

ANSYS在市政桥梁设计中的应用

顾民杰/ 道桥院总工

上海市政工程设计院总院(集团)有限公司

- ➢ 宁波中兴大桥采用上层机动车、下层非机动车的双层布置,主跨 400m, V型桥塔桥面以上高度37m,为国内外最大跨径的单索面 矮塔斜拉桥;
- 主梁主跨采用钢箱梁,边跨采用叠合梁,塔梁固接处主梁最大高度10.5m;
- ▶ V型主塔,竖向倾角25°,主塔横桥向宽3.6m;
- ▶ 拉索共36对,倾角13.8~31.5°之间
- ▶ 主墩基础: 30根2m直径钻孔桩。

1.高腹板稳定分析

为分析主梁高腹板的稳定性,采用大型通用有限元软件ANSYS建立主梁LZS1~3 节段模型。

模型一端固接约束,另一端自由;为加载荷载方便,并保证加载位置不率先失稳, 在模型自由端接一段2m长的梁单元,力的边界条件从整体模型中读取,选取恒载+满人+人非工况加载。

模型验证:

	杆系模型	ANSYS板壳模型
顶板应力	7.9MPa	9.0MPa
底板应力	-144MPa	-141MPa

1.高腹板稳定分析 > 前四阶失稳模态

外腹板失稳,系数=4.54

内腹板失稳,系数=5.79

外腹板失稳,系数=5.66

底板失稳, 系数=6.2

ANSYS UGM 2017

1.高腹板稳定分析

改变腹板厚度及加劲形式,第一阶失稳模态不同:

外腹板=22mm, 内腹板=20mm, 系数=6.0

内腹板=20mm,外腹板=12mm,纵向加劲12x150,系数=4.1

内外腹板=22mm,去除腹板环向加劲,系数=2.98

通过比选不同板厚及加劲布置形式下腹板的 失稳模态及稳定系数,中兴大桥腹板的稳定性满 足设计要求。

主桥立面图 (单位:m)

- 背景桥梁跨越某IV级航道内河,通航净宽要求为192m,桥址处为 软土地基,在此条件下,拟建造主跨225m斜拉桥。
- 桥位附近原有一座老桥,为85+200+85m平形索面斜拉桥,存在 耐久性问题,且已无法满足未来通航及交通规划要求。新桥建成 之前,老桥需继续承担部分交通功能,无法提前拆除,导致新桥 横向空间受限,须采用中间索面方案以保证新桥交通功能及施工 安全净距。

为分析该桥空间效应,采用大型通用有限元软件ANSYS建立全桥板壳模型。其中,塔、梁板件采用shell63单元模拟,斜拉索采用link10单元。按照主桥实际边界条件,约束支座面积范围内节点的相应自由度。

主桥一期恒载通过加速度方式施加,二期 恒载通过节点力方式施加于对应节点。活 载仅考虑全桥满布、中跨满布,中跨半跨 满布及全桥偏载等四种情况。通过规范集 度折算为节点力施加于桥面节点上。

板壳模型与杆系模型结果对比

	支反力 (kN)			跨中 位移
	主墩	辅助墩	过渡 墩	(mm)
板売	80493	11841	10956	0.133
杆系	78823	12505	10357	0.129
偏差	2.1%	5.3%	5.5%	3.0%

塔根截面顶板正应力横向分布(MPa)

塔根截面底板正应力横向分布 (MPa)

工祝	恒载	满布活载	中跨满布	半中跨淌布
		顶板		
平均值	-9.2	11.6	8.5	7.3
最大值	-17.4	45.4	41.7	40.2
不均匀系数	1.894	3.928	4.902	5.505
剪力滞系数	1.861	1.567	1.593	1.633
		底板		
平均值	-59.5	-107.9	-103.5	-96.6
最大值	-87.4	-161.6	-155.8	-148.1
不均匀系数	1.469	1.497	1.506	1.533
剪力滞系数	2.109	1.898	1.934	1.991

不均匀系数最大达5.5, 且各种荷载工况下变化较大。由于剪力滞效应主要由构件弯剪作用引起, 扣除轴力后的比值更具有客观性, 本桥剪力滞系数在1.5~2。0之间, 量值较大,设计中必须加以考虑。

主梁扭转

2.斜拉桥空间效应分析

偏载作用下主桥变形图 (mm)

偏载作用下主桥变形横向图 (mm)

根据有限元计算结果,主梁扭转角度为6.79‰,据薄壁杆件力学估算,截面 抗扭常数按外框板件由自由扭转公式估算:

 $J = \frac{4A^2}{\Sigma}$

$$\sum_{t_i}^{s_i}$$

利口截面围成的面积, t_i 为板厚, S_i 为板件宽度。

式中,A为闭口截面围成的面积,t_i为板厚,S_i为板件宽度。按上式估算扭转角为7.10‰,误差较小,且计算简便,可作为初步设计时的估算手段。

主墩横向支座反力分配 (kN)

工况	恒载	满布活载	偏载
左支座	435	565	-3658
中支座	79624	101640	88194
右支座	435	565	7481

- 在对称荷载(恒载、活载满布)作用下,主要由中支座发挥作用,承 担竖向支撑作用,边支座受力较小,仅为中支座的1/20左右。
- ▶ 偏载作用下,边支座将分担较大荷载,一侧支座需承担负反力,应采 用拉力支座。
- ▶ 结构主墩应采用墙式墩,以减小基桩力臂,改善承台受力。

3.钢—UHPC组合桥面板分析

MSYS

国内外许多正交异性桥面板均出现了钢桥面疲劳开裂、钢桥面铺装开裂、车辙、 拥包、推挤等病害。而传统钢-混组合结构桥梁虽然能克服上述问题,但其自重较 大,承受负弯矩能力较弱,适用跨径较小。

超高性能混凝土(UHPC)是一种刚度与强度较大,韧性、粘结性、耐久性较好的材料,作为刚性铺装参与钢桥面板受力,形成钢-UHPC组合面板,可以解决钢桥面疲劳破坏以及桥面铺装病害问题,同时自重较轻,负弯矩区抗裂能力较强,适用范围较广。

本院拟在若干新建及维修项目中采用该新型桥面板方案。

3.钢—UHPC组合桥面板分析

UHPC层按刚度折算为钢板厚度, 采用壳单元进行分析。

UHPC层按实体单元建模,钢板 件采用壳单元进行分析。

3.钢—UHPC组合桥面板分析

两种建模方案对比分析

两种建模方案对比分析表明:

- ➤ UHPC折算为钢板的方式计算 效率较高,但无法准确读取 UHPC顶、底层应力。
- ▶ 顶板加劲较弱时, UHPC折算 钢板计算方式误差较大。
- ▶ 横纵梁板件采用支撑形式替换 影响较小。

标准轮压 140kN

方案

3.钢—UHPC组合桥面板分析

竖向

位移

(mm)

以宁波某桥维修方案为例

UHPC层可提高桥面板受力性能,即使磨耗层损坏前提下, 仍能有效降低钢板应力,提高桥面板刚度。

纵向

应力

(MPa)

横向

应力

(MPa)

81.5

123.9

44.5

55.3

ERS	完好	1.124	64.5
	破损	1.601	74.4
UHPC	完好	0.998	60.7
	破损	1.053	62.8

铺装/磨耗

层

4.桥塔局部受压稳定板壳单元分析

▶ 背景工程主桥采用钢拱塔斜拉桥,双索面半漂浮体系,跨径布置为L=2×94m,两侧引桥跨径30m,总长248m。

> 钢拱桥塔箱形截面采用三种标准段构造尺寸,从 塔顶到塔底分别为方案1、2、3。为分析本工程 主桥桥塔局部受压稳定情况,在全桥整体杆系单 元分析的基础上,对三种构造尺寸方案进行了板 壳单元特征值屈曲分析计算,并结合规范计算结 果进行对比验证。

桥塔横截面图

方案号	顶底板、腹板厚t ₁ (mm)	横隔板及人孔加劲肋厚t ₂ (mm)	加劲肋厚t ₃ (mm)	加劲肋宽l ₃ (mm)
1	20	16	20	200
2	30	16	22	220
3	40	16	25	250

三种构造尺寸方案实常数表

4.桥塔局部受压稳定板壳单元分析

为分析该桥桥塔标准段局部受压稳定情况,采用大型通用有限元软件ANSYS建立标准节段板壳单元模型。顶底板、腹板、加劲肋板件采用shell93单元模拟。节段端部平面约束节点垂直轴向的平动自由度,释放轴向平动自由度和转动自由度。

根据全桥整体分析得到恒、活载作用 下拱肋受到的最大压应力,再根据板 件厚度折算为板件在节段端部平面的 线均布荷载。

板壳模型与理论计算结果对比

	方案 号	构造尺寸 (mm)	板壳分 析模型	理论 计算	偏差
油向	1	20 (20×200)	6.131	6.233	1.64%
玉缩 量	2	30 (22×220)	6.133	6.233	1.60%
(mm)	3	40(25×250)	6.135	6.233	1.57%

前3阶特征值屈曲模态荷载系数

模态号	荷载系数	失稳类型	纵向加劲肋类型	横向加劲肋类型
1	9.6911	纵向加劲板件局部失稳	刚性加劲肋	刚性加劲肋
2	9.7091	纵向加劲板件局部失稳	刚性加劲肋	刚性加劲肋
3	9.7227	纵向加劲板件局部失稳	刚性加劲肋	刚性加劲肋

一阶屈曲失稳模态形状图

构造尺寸方案1一阶屈曲失稳模态 荷载系数9.6911,大于4.0,满足 规范安全性要求。

前十阶屈曲失稳模态均为拱肋顶 底板、腹板发生的加劲间板件的 局部失稳,加劲板在加劲肋处形 成节线。

纵向、横向加劲肋均为刚性加劲 肋,符合规范计算结果。

ONVERGENCE

方案1

4.桥塔局部受压稳定板壳单元分析

前3阶特征值屈曲模态荷载系数

7	方案2		模态号	荷载系 数	失稳类型	纵向加劲肋类 型	横向加劲肋类 型
		1000 00100 00100 000000000000000000000	1	12.885	纵向加劲板件整体失稳	柔性加劲肋	刚性加劲肋
			2	13.027	纵向加劲板件整体失稳	柔性加劲肋	刚性加劲肋
			3	13.409	纵向加劲肋局部失稳	柔性加劲肋	刚性加劲肋

一阶屈曲失稳模态形状图

三阶屈曲失稳模态形状图

构造尺寸方案2一阶屈曲失稳模态荷载系数 12.885,大于4.0,满足规范安全性要求。 前两阶屈曲失稳模态为拱肋顶底板、腹板发生 的加劲板件的整体失稳,加劲肋与加劲板共同 变形。三到十阶屈曲失稳模态为拱肋顶底板、 腹板发生的加劲肋局部失稳,加劲肋失稳而母 板未失稳。

纵向加劲肋为柔性加劲肋,横向加劲肋为刚性 加劲肋,符合规范计算结果。

前3阶特征值屈曲模态荷载系数

模态	5. 荷载系 数	失稳类型	纵向加劲肋类 型	横向加劲肋类 型
1	14.426	纵向加劲肋局部失稳	柔性加劲肋	刚性加劲肋
2	14.426	纵向加劲肋局部失稳	柔性加劲肋	刚性加劲肋
3	14.456	纵向加劲肋局部失稳	柔性加劲肋	刚性加劲肋

一阶屈曲失稳模态形状图

方案3

WANSYS用户技术大会

ONVERGENCE

构造尺寸方案3一阶屈曲失稳模态 荷载系数14.426,大于4.0,满足 规范安全性要求。 前十阶屈曲失稳模态均为拱肋顶 底板、腹板发生的加劲肋局部失 稳,加劲肋失稳而母板未失稳。 纵向加劲肋为柔性加劲肋,横向 加劲肋为刚性加劲肋,符合规范 计算结果。

August 3, 2017

目前,塔柱钢混过渡结构的设计思路主要有:

- 承压面连接:承压面下方混凝土局部应力较大,混凝土难以浇注且浇注密实度 难以检测,如果振捣不密实,容易出现局部混凝土受压过大的问题。
- PBL剪力键连接:方式的荷载传递由上而下的过程中,上层承压面相邻区域承担了大多数的荷载,传递路径较短,没有有效的整个过渡段共同分担荷载的传递。

本次设计采用的钢混过渡结构包括:格构式钢塔柱、端承压板、剪力钉、竖向钢 筋和竖向预应力束。该连接性能良好、荷载传递路径可靠、现场施工便捷,能满 足钢塔柱部分巨大的塔身荷载向下传递至混凝土结构的需要,荷载在过渡段内能 够根据设计的需要逐步扩散,同时具备多重可靠的连接措施,且钢-混分界面无台 阶,节点区无明显结构分层,景观效果良好。

背景工程

	0	T4				
	l n					

-

7

模型中钢板采用SHELL63四节点弹性壳单元模拟,混凝土采用SOLID65八节点实体单元模拟,连接件采用COMBIN14三向弹簧单元模拟,预应力筋应用实体力筋法采用link8杆单元赋予初应变的方法模拟。

钢结构Mises应力在0~140MPa之间。

23 © 2017 ANSYS, Inc. August 3, 2017

ANSYS UGM 2017

钢混节段混凝土主压应力最大为-13MPa,主拉应力最大在1MPa内。

混凝土底座主压应力最大为-11MPa,主拉应力最大在1MPa内。

NNSYS

剪力钉剪力图

剪力钉剪力最大为73kN

6.桁架式横隔梁钢箱梁分析

连续钢箱梁是公路、市政项目中常用桥梁结构形式。钢箱梁因其刚度大、自重小、 抗扭抗弯性能好等优点,在工程中获得了广泛应用。

在连续钢箱梁设计中,通常采用正交异性钢桥面,实腹式横隔板。工程应用上,梁内横隔梁对减小桥面板计算跨度、减小箱梁扭转、畸变效应。然而实腹式横隔 板自重较大,经济性较差。 本院拟在跨径42+70+42m连续钢箱梁设计中采用空腹桁架式横隔梁,以提高箱 梁经济性。

6.桁架式横隔梁钢箱梁分析

相对于实腹式横隔板,桁架式横隔梁对桥面板的支承作用、对箱梁 畸变变形的约束作用均有所减弱,为分析桥面板及横隔梁自身的效 应,采用大型通用有限元软件ANSYS建立局部板壳模型。其中,顶 底板、腹板、加劲肋等板件采用shell63单元模拟,横梁桁架杆件采 用beam4单元。按照相应分析内容,确定相应边界条件,约束支承 范围内节点的相应自由度。

6.桁架式横隔梁钢箱梁分析

车辆荷载按照不同工况分别加载,得出桥面板最大应力55.3MPa,钢箱梁挑臂应力 137MPa,受力满足规范要求。

横隔板刚度 $K = 2EA_c^2 \frac{A_b}{L_b^3} = 6.982E + 13 > 20 \frac{EI_{dw}}{L_d^3} = 4.78E + 13$,满足规范要求。

感谢聆听

