

Hydrodynamics Simulation on Deflector Program of Super Pump Station for Potable Water Supply

Wang Lei-lei / Dr.

Shanghai Municipal Engineering Design Institute (Group) Co., Ltd.

Main content

1.The goal and Research

The Yangzi River raw water projects

- 1 Overall Scale
- ② Composition

Oversized conveyance pumping station

- ① general arrangement
- the basic characteristics
- ③ Engineering significance

1.The goal and Research

- Design capacity of 7.08×10⁶ m³/d
- Covers area of 62,133m²
- **50%** of the conventional design required area
- Large-scale water transfer , high pressure,

directions and long distance

An illustration of the panoramic pumping station

1. The goal and Research

- ➢ Water pumping station flow field numerical simulation, and optimization.
- > The forebay rectifier engineering numerical simulation, hydraulic performance to amend the proposal.
- Improvement program preliminary demonstration, physical model tests.

2. Research Methods

- ✓ Renault N-S equations, the Realizable kappa-epsilon model.
- ✓ Finite volume method, variables are stored.
- ✓ The source term using a second-order central difference scheme, convection, using the second-order upwind difference scheme.
- ✓ SIMPLEC algorithm, pressure and velocity coupling solution.

long strip model of option A

eight characters model of option B

symmetric model of rectangular forebay of option C

symmetric model of the former pool ladder of option D

ANSYS UGM 2017

ANSYS UGM 2017

Establishment of optimization model

Α

Rectangular pumping station:

∆h=6.0-20.1m, Dn5500mm, v =

1.7m / s.

Calculate the boundary area:

Solid side wall, free surface, imported into the pool and pump suction pipe outlet section

Simulation results

H=0.95m

15 © 2017 ANSYS, Inc. August 3, 2017

Simulation results

H=2.75m

ANSYS

Simulation results

The distribution channel number statistics of pump bottom bell bias of situation

drift angle	<=8	(8~12]	>12
without diversion cone	4	13	1
with diversion cone	15	4	0

The forebay inlet flow statistics of Pumping station distribution channel

No.	inlet flow	Flow	Flow	Flow deviation ratio	Flow deviation ratio
	difference	summation	(Diversion cone)	(No Diversion cone)	
1-1	-6102.39	<i>4144 20</i>	16240.06	25.25	22.46
1-2	-10246.67	4144.29	10349.00	25.55	25.40
2-1	-4759.02	1270.69	10897.72	12.66	17.05
2-2	-6138.70	1579.00			
3-1	-5014.27	869.45	10898.00	7.98	14.46
3-2	-5883.72				
4-1	-990.58	1919.54	3900.70	49.21	79.34
4-2	-2910.12				
5-1	-3536.34	1265.25	5807.34	-21.79	17.25
5-2	-2271.00	-1205.55			
6-1	-6345.94	922 60	13524.57	6.16	9.77
6-2	-7178.63	032.09			

5. Main conclusions

> Increase diversion cone bell pump inlet below the bias is significantly reduced, and drift angle is generally less than 4 $^{\circ}$;

> The average flow rate of the pump unilateral deviation ratio reduced from 26.89% to 13.26%;

➤ The forebay figure eight guide piers program can effectively eliminate a wide range of recirculation zone and oblique flow than strengthen the diversion effect by adjusting the diversion of water distribution orifice;

> Diversion pier rectifier program distribution channel to the end of the forebay water loss drop 0.020m.

THANK YOU!

Welcome to SMEDI!

wangleilei@smedi.com; 86-21-55009151

