

Best EMC Practice of High Performance Electronic Device

陈海平 Desmond Tan

ANSYS Singapore

Summary

- Far-Field EMI Analysis Methodology and Verification on SSD Boards
- Simulate with accuracy for high speed connector

Far-Field EMI Analysis Methodology and Verification on SSD Boards

Contents

- Introduction
- Far-Field EMI Simulation Methodology
 - Proposed EMI simulation flow
 - PCB-level EMI solution
- Correlation
 - Simulation vs. Measurement
- Relationship Between Board Design and Far-Field EMI
- Q & A

Trends of Data Storage

- Hard Disk Drive (HDD) → Solid-State Drive (SSD)
 - Higher read/write rate, Faster access time, Lower power consumption

SAMSUNE

Source: www.google.com

Source: www.samsung.com

SAMSUND

		SSD	HDD	Different
Medi	а	NAND FLASH	Magnetic Platters	
Read/Write Speed	Sequential [MB/s]	540 / 330	60 / 160	× 9 / 2
neady write opeca	Random [IOPS*]	98000 / 70000	450 / 400	× 217 / 175
Data Access Time [ms	;]	0.1	10~12	X 100~120
Power Consumption	Active(Idle) [W]	0.127(0.046)	1.75(0.8)	× 13 ↓(× 17 ↓)

Potential EMI Risk in SSD Products

• Speed and density are continuously increasing ...

Electromagnetic interference (EMI) becomes a critical issue !

EMI Simulation Methodology

Measurement-based EMI verification requires additional *cost* and *time* to debug

· Design Revision

EMI Noises in SSD Products

• Various devices in SSD

NAND, DRAM, Controller, PMIC, ...

Operated with different speed and voltage

• Interfaces

DRAM ↔ Controller Interface

Controller \leftrightarrow Host interface

NAND ↔ Controller Interface

- Higher supply voltage, Longer board routing

Source: www.samsung.com

Proposed Far-Field EMI Simulation Flow

- Far-field EMI simulation methodology [Ref. APEMC2015, Benson Wei et. Al.]
- Propose 3 items to enhance simulation accuracy and efficiency
 - EMI source extraction

ONVERGENCE

WANSYS用户技术大会

- Package and reference plane modeling
- Huygens' box optimization for near- to far-field transform

Stage 1: EMI Source Extraction

• Read operation at 460 Mbps

(NAND \leftrightarrow controller interface)

Block diagram

- NAND Flash I/O buffer
- Controller I/O buffer
- SSD board model (S-parameter)

• Input stimulus

- Data: PRBS 27-1
- Strobe/clock: periodic pattern

(5% duty cycle for power noise modeling)

Stage 2: Structure Modeling (1)

- EM simulation with package and board together
 - Impractical solution due to simulation time and hardware resources
- Propose virtual package model with metal plane

Both simulation results have similar tendency

Stage 2: Structure Modeling (2)

Stage 3: EM Solving Based on Huygens' Principle

• Near- to far-field transform method based on Huygens' principle

- Radiated energy simulation at 3-m distance from micro-unit SSD board

How to optimize Huygens' box size?

VERGENCE

ANSYS用户技术大会

Stage 3: EM Solving Based on Huygens' Principle (cont'd)

• Huygens' box size optimization

ONVERGENCE

WANSYS用户技术大会

- Optimized box size is necessary to minimize simulation error for near- to far-field transform
- Radiated field is saturated from 10-mm box size

Correlation with Far-Field Measurement Results

- Read operation at 460 Mbps (NAND ↔ Controller Interface)
- Good agreement up to 1GHz between simulation and measurement results

Measurement (Vertical)

ONVERGENCE

WANSYS用户技术大会

Case Analysis (1)

- Relationship between board design and far-field EMI
 - Routing scheme: Inner layer < Outer layer
 - Signalling scheme: Fully differential < Pseudo differential

Case Analysis (1)

- Relationship between board design and far-field EMI
 - Number of layer: **12** layer < 10 layer
 - Number of channel: 4 channel < 8 channel

Conclusion

- Far-Field EMI Simulation Methodology on Commercial SSD Products
 - EMI source extraction
 - PCB structure modeling
 - EM solving method based on Huygens' principle
- Good Correlation Between Simulation and Measurement Results
- Relationship Between Board Design and Far-Field EMI
 - Routing scheme, signal scheme, number of board layer and channel
- EMI Analysis in the Design Stage Prior to the Manufacturing Process

Simulate with accuracy for high speed connector

20 © 2017 ANSYS, Inc. August 3, 2017

ANSYS UGM 2017

Objective

- Correlate simulation and measurement data of customized Molex SAS-3 plug 78695 mated with Molex SAS-3 receptacle.
- Both Differential S parameter and TDR are extracted for correlation.

Connector Used

- > SAS-3 plug
 - 2.5" Right angle surface mount plug
 - Molex S/#: 78695

> SAS-3 receptacle

- Standard vertical surface mount receptacle
- Molex S/#: 78715

Designed Plug PCB

Designed Receptacle PCB

Connector Model

Test Fixtures

Differential S-Parameter Correlation Results

23 © 2017 ANSYS, Inc. August 3, 2017

ANSYS UGM 2017

ONVERGENCE

17 ANSYS用户技术大会

Return Loss

Port 2 pair 2 (S12 & S13)

ANSYS

Common Mode

Port1pair1 Driven / Port1pair2 Victim (Plug side)

Port1pair1 Driven / Port1pair2 Victim (Receptacle side)

Port2_DDNEXT_plug side(Agg S9S10/VicS12S13) nt results NEXT 🎄 0.00 -10.00 -20.00 <u>ම</u> ^{30.00} -40.00 . Ба М_{-50.00} --60.00 Measured Seagate spec -70.00 Simulation SAS-3spec -80.00 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00

Port2pair1 Driven / Port2pair2 Victim (Plug side)

Port2pair1 Driven / Port2pair2 Victim (Receptacle side)

F [GHz]

DDFEXT

Port2pair1 Plug Side Driven / Port1pair1 Receptacle Side Victim

Port1pair2 Receptacle Side Driven / Port2pair2 Plug Side Victim

Port2pair2 Receptacle Side Driven / Port1pair2 Plug Side Victim

Observations

- The measured data correlated well with the simulated results with both sets of plots displaying similar shape and profile across the 20GHz bandwidth.
- The results had shown that the mated connector system will meet SAS-3 T10 requirements for SI.

Differential TDR Correlation Results

30 © 2017 ANSYS, Inc. August 3, 2017

ANSYS UGM 2017

Differential TDR Risetime Definition

Risetime (10% - 90%) at end of 1m cable is approximately 42ps.

Measurement (from Tektronix)

TDR Plots @ 42ps (10% - 90%) – Port 1 pair 1 (S2 & S3)

Accuracy: 3% for high TDR and 12% for low TDR.

Simulation (from HFSS)

17

Model Comparison

Add Nickel as a Finite Conductivity Boundary on Connector pins surface

	Finite Conductivity Boundary (Washe	
		contract 1	
	Name: Plating	_	
and the second second	Parameters	-	_
	Conductivity,	1	Senteni /m
	Relative Permeability	-	
	Use Material:	rickel_plate	
	T Infinite Ground Plane		
	Advanced		
1.0	Surface Roughness Model:	(* Groisse (Huray
	Surface Roughness:	2	un •
and the second	Hall Huller Surface Ratio	[-
	C Set DC Thickness	Ø	
	Che sided	E Object is on outer box	hdk/
	C Torr sided	C ShittElevert	
	C Use classic infinite thicks	vess model	
		Use Defaults	
			OK C

Modified Model

Modified Model

Measurement (from Tektronix)

TDR Plots @ 42ps (10% - 90%) - Port 1 pair 2 (S5 & S6)

Accuracy: 1.35% for high TDR and 11% for low TDR.

Simulation (from HFSS)

Modified Model

Measurement (from Tektronix)

TDR Plots @ 42ps (10% - 90%) - Port 2 pair 1 (S9 & S10)

Accuracy: 8.4% for high TDR and 12.7% for low TDR.

Simulation (from HFSS)

Modified Model

Measurement (from Tektronix)

TDR Plots @ 42ps (10% - 90%) - Port 2 pair 1 (S12 & S13)

Accuracy: 7.9% for high TDR and 12.6% for low TDR.

Simulation (from HFSS)

12

Modified Model

Observations

- The measured Differential TDR correlated well with the simulated results with both sets of plots displaying similar shape and profile across the 400ps.
- The results had shown that the mated connector system will meet SAS-3 T10 requirements for TDR.

感谢聆听

