

# 新能源汽车 电机/电池/电驱动 综合仿真与最佳实践

**庄百兴**/ 华南区技术经理

ANSYS深圳



### 现代汽车发展趋势







### 新能源 + 智能 = 现代汽车必然趋势

全电气化 百公里加速3.1 秒 轻量化铝制车身 5 星碰撞测试评分 17" 高清触屏





### 新能源汽车的关键技术



动力电池



控制器



软件



牵引电机



无线充电



智能驾驶



传动机构





### ANSYS 集成化+系统级的零部件+整车仿真系统



5 © 2017 ANSYS, Inc. July 24, 2017

ANSYS UGM 2017



# 电机 综合仿真与最佳实践



6 © 2017 ANSYS, Inc. July 24, 2017

ANSYS UGM 2017



# 新能源汽车电机本体







# Maxwell高效电机电磁自动化设计流程







# 电机设计工具包(UDO/Toolkits)

Incutiver: DutputRower Torque Speed **RewardFactor** SupplyCurrent FhaseVoltage Coreloss Solidioss StrandedlossR. MechanicalLoss Totalloss Bifficiency TorqueRipple **RowerBalance** V(d-axis) M(q-mis) I'd-axish Eq-365) L(d-axis) L(g-axis) FluxLinkage(d-axis) FluxLinkage(q-axis)









■ UDO和Toolkits是针对客户需求定制化开发的电机设计工具包,可直接输出电机电磁性能数据,自动化计算转矩转速特性、效率Map图等,在电机设计领域应用广泛。





# ToolKits案例:IPM效率Map图计算

|                                                                    |                                                                                    | A Electric Machines Design To | olkit                                                                               |                                                                                                 |                                                                                |                               |                                                                        |                                |                                      |                                        |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------|--------------------------------|--------------------------------------|----------------------------------------|
| General Sweep & Map                                                | General Sweep & Map &                                                              |                               | A Electric Machines Design Toolkit                                                  |                                                                                                 |                                                                                |                               |                                                                        |                                |                                      |                                        |
| Design Setup Properties                                            | Design of Experiments Ch                                                           | General Sweep & Map Window    |                                                                                     | A Electric Machines Design Toolkit                                                              | -                                                                              |                               |                                                                        | x                              |                                      | 0                                      |
| Setup1<br>Electric Machine Characte<br>Machine Type<br>PM Synchron | Total Number of B<br>Number of Time St<br>Number of Electric<br>Number of Electric | Alignment of the D-Q Avis     | LSDSO (Optional)                                                                    | General Sweep & Map Windings Simulation Advanced<br>Skewing<br>Calculate the Effect of Skewing: | Gener                                                                          | al   Sweep &<br>on Core Loss  | Map   Windings   Sim                                                   | Jason Advanced                 | Custom Loss                          | /it Settings He                        |
| Control Strate<br>MTPA<br>RMS Line Cur<br>200                      | Number of Angle S<br>Number of Speed 5<br>Map Characteristics                      | Stator Phase Resistance       | Miscellaneous                                                                       | Single-Sided Staircase     Skew Angle Between Two Adjacent Segments (Mech. deg)                 | C Time-Domain Model C Time-Domain Model III III IIII IIII IIIII IIIIII IIIIIII |                               |                                                                        |                                | Model                                |                                        |
| ে Wye-Con<br>ি Delta-Cor<br>Simulation Mode<br>ি Motor             | Number of Speed I<br>Number of Torque<br>Torque Threshold I<br>Maximum Speed (n    |                               | Re-Read Transient Data and Re-Create Re     Keep Transient Data in Tookit Directory | Optimization Algorithm<br>Population Size:<br>Maximum Number of Evaluations:                    | +)-                                                                            | Object Nan<br>Stator<br>Rotor | <ul> <li>Model Depthimi</li> <li>0.083566</li> <li>0.083566</li> </ul> | Stading Factor<br>0.96<br>0.96 | Mass Density Right 3<br>7600<br>7600 | Upited Loss/W.fkg1<br>Browse<br>Browse |
| Run                                                                | Run                                                                                | Run                           | Run                                                                                 |                                                                                                 | 4                                                                              |                               |                                                                        |                                |                                      | ,                                      |





# 选择多种控制算法和电压控制方式

|                                                 |                | Default Settings      | Help | Machine Type:                                                                                                      | Voltage Control Type:   |
|-------------------------------------------------|----------------|-----------------------|------|--------------------------------------------------------------------------------------------------------------------|-------------------------|
| eneral Sweep & Map Windings                     | Simulation Adv | Ivanced Custom Loss   |      | PM Synchronous Machine                                                                                             | Line-Line RMS Voltage   |
| esign Setup Properties                          |                |                       |      |                                                                                                                    | Leve the to be renage   |
| Analysis Setup:                                 |                | UDO Setup:            |      | Control Strategy:                                                                                                  | Line-Line RMS Voltage:  |
| Setup1                                          |                | MachineSolutions1     |      | MTPA.                                                                                                              | V -                     |
| ectric Machine Characteristics<br>Machine Type: |                | Voltage Control Type: |      | MTPA<br>Total Loss Minimization<br>Core Loss Minimization<br>Solid Loss Minimization<br>Torque Ripple Minimization | DC Voltage:             |
| PM Synchronous Mach                             | ne •           | Line-Line RMS Voltage |      | Id Minimzation<br>Ig Minimzation                                                                                   | Modulation Index: 1.0   |
| MTPA                                            |                | 45.0 V V              |      |                                                                                                                    |                         |
| RMS Line Current:                               |                | DC Voltage:           |      | Machine Type:                                                                                                      | Voltage Control Type:   |
| 56.0                                            | A 👻            | 45.0 V =              |      | Indunction Machine 🔹                                                                                               | Line-Line RMS Voltage 🔹 |
| ( Wye-Connection                                |                | Modulation Index: 1.0 |      | Control Strategy:                                                                                                  | Line-Line RMS Voltage:  |
| C Delta-Connection                              |                |                       |      | Total Loss Minimization                                                                                            | V -                     |
| imulation Mode                                  | C Ge           | enerator C Both Modes |      | MTPA<br>Total Loss Minimization<br>Core Loss Minimization<br>Solid Loss Minimization<br>Torque Ripple Minimization | DC Voltage:             |





# 集成了自定义铁耗算法

|          |               |                |                 |       |         | Defa    | ult Settin | gs   | Help |
|----------|---------------|----------------|-----------------|-------|---------|---------|------------|------|------|
| Genera   | i Sweep & Map | Windings Simu  | lation Advanced | Custo | m Loss  |         |            |      |      |
| Custo    | om Core Loss  | -              |                 | -     | -       | -       |            | _    |      |
|          | The Oates Co  | ant and 1      |                 |       |         |         |            |      |      |
|          | Coe Custom Co | re Loss:       |                 |       |         |         |            |      |      |
|          | e. Time       | -Coman Model   |                 | Pres  | pency-  | Coman   | Model      |      |      |
|          |               |                | 1               | -     | Variabi | e Coell | -          |      |      |
|          |               |                |                 |       |         |         |            |      |      |
|          | Symmet        | ry Multiplier: |                 | 1     |         |         |            |      |      |
|          |               |                |                 |       |         |         |            |      |      |
| i let el | Chierte       |                |                 |       |         |         |            |      |      |
| 4/-      | Object Name   | Model Depth[m] | Stacking Factor | Kh    | Кс      | Ke      | Alpha      | Beta |      |
| +        | Stator 💌      | 1.0            | 1.0             | 200   | 0.5     | 0.0     | 0.75       | 2.0  |      |
|          |               |                |                 |       |         |         |            |      |      |
| _        |               |                |                 |       |         |         |            |      | _    |
|          |               |                |                 |       |         |         |            |      |      |
|          |               |                |                 |       |         |         |            |      |      |
|          |               |                |                 |       |         |         |            |      |      |
|          |               |                |                 |       |         |         |            |      |      |
|          |               |                |                 |       |         |         |            |      |      |
|          |               |                |                 |       |         |         |            |      |      |
|          |               |                |                 |       |         |         |            |      |      |
|          |               |                |                 |       |         |         |            |      |      |
|          |               |                |                 |       |         |         |            |      |      |

| P                   | Use Custom Co                      | re Loss:                         |                               |                                       |                                       |  |  |  |
|---------------------|------------------------------------|----------------------------------|-------------------------------|---------------------------------------|---------------------------------------|--|--|--|
| C Time-Domain Model |                                    |                                  |                               | Frequency-Domain Model                |                                       |  |  |  |
|                     |                                    |                                  | 5                             | Use Variable Coeffici                 | lents                                 |  |  |  |
|                     | Symmet                             | ry Multiplier:                   |                               | 8                                     |                                       |  |  |  |
|                     | Cohunta                            |                                  |                               |                                       |                                       |  |  |  |
| ist o               | f Objects<br>Object Name           | Model Depth(m)                   | Stadking Factor               | Mass Density (kg/m3)                  | Upload Loss[W/ka]                     |  |  |  |
| ist o<br>+/-        | f Objects<br>Object Name<br>Stator | Model Depth(m)<br>0.093          | Stadking Factor               | Mass Density (kg/m3)<br>7600          | Upload Loss[W/kg]<br>Browse           |  |  |  |
| ist o<br>+/-        | f Objects<br>Object Name<br>Stator | Model Depth[m]<br>0.093<br>0.093 | Stacking Factor<br>1.0<br>1.0 | Mass Density (kg,/m3)<br>7600<br>7600 | Upload Loss[W/kg]<br>Browsk<br>Browsk |  |  |  |

|      | incomplete.     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                |                 |                             |                   |                     |                |
|------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------|-----------------|-----------------------------|-------------------|---------------------|----------------|
| NOV. |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                |                 | - 400                       |                   |                     |                |
| .8.1 | 111100.007      | "LINNED.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.15840103          | Ampleia        | T-LHAMMAN       | 1.101010.004                | Approximate       | Addressing          | AMOUNT         |
| 1.1  | A Assessing &   | Distances.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a loss worth?       | 1,0000,000     | ar Maximum Mile | a sidente                   | LOCTOWNA .        | A literature i      | a story growth |
| 9.6  | - memory re-    | III. LONGITTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C-DOMESING          | LANDAUR?       | LINESSTER.      | LO MARGINE                  | (Lineare)         | 1.10001121          | 1.414CTATES    |
| 0.4  | 1.1544.000      | In A section Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.005400            | 1.000.00403/   | 3.8104817       | 3.0703.0000                 | A.Contention      | 3-100-0000          | (1.indiana     |
| 10.1 | 1.1             | 3125601125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.1034/5407        | 1.0002725.000  | 2.40000.000     | ANDIDON                     | 1.30%000111       | 2.14400014          | M.ADMILLIO     |
|      | 0.00034681      | 0.403001034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Antilimati          | V grandenski   | 4.0000123-01    | a beneration                | A CONTRACT        | in a distant of the | in sectors     |
| 1.1  | 1. a constraint | SCHOOL STREET, | Lotio manual        | 1.10000-001214 | 3.88877910      | A DISTRIBUTION OF THE OWNER | La Association    | 13.4259411          | (0.400031)     |
| 1.0  | 1.48810.004     | CAUSE/N72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A. GROUNDAINS       | AMERIATION     | A Distances     | OR ADDRESS                  | LA.MILLECTRO      | A. R. Houseweight   | 84,9404.0      |
| 2.5  | RAMONA A        | P.8346080171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LURISAN             | -4.5 798.00111 | A.M. COLUMN     | 11.21.0 9002                | 10.75400.021      | 23.14000394         | AT ADDRESS.    |
| 1    | in milerary's   | d-brisso 255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nariamilan's        | Advantage      | shatehates      | VA Significant              | and the result to | Ad. Parties inc.    | TH-LO MILLION  |
| 14   | A MORENEST      | LINDOWE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 ministration      | 10000000       | (154mmilt)      | In Plant in                 | (a pitelphi       | at heirstall        | its success    |
| 1 4  | LABORTIZA       | 1.42425.0178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 MARGENTIN         | COMPANY OF     | 11.100304       | IA-81 TANKS                 | ALTH THAT         | 44.19.770003        | CO (IN THE     |
| 1.5  | 1.1.00000010    | LADAMAN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D.M. (HIMAN         | 11/2/10/00     | UA300AUAN       | ALC: NUMBER OF              | 41.10079421       | 54.4001181          |                |
| 1.4  | i miniatra      | 2.541410004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a.https://doi.org/1 | 111/14/14/201  | 21 Mailed 2     | IA. HOTHIN                  | Manual Park       | in pairies.         |                |
| 1.8  | Linguese        | A CONTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3-00000000          | A NUMBER       | UNPARENT.       | an Marrison                 | A& DOWNLOS        | of their state      |                |
| 1.6  | C REALFORMER IN | 1.12710.12275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |                |                 |                             |                   |                     |                |
|      | A community     | A REPART                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |                |                 |                             |                   |                     |                |

S.W. LANSING, AMARING.



# 大规模分布式计算加速分析









## ToolKits:IPM效率Map图







## ToolKits:IPM效率Map图







# 电机温升、散热分析流程







# 考虑磁钢温度特性的电机特性仿真







**Unit**V

Simple 0

Solid

Utrit



22

Material Coordinate System Type: Cartesian **P(T)** 

q(T)

٠

View/Edit Material for

18 Active Design

C This Product

F All Products

View/Edit Modilier for

Thermal Modifier

Β.

1164

elm<sup>\*</sup>2

kg/m\_ None

1-0.00651758\*(Te

Value

Bi-H Curve,

-11.01516919\_ kOe

H<sub>ci</sub>



# 永磁电机定子水冷仿真





|           | 实验值 ℃ | 计算值℃  |
|-----------|-------|-------|
| 进水口和出水口温升 | 2.4   | 2.58  |
| 绕组温度      | 137   | 132.5 |
| 机壳点201温度  | 46.5  | 48.7  |
| 机壳点201温度  | 48    | 53    |
| 机壳点201温度  | 45.9  | 47.2  |
| 机壳点201温度  | 45.8  | 47.7  |





# 三相感应电机液冷仿真







# 三相感应电机喷油及液冷仿真



Temperature Sterrivino Temp 4.1204+002 3.9829+002 3.9839+002 3.9839+002 3.5846+002 3.5466+002 3.5466+002 3.5466+002 3.5466+002 3.4656+002 3.4056+002 3.3306+002 [N]







U,

2ªd

berature,





# 电机电磁振动噪声耦合分析流程









![](_page_21_Picture_2.jpeg)

ONVERGENCE

**国** T ANSYS 用户技术大会

![](_page_22_Picture_0.jpeg)

## 振动噪声分析案例

![](_page_22_Figure_2.jpeg)

![](_page_22_Picture_3.jpeg)

![](_page_22_Picture_4.jpeg)

![](_page_22_Picture_5.jpeg)

![](_page_22_Picture_6.jpeg)

优化后

![](_page_22_Figure_8.jpeg)

优化前:电机在3740Hz和4060Hz 处存在共振,噪声分别为65.09和 65.03dB(A)。

![](_page_22_Picture_10.jpeg)

优化后:电机在3739Hz和4024Hz处 存在共振,噪声分别为57.83和 62.59dB(A)。

![](_page_22_Picture_12.jpeg)

![](_page_22_Picture_13.jpeg)

· 1000000000000

![](_page_23_Picture_0.jpeg)

## 旋转变压器及其控制器仿真

详见IEEE VPPC2008论文

![](_page_23_Figure_3.jpeg)

![](_page_23_Picture_4.jpeg)

![](_page_24_Picture_0.jpeg)

# 电机ECE模型抽取

![](_page_24_Figure_2.jpeg)

![](_page_24_Figure_3.jpeg)

![](_page_24_Picture_4.jpeg)

![](_page_25_Picture_0.jpeg)

# PMSM 高级控制仿真

![](_page_25_Figure_2.jpeg)

![](_page_25_Figure_3.jpeg)

![](_page_25_Picture_4.jpeg)

![](_page_26_Picture_0.jpeg)

# 电驱动/逆变器 综合仿真与最佳实践

![](_page_26_Picture_2.jpeg)

27 © 2017 ANSYS, Inc. July 24, 2017

ANSYS UGM 2017

![](_page_27_Picture_0.jpeg)

## IPM弱磁控制调速

![](_page_27_Figure_2.jpeg)

28 © 2017 ANSYS, Inc. July 24, 2017

![](_page_28_Picture_0.jpeg)

![](_page_28_Picture_1.jpeg)

![](_page_28_Picture_2.jpeg)

![](_page_28_Picture_3.jpeg)

![](_page_28_Picture_4.jpeg)

![](_page_28_Picture_5.jpeg)

![](_page_29_Picture_0.jpeg)

ONVERGENCE

专业IGBT开关器件物理原型建模工具,可生成包含MC特性的IGBT模型

![](_page_29_Picture_2.jpeg)

# 示例:不同精度模型仿真结果差异

![](_page_30_Figure_1.jpeg)

# 示例结论:器件精度影响EMC仿真

![](_page_31_Figure_1.jpeg)

高级动态模型+封装寄生参数提取:开通/关断特性

ONVERGENCE

**NNSYS** 

# 示例:开关器件开关过程电磁辐射

![](_page_32_Figure_1.jpeg)

July 24, 2017

ONVERGENCE

33

© 2017 ANSYS, Inc.

- 即使器件工作在100Mhz , 电场也主 要分布在器件周围 ;
- 器件功率较高 , 由此造成了距离器 件很远的地方电场强度依然很高 ;
- · 经过优化设计和分析,当前模型在 110MHz工况下,工作情况良好。

![](_page_32_Figure_5.jpeg)

![](_page_32_Figure_6.jpeg)

![](_page_33_Picture_0.jpeg)

外部热设计

![](_page_33_Figure_2.jpeg)

冷却液(冷板)设计

- 冷却液:乙二醇
- 温度:45℃
- 外部气流通过冷板表面
- 效果较好但昂贵

风冷散热设计

- 成本较低
- 温度变化区域较大
- 需要进一步进行优化设计

![](_page_33_Picture_12.jpeg)

![](_page_33_Picture_13.jpeg)

![](_page_34_Picture_0.jpeg)

![](_page_34_Figure_1.jpeg)

# IGBT封装热特性仿真分析:温度场

![](_page_35_Figure_1.jpeg)

![](_page_35_Picture_2.jpeg)

S

![](_page_35_Picture_3.jpeg)

#### ■ 冷板温度,最高处126度

July 24, 2017

![](_page_36_Picture_0.jpeg)

![](_page_36_Figure_1.jpeg)

#### ■ 冷板中面上水流速度矢量分布图

模组上方的空气流动矢量图,
 因主要是水冷散热,自然对
 流带走的热量少,流动不强

![](_page_36_Picture_4.jpeg)

![](_page_36_Picture_5.jpeg)

![](_page_37_Picture_0.jpeg)

## 开关模块建模

TOSHIBA Leading Innovation >>>

![](_page_37_Figure_3.jpeg)

**ANSYS Simplorer + Q3D** 

![](_page_37_Figure_5.jpeg)

**ANSYS** 

![](_page_38_Picture_0.jpeg)

# 电池包 综合仿真与最佳实践

![](_page_38_Picture_2.jpeg)

39 © 2017 ANSYS, Inc. July 24, 2017

ANSYS UGM 2017

![](_page_39_Picture_0.jpeg)

# 电池开发中面临的主要挑战

- 性能(能量密度及功率密度)
- 耐用性和使用寿命(考虑在不同环境 和使用周期)
- 安全性(考虑恶劣环境)

- •复杂的多尺度、多物理场系统
- 快速发展的材料和设计理念
- 现有软件工具不专业针对电池

![](_page_39_Picture_8.jpeg)

# 热管理至关重要

![](_page_39_Picture_10.jpeg)

![](_page_40_Picture_0.jpeg)

安全性

等效电路模型

CFD

**FEA** 

Life

SEI

电化学

**NVH** 

EMI/EMC

等效电路模型

**CFD** 

ROM

**FEA** 

等效电路模型

ROM

Large Scale

![](_page_41_Picture_0.jpeg)

# 锂离子电池全面仿真解决方案

![](_page_41_Picture_2.jpeg)

![](_page_42_Picture_0.jpeg)

![](_page_42_Picture_1.jpeg)

![](_page_42_Picture_2.jpeg)

温度分布

July 24, 2017

ANSYS UGM 2017

![](_page_43_Picture_0.jpeg)

# 模块/封装级- CFD 热分析

![](_page_43_Picture_2.jpeg)

![](_page_43_Figure_3.jpeg)

温度分布

![](_page_43_Figure_5.jpeg)

温度分布

**ANSYS** 

![](_page_43_Figure_7.jpeg)

July 24, 2017

![](_page_43_Picture_8.jpeg)

![](_page_44_Picture_0.jpeg)

# 降阶模型(ROM)分析

### ≻作为一种通用的热分析方法,CFD 是准确的

- 但对大规模系统级瞬态分析来说计算代价太大
- ▶ ROM 可以显著降低模型规模和模 拟时间
- ≻ ROM 是系统级模拟的重要工具

![](_page_44_Picture_6.jpeg)

![](_page_44_Picture_7.jpeg)

![](_page_44_Picture_8.jpeg)

![](_page_45_Picture_0.jpeg)

在Workbench下导入UG的模型

- · 电池包内部包含超过2000的零件
- · 电池包内的很多零部件是一样
- ANSYS可以利用该一致性来降低建模的复杂性

![](_page_45_Figure_5.jpeg)

![](_page_45_Picture_6.jpeg)

![](_page_46_Picture_0.jpeg)

自重分析

- ・ 目标:
  - 。 分析电池自身重量
- ・ 载荷:
  - 。 重力
- ・约束
  - 。 固定电池底座的安装位置
- ・ 结果:
  - 。 电池顶部有较大的位移
  - 应力在许可范围内,最大应 力出现在最大应变位置相对 的支撑位置

![](_page_46_Picture_11.jpeg)

![](_page_46_Picture_12.jpeg)

![](_page_47_Picture_0.jpeg)

# 预紧力作用下的振动模态分析

- ・ 目标:
  - 分析电池部件在预紧力下的振动模
     态
- ・ 分析设置:
  - 由于随机振动载荷高达190 Hz,分
     析中需要考虑1.5倍范围,因此分析
     频率高达250Hz
- ・ 约束:
  - 由于分析预紧力下的工况,因此约
     束是由静力学分析获得
- ・ 结果:
  - 。 提取了32阶模态
  - 80%的质量分布在三个方向,随机
     振动模拟的精度足够

Analysis setting

![](_page_47_Picture_12.jpeg)

#### Mode shape 1<sup>st</sup> mode = 36Hz

![](_page_47_Figure_14.jpeg)

**ANSYS** 

![](_page_48_Picture_0.jpeg)

# 随机振动分析

### ・ 目标:

- 在预紧力作用下,对纵向、侧向和
   垂直三个方向进行随机振动分析
- ・载荷:
  - 。载荷按照SAE J2380中的标准
  - 。 纵向和侧向施加相同的振动载荷
- ・ 约束:
  - 。 约束是由静力学分析获得

| Vert           | tical                                         | Longitudina    | and Lateral                                   |
|----------------|-----------------------------------------------|----------------|-----------------------------------------------|
| Frequency (Hz) | 1.9 grms<br>Amplitude<br>(G <sup>2</sup> /Hz) | Frequency (Hz) | 1.9 grms<br>Amplitude<br>(G <sup>2</sup> /Hz) |
| 10             | 0.113                                         | 10             | 0.064                                         |
| 15             | 0.113                                         | 13             | 0.064                                         |
| 18             | 0.083                                         | 22             | 0.032                                         |
| 25             | 0.037                                         | 45             | 0.016                                         |
| 35             | 0.037                                         | 80             | 0.01                                          |
| 45             | 0.021                                         | 120            | 0.0057                                        |
| 80             | 0.021                                         | 190            | 0.0057                                        |
| 120            | 0.0092                                        |                |                                               |
| 170            | 0.0052                                        |                |                                               |
| 190            | 0.0052                                        |                |                                               |

![](_page_48_Figure_10.jpeg)

![](_page_49_Picture_0.jpeg)

# 随机振动分析

### ・结果:

- 无量纲应力在三个方向都是安
   全的,最大值发生在垂直方向
- 变形同样很小,最大值发生在
   纵向
- 尽管纵向和侧向激励一致,但
   结果差别明显

#### Directional deformation

![](_page_49_Picture_7.jpeg)

#### 1 sigma equivalent stress

![](_page_49_Picture_9.jpeg)

![](_page_49_Picture_10.jpeg)

![](_page_49_Picture_11.jpeg)

| Direction    | Deformation<br>(m) | Equivalent<br>Stress (Pa) |
|--------------|--------------------|---------------------------|
| Vertical     | 6.93e-4            | 1.78e8                    |
| Longitudinal | 2.4e-3             | 1.24e8                    |
| Lateral      | 1.19e-3            | 8.58e7                    |

7

![](_page_49_Picture_15.jpeg)

![](_page_50_Picture_0.jpeg)

- 热应力分析 <sub>目标:</sub>
- 对电池模块进行热应力分析
- ・载荷
  - 热载荷由MAXWELL进行电磁场分析获得
  - 电池模块固定在底面上
- ・ 结果:
  - 分析热应力和变形是否导致部件的失效

![](_page_50_Figure_8.jpeg)

Electromagnetic FEA Analysis for Busbar RLC Network Extraction

![](_page_50_Picture_10.jpeg)

#### **Structural FEA: Total Deformation**

![](_page_50_Picture_12.jpeg)

**Structural FEA: Equivalent Stress** 

![](_page_50_Picture_14.jpeg)

![](_page_51_Picture_0.jpeg)

跌落分析

#### ・ 目标:

- 。 按照SAE J2464标准进行电池电池组的跌落分析
- ・工具:
  - 显式动力学模块
- ・ 网格 & 接触:
  - 避免使用金字塔网格,保证网格可以用于所有类型的分析
  - 。 可能破环的接触位置定义为超过150MPa后自动分离
- ・ 载荷 & 边界条件:
  - 电池从2米高以45度角跌落
  - 为节省分析时间,定义接触前的跌落速度作为初始载荷
- ・ 结果:
  - 套件的上下位置分离

![](_page_51_Picture_14.jpeg)

![](_page_51_Picture_15.jpeg)

Total deformation after 15% solve time

![](_page_52_Picture_0.jpeg)

### 最佳实践:SVD ROM: GM 16 Cell Test Case

- SVD ROM technology allows for quick temperature distribution calculation in addition to average temperature calculation.
- ➢ SVD (奇异值分解法) ROM技术能够在以往计算平均温度的基础上,快速的计算温度场的 分布
- Using a heat source from GM, SVD ROM is applied to the GM 16 cell case.
- ▶ GM的16个cell案例中,使用了一个热源的SVD ROM 模型

![](_page_52_Picture_6.jpeg)

![](_page_52_Figure_7.jpeg)

#### Heat source used

S. Asgari, X. Hu, M. Tsuk, S. Kaushik, "Application of POD plus LTI ROM to Battery Thermal Modeling: SISO Case," SAE 2014.-01-1843 X. Hu, S. Asgari, I. Yavuz, S. Stanton, C-C Hsu, Z. Shi, B. Wang, H-K Chu, "A Transient Reduced Order Model for Battery Thermal Management Based on Singular Value Decomposition,"IEEE Energy Conversion Congress and Expo, 2014

![](_page_52_Picture_10.jpeg)

![](_page_53_Picture_0.jpeg)

![](_page_53_Picture_1.jpeg)

# 感谢聆听

![](_page_53_Picture_3.jpeg)