

Thermal-aware SEB Methodology for Finfet design EM signoff 曾秋玲/ 工程师

海思半导体

Statistical EM Budgeting(SEB) Introduction

Historically designers have compared interconnect DC average current to a conservative fixed limit as,

S = Jdesign / Jmax

- So if S <= 1, the "design" is reliable, while any interconnect with S > 1 needs to be redesigned. From the process reliability perspective, EM degradation is inherently statistical. There is always observed a wide dispersion in the times observed for identically sized and stressed segments of interconnect to progress to failure.
- When reliability design is designed to mean "achieving a chip-level reliability goal, fixed current density design limits become mathematically arbitrary. Only the total statistical risk to the chip is the meaningful. Then if the EM reliability impact of each segment of interconnect at each stress level can be accounted for, the chip-level EM reliability goal can be budgeted among classes of interconnect or chip design subdivisions to minimize the performance limitations.

SEB Methodology

Statistical EM Budgeting (SEB) is a design-specific EM reliability evaluation method which combines design inputs with EM performance for each interconnect wire to compute a total failure rate for the product. A "pass" is ascertained if the design stay within the failure budget.

 SEB gives the designers some flexibility in design without imposing a hard EM limit for the whole product, thus enabling higher performance without compromising reliability.

Failure in Time (FIT) Calculation per Wire

$$FIT_{i} = \frac{(-10)^{9}}{LT} * \ln \left[1 - \Phi \right] \frac{\ln(S_{DC}^{n} * (LT/MTF))}{\sigma}$$

- \Box LT = lifetime eg 5 or 10 years.
- \Box Φ = std normal cumulative distribution probability
- \Box Sdc = severity ratio of Idc, I/Imax:

I-> from design,

Imax-> defined in design rule manual.

- \Box n = current density exponent (from foundry)
- □ MTF = median time to failure

MTF(Tfit)=MTF(Tamb) * exp(Ea/Kb *(1/(Tfit+273)-1/(Tamb+273)))

Tamb=Ambient Temperature; Tfit=Tamb+ Δ T from self-heating

 \Box σ = sigma, spread in lifetime distribution (from foundry)

Why SEB

q EM challenge on advanced FinFet process

- q EM is significantly impact on FEOL thermal coupling and self-heating
- q Very difficult to sign-off EM due to EM limit degraded significantly.

q Life Time

- q EM spec definition in DRM are based on 10Y life time. How about 5Y life time?
- q Real application: 5% x Life time 125c + 95% x Life time 85c

q From one net to a design

q If every net satisfy EM spec, the design have high reliability? NO!

For example :

Condition: TSMC N10, 10Y life time

Sdc (I/Imax)=0.8, fail rate =0.15%(1500PPM). If there are many nets with Sdc more than 0.8, the total fail rate is more high.

Usually, SOC fail rate < 0.1%

FIT calculation

□ Statistical EM Budgeting is a design-specific EM reliability evaluation method which combines design inputs with EM performance for each interconnect wire to compute a total failure rate for the product. A "pass" is ascertained if the design stay within the failure budget.

7

Thermal-Aware SEB Flow

Self-heating impact on EM

	@105C w/o Self-heating	g @105 w/ Self-heating
Number of EM violations	2581	2664
Max EM violation	168%	197%
Total FIT	23	416
	EM@105 w/o SH	
		1500
		1000
		500
>100 >110	>120 >130 >140 >150 >160 >1	0 70 >180 >190
	EM@105 w/ SH	
		1500
		1000
		500
>100 >110	>120 >130 >140 >150 >160 >1	– – 0 .70 >180 >190

Self-heating Result: instance delta T

-	Instance D	elta T Co	lor Map	-
	ply settings to all I	DT maps		
Maxin	num Instance Delta	T:11.8 C		
Min	Val: 0.0	C Max	Val: 11.8	с
*	temperature >=	11-1	c	
×	temperature <	12-	c	
*	temperature <	10.4	C	
×	temperature <	8.9	c	
×	temperature <	7.4	c	
×	temperature <	5.9	c	
×	temperature <	4.4	c	
	temperature <	3.0	c	
	temperature <	1.5	С	
*	temperature <	100	C	
* *	AD .			
Def	ault Undo	Apply	ØOK	X Cancel

The max delta T is 11.8C

Wire Temperature: Max temperature 116.5C

FIT correlation

Eine Edit View Books Static	Dyganik Tigin	g Benuits ((galorer	₩ndows į	Teb.			View Configuration
EMperentage: 100.09% (DM certer								Veer Configuration
EM personage: 100-09% (EM correct								Configuration View Results SA PO III IIM III IIM CORL IIIM Overy CLA
EM percentage: 100.59% (EM correct								Query 7 CLR
EM perentage: 100.99% (EM correct								
PT_108171005: 6.478586-06 (54): 1 Net: VSS (ground) Whr:: MAI (34 = 1186574, Design 34 - width: 0.04 was Length: 820.269 was Coordinates: (20038.374, 2005.3905) Resistance 3.456+00 (26a): Metal De	e limi: 3.3652e-05 AJ .09987, widdi: 0.04, b = 315548 J 02008-414, 2076-398 exsty: 0.154	engols 820.269, 063 (2008.414, 2	, n 1, he 0	9, METP(105)) (2008-374, 2	173000, MTP(1	105): 173000, signa, 0.22)	- Laboratory	Coordinates x) 2000.0429 Y: 2005.5 2004.6 UT 2005.6 2004.6 UT 2005.4 2006.8
Querypoint (2008-3949, 2465-8474) Malage at query position: 6.0018706 Carterin parallel to wine direction at qu EM mode: my BM role: polynomial based (length: R2 BM reap:polynomial based (length:	49 V sery position: 5.25659 20.269 um, widdstooid 05 Deg C) r limit: 5.1652e-05 A) .09987, widds: 0.04, b	Re 05 A v Klp: 0.04 um, wi knyslic 820 269,	1001: 0.04 u .n: 1, Re: 0	am) 19, MITP(105):	: 173000, MTP(1	105): 173600, signa: 6.22)		

-					Re	dHawk	: HI36	70V100.	TOP					
File	Edit	View	Jools	≦tatic	Dynamic	Timing	Results	Explorer	Windows	Help				
												-View	-	-
												at .	Ŷ	R
												4=	9	-0
												8	÷	
												-		Charles
												Con	figura	ation
													3	
												View	Resu	ults
												SA	PD	
												IR	IPM	DE
												EM	CIP	LC
												CUR	LPM	1/DE
												TR	IFM	19
												-000	TY COL	
1730	00, sign	na: 0.2:	2)											
Net: V	vss (gr	ound)		·								-Coo	rdinat	tes-
Wire:	364 [1	d = 123	10692, D	esign td	= 536722]							Y 32	37.970	185
Lengt	h: 544.	621 un										R: 21	52.7. 3	238.
Coord Resist Ouery	tinates: tance: 5 vpoint ((2154 81e+4 2154.5	534, 300 03 Ohm 460, 323	Metal D 19.6717) (2154.574,3 ensity: 0.0634)	1006.6305 4) (2154.5)	74,3551.251	5) (2154.53	4,3551.251	15)	ur: 21	55.9,3	1240.
Voltag	er at qu ent para	ery pos del to v	ition: 0.0 vire direc	077162 tion at q	01 V uery position:	8.69354e	05 A ~							
EMIN	ile: poly	g momial	based (i	ength: 5	44.621 um, w	idthLookU;	: 0.04 um	width: 0.04	um)					
EM IN	empDer ercenta	rating F get 168	actor: 1 (.31% (E)	Temp: 1 d curren	05 Deg C) it limit: 5.165;	2e-05 A)								
ИТ_5 1730	56372 00, sign	80: 1.2 na: 0.2	0541 (\$d 2)	lc 1.683	1, width: 0.04	4, length: 5	44.621, n	T, Ea: 0.9, N	mp(105): 17	3000, MTP	(105):			
												-		
											-			

use	Year	use Hou	r	Sdc		temp	MTF	sigma	FIT	FIT in RedHawk	Error %
	5	43	800	1.0	1	105	1.73E+05	0.22	6.47613E-06	6.47658E-06	-0.00689%
	5	43	800	1.6	8	105	1.73E+05	0.22	1.20544E+00	1.20541E+00	0.00234%

EM sign-off by thermal-aware SEB

- Designer should fix 2664 EM violations by traditional EM sign-off method.
- □ Now design can be sign-off if fix less than 200 violations.

感谢聆听

