a Modified state



#### Locality becomes critical in large machines



#### Solution: Lock Affinity

#### **Before optimization**

readLockProctection

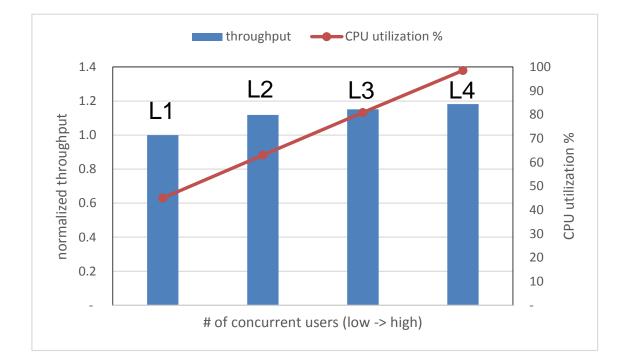
(\*(myLock[++myIndex & lockCountMinus1].Get()), ...);

- Totally N readLock
- A readLock is pseudo-randomly assigned
- <++myIndex & lockCountMinus1> is how the N locks are distributed
  - <myIndex> is a global variable
  - o <lockCountMinus1> is set as (N-1)

```
Optimized with Lock Affinity
readLockProctection (myLockType *lock, int mask, bool enabled, ...)
{
    int index;
.....
    index = apicid(); //get the local CPU id
    index &= mask;
.....
    myLock = myLock[index].Get();
    myLock->AcquireRead();
}
```

For a real-world enterprise application

- O 20% performance gain on a 4-socket Xeon platform
- O 2x performance gain on a 8-socket Xeon platform




#### Let The CPU Handle the Locks

- Intel<sup>®</sup> Transactional Synchronization Extensions (TSX): Instruction set extensions for IA
  - Transactionally execute lock-protected critical sections
  - Execute without acquiring lock → expose hidden concurrency
  - Hardware manages transactional updates All or None
- Hardware does the work of figuring out concurrency
  - No worry about fine granular locking
  - No worry about lock locality / affinity
- Intel<sup>®</sup> Architecture Instruction Set Extensions Programming Reference
  - o https://software.intel.com/sites/default/files/m/9/2/3/41604

**Intel TSX make Parallel Programming Easier and Faster** 

### Case 3: Pick right hardware

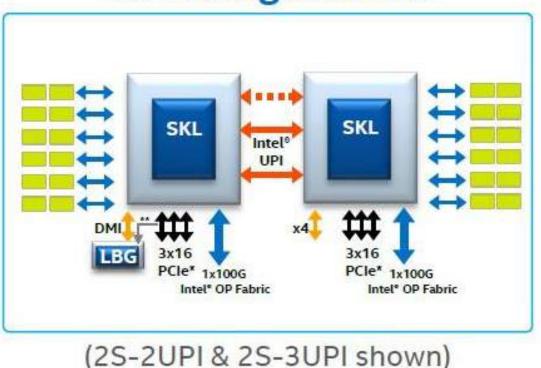


Running a real-world enterprise application on a 2-socket Xeon with 2-UPI

- Load increases: L1→L2
  - throughput increases 12%
  - total CPU utilization increases 40%
- Load increases: L2→L3
  - o throughput increases 3% only
  - but total CPU utilization increases 30%
- Load increases: L3→L4
  - o throughput increases 3% only
  - o but total CPU utilization increases 25%

#### Case 3: Pick right hardware (2)

|          | L3     |         | L4     |         | L4/L3 |      |
|----------|--------|---------|--------|---------|-------|------|
| Function | CLK(B) | INST(B) | CLK(B) | INST(B) | CLK   | INST |
| fcn01    | 655    | 1065    | 779    | 1060    | 1.19  | 1.00 |
| fcn02    | 440    | 654     | 537    | 690     | 1.22  | 1.06 |
| fcn03    | 407    | 676     | 469    | 683     | 1.15  | 1.01 |
| fcn04    | 229    | 325     | 276    | 286     | 1.20  | 0.88 |
| fcn05    | 201    | 275     | 238    | 258     | 1.18  | 0.94 |
| fcn06    | 207    | 331     | 236    | 322     | 1.14  | 0.97 |
| fcn07    | 174    | 276     | 216    | 290     | 1.24  | 1.05 |
| fcn08    | 148    | 194     | 172    | 185     | 1.17  | 0.95 |
| fcn09    | 113    | 208     | 132    | 196     | 1.17  | 0.94 |
| fcn10    | 97     | 135     | 126    | 176     | 1.30  | 1.30 |
| fcn11    | 102    | 166     | 123    | 169     | 1.21  | 1.02 |
| fcn12    | 91     | 172     | 123    | 226     | 1.34  | 1.32 |
| fcn13    | 103    | 146     | 122    | 150     | 1.18  | 1.03 |
| fcn14    | 89     | 124     | 111    | 125     | 1.25  | 1.00 |
| fcn15    | 75     | 91      | 96     | 109     | 1.29  | 1.20 |
| fcn16    | 86     | 109     | 93     | 91      | 1.09  | 0.84 |
| fcn17    | 74     | 106     | 89     | 99      | 1.20  | 0.93 |
| fcn18    | 69     | 85      | 84     | 85      | 1.21  | 1.00 |
| fcn19    | 69     | 94      | 78     | 90      | 1.12  | 0.96 |
| fcn20    | 59     | 96      | 74     | 98      | 1.25  | 1.02 |


- CLK (CPU cycle) and INST (instruction retired) are normalized by throughput
- For perfect scaling, the scaling ratio (i.e. L4/L3) should close to 1
- Top 20 functions account for ~70% of total CPU utilization
- From L3→L4, CPU cycles per transaction increase similarly for all functions

No single function stands out as the load increases



### Case 3: Pick right hardware (3)

#### **2S Configurations**



 The hardware is a 2S Xeon with only 2-UPI

- UPI: Intel® Ultra Path Interconnect
  - a coherent interconnect for scalable systems containing multiple processors
- As load increases, UPI Data Transmit bandwidth utilization goes up quickly and close to saturation

#### **2S Xeon with 3-UPI improves the scalability**



### Agenda


- Introduction to Performance & Scalability
- Methodology
- Case study
- Summary



### Summary

- Use your experience and intuition
  - o Grow your expertise on concurrency and synchronization
- Understand your application and workload
  - How resource changes impact workload
  - How workload changes impact resources
- Follow a precise process
  - o Top-down and data-driven
- Develop your knowledge on hardware
   O Choose hardware wisely





#### © 2017 Intel Corporation

Intel, the Intel logo, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries. \*Other names and brands may be claimed as the property of others.

Java is a registered trademark of Oracle and/or its affiliates.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit <a href="http://www.intel.com/performance">http://www.intel.com/performance</a>.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are accurate.

