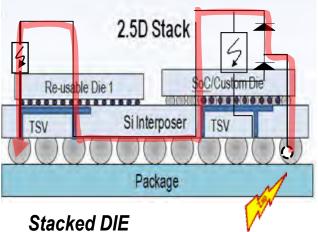

Ensuring ESD Robustness for IPs and SoCs

DanYu / CAD support engineer

Analogix

Challenges in ESD Design



Higher Integration

Thinner oxides Thinner Interconnects Smaller devices


Power/Ground islands Unique ESD requirements Higher pin-counts

Evolving Technologies


Stacked DIE HBM, Memory Cube System in Package

Systematic ESD verification is a must to ensure first silicon success

ANSYS PathFinder[™]: SoC and IP ESD Integrity

Analogix use pathfinder for ESD sign-off

ESD connectivity check

VSYS用户技术大:

- Do we have unconnected Clamp Instance ?
- Do we have bumps isolated from Clamps ?
- Do we have proper stage of ESD connectivity for each net-pair ?

Rule based Resistance check

• Is our ESD path's resistance small enough to protect function circuit ?

Rule based Current Density check

• Is our ESD path's routing strong enough to bear big ESD discharge current ?

Analog case overview


Process	TSMC 28HPC+
Size	6350umx4770um
No. of Bumps	 259 Bumps -14 Power - 16 Ground - 65 Signal

How to recognize ESD cell?

• Drawing corresponding GDS mark layer on ESD cell (clamp/diode)

Mark layer can be used for Both the ESD and device identification purposes in GDS2DB

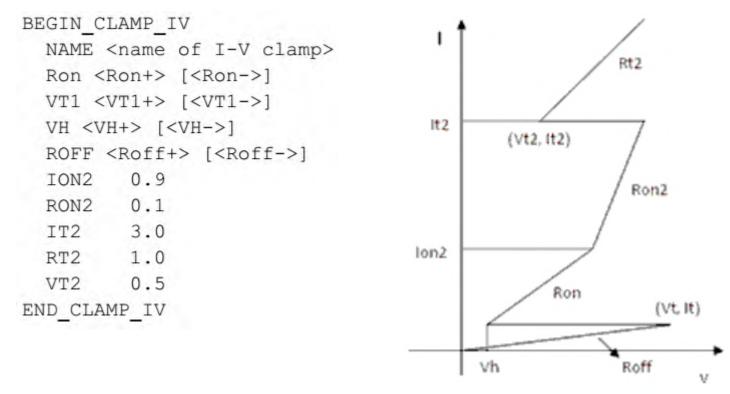
Define different layer number in GDS layermap to identify different ESD cells

How to model ESD cell?

1. Use R-ON/R-OFF model to define each type of ESD cell

```
BEGIN CLAMP CELL
BEGIN CLAMP TYPE
                                                      NAME <cell name>
CLAMP TYPE PCMP SOF
                                                      TYPE <user type name>
CELL NAME anx maple chip PCMP SOF *
                                                      ? PIN [<pin name> | NA] [<x loc> <y loc>]
PIN TYPE pwr AVDD10 ck AVDD10 data AVDD18 PAD AVD
                                                          [ BOTTOM | TOP |<layername>] <locID> ?
1V01 PAD DVDD1V23 PAD DVDD PLL PAD PVIN PAD SVIN
                                                      ? XTOR <xtorName>:<net> <x loc> <y loc> <layer> <locID> ?
PIN TYPE gnd AVSS10 ck AVSS10 data AVSS18 PLL AVS
AVSSIO PAD AVSS VCO DVSS1V01 PAD DVSS1V23 PAD DVS
                                                      ? RON <clamp On Resistance Ohms> ?
BEGIN PIN TYPE
                                                      ? ESD PIN PAIR <loc ID1> <loc ID2> [
NAME pwr
                                                          [ <Ron> | [ <Ron+>|OFF] [<Ron->|OFF] ]?
SHORT 1
                                                          <I-V clamp name> ]?
END PIN TYPE
                                                      ? IMAX <I1> [<I2>] ?
BEGIN PIN TYPE
                                                      ? VMAX <V1> [<V2>] ?
NAME gnd
                                                      ? RAIL VOLTAGE <voltage> ?
SHORT 1
                                                   END CLAMP CELL
END PIN TYPE
PIN PAIR pwr and 0.1 off
END CLAMP TYPE
 Resistance value is 0.1\Omega when clamp is
 on,When current from gnd to pwr, clamp is off
```

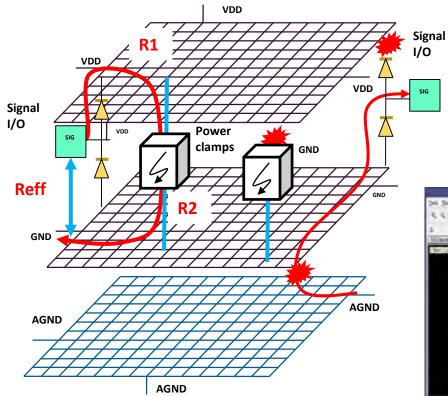
Defines legal ESD discharge path and resistance values for both current discharge directions



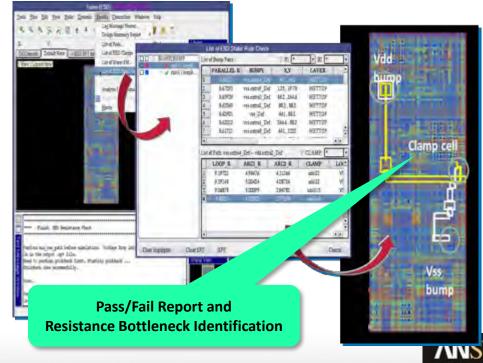
7

How to model ESD cell?

2. Use IV-Curve to define each type of ESD cell



All clamp cells are modeled as resistors with IV curve



ESD Connectivity and Rule Checks

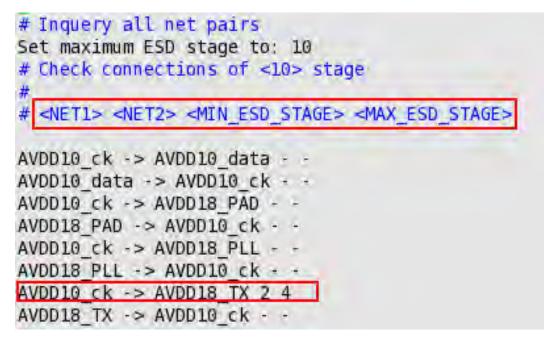
- Full SoC Capacity
- Multi-threaded solve
- Simple and customizable rules

- Isolated Bumps/Clamps Checks
- Pin2 Pin ESD Connectivity Checks
- Pin2Pin Resistance Checks
- Layout-based Debug

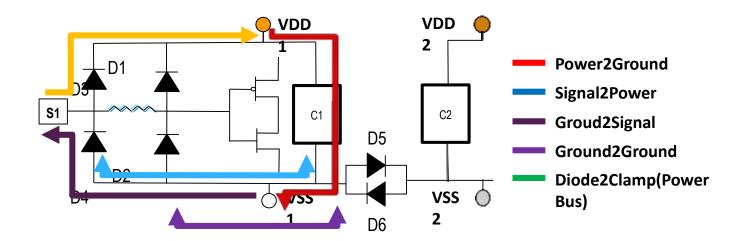
ESD Connectivity Check

• List of Bumps Isolated from Clamps

######### List of Bumps : #	solated	from Cla	amps ###	#######
# <bump_name> <bump_x> ·</bump_x></bump_name>	<bump_y></bump_y>	<bump_l <="" td=""><td>AYER> <ne< td=""><td>ET_NAME></td></ne<></td></bump_l>	AYER> <ne< td=""><td>ET_NAME></td></ne<>	ET_NAME>
AVDD18_PAD_Def 2786.24	-10.07	AP	AVDD18_	PAD
AVDD18_PAD.extra1_Def	1881.84	3.515	AP	AVDD18_PAD
PAD PVIN Def 5993,11	4431.71	AP	PAD PVI	V
PAD PVIN.extral Def	5993.11	4246.45	AP	PAD PVIN
PAD PVIN.extra2 Def	5993,11	4340.5	AP	PAD PVIN
PAD PVIN.extra3 Def	6060.52	4340.5	AP	PAD PVIN
PAD PVIN.extra4 Def	6060.52	4246.45	AP	PAD PVIN
PAD_PVIN.extra5_Def	the loss was been and the second	and the second se		PAD_PVIN


Bumps doesn't have connections to clamp cell will be reported as shown, includes bump name/location/layer /net name

ESD Connectivity Check


• Net-Pair ESD connectivity

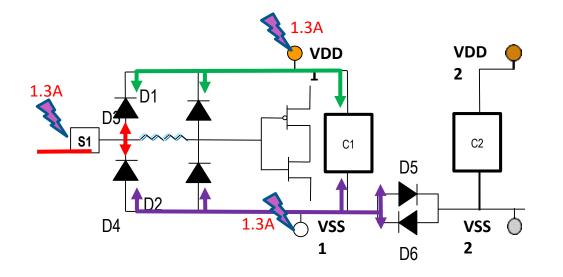
Reports the min/max ESD stage between ESD net pair Minimum 2 stages and up to 4 stages ESD connection between AVDD10_CK and AVDD18_TX as shown

Rule Based RES Check

Resistance check rule :

- 1. B2B (Power pad to Ground pad) < 1 Ohm
- 2. B2B (Signal pad to Power pad) < 1 Ohm
- 3. B2B (Ground pad to Signal pad) < 1 Ohm
- 4. B2B (Ground1 pad to Ground2 pad) < 1 Ohm
- 5. C2C (Diode to Clamp) < 1 Ohm

Analogix R Check Case


	B2BM pad_r_sw_Def -> AVDD18_PLL_Def (1-1)					00	
Clamp(M1)		Point	Layer	Res(Ohm)	ResDiff	Volt(mV)	VoltDiff
	1	(1129.095, 4391.6	н M1	11.687	-	0.000	
	2	(1131.465,4381.6	M1	11.687	0.000	0.000	0.000
	3	(1131.465 , 4371.9	M1	9.560	2.127	98.013	-98.013
	4	(1130.815 . 4370.2	M1	6.082	3.478	113.529	-15,516
	5	(1130.815, 4370.2	M2	5.734	0.348	115.647	-2.119
	6	(1130.815 , 4370.2	M3:	5.386	0.348	120,117	-4.470
	7	(1130.815 , 4370.2	- M4	4.853	0.533	129.796	9.679
	8	(1130.815, 4370.2	M5	4.320	0.533	139.298	-9.502
	9	(1130.815, 4370.2	M6	3.786	0.533	149,122	-9.824
	10	(1130.905 . 4370.2	. M6	3.776	0.010	149,592	-0.470
	11	(1130.905, 4370.2	M7	3.726	0.050	154.668	-5.076
	12	(1129.785 , 4370.2	M7	3.720	0.006	155.084	-0.416
Bump(AP)	13	(1126.690 , 4369.1	M8	3.711	0.008	161,984	-6 900
x1	14	(1126.690 , 4337.6	PM 149	3.627	0.084	223.608	-61.624
	15	(980.110 , 4337.66	ST MB	3.117	0.509	767.446	-543.838
	16	(980.110 , 4334.66	5.) M8	3.108	0.009	770.852	-3.406
Min-res arc for this Bump have	17	(981.485 , 4333.41	5) M8	3.099	0.009	773.620	-2.768
2 John ros bigger than the BJC B	1.8	(979.735 , 4329.91	5) M8	3.091	0.008	783.963	-10.342
3.2ohm res, bigger than the B2C_R	19	(979.360, 4326.16	5) M8	3.080	0.010	797.242	-13.280
hreshold 0.5ohm	Ĩ			R↑		******	TEE

The long routing from Bump to Clamp cause high resistance Use short path trace(SPT) utility to highlight the min-res path from the Bump to the selected clamp

Rule Based CD Check

Current Density check rule : 1. Bump2Clamp check: from All pad to corresponding Clamp/Diode zap 1.3A current

14 © 2017 ANSYS, Inc. July 31, 2017

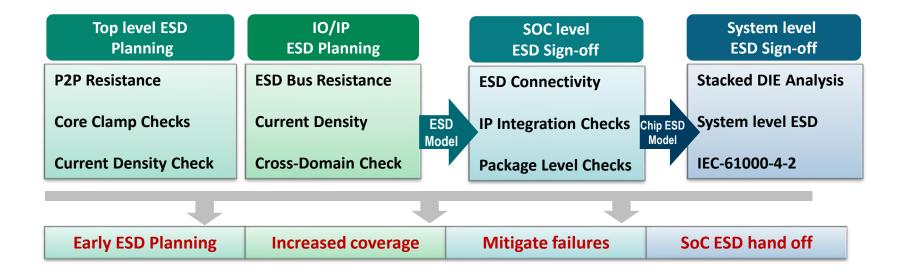
Analogix CD Check Case

					- 1						
						- 1					
			List	of Worst	EM				_	_10	(×)
		*		Show All		12					Carro
- Power	•	¥ [End Y	Layer	Net	EM[%]	-	•
		¥ [Red	Show All Start Y			Layer M2	Net CLK26M_SINE_O	EM[%] 188.074%	-	Carro
- Power - • VDDCORE (0 of 0 >= 100%) - • VDDEFU (2 of 16 >= 100%) - • VNF (0 of 0 >= 100%)			Red 🔹	Show All Start Y 236 295	End X 2966.605	End Y 236.545	1			-	•
 Power VDDCORE (0 of 0 >= 100%) VDDEFU (2 of 16 >= 100%) VWF (0 of 0 >= 100%) VWC_1 (0 of 0 >= 100%) 		22	Red Red Start X 2966.605	Show All Start Y 236 295 233 255	End X 2966.605	End Y 236.545	M2	CLK26M_SINE_O	188.074% 188.074%	-	•
 O VDDCORE (0 of 0 >= 100%) O VDDEFU (2 of 16 >= 100%) O VNF (0 of 0 >= 100%) 	•	22 23	Red Start X 2966.605 2966.605	Show All Start Y 236 295 233 255 76 460	End X 2966.605 2966.605	End Y 236.545 236.295	M2 M2	CLK26M_SINE_O CLK26M_SINE_O	188 074%	-	•

X Show Net Browser

Net: AVSE_PLL Wire: N1 [Id = 11346086] Width: 0.14 un Length: 0.19 um Coordinates: (2945.79, 76.39) (2945.98, 76.39) (2945.98, 76. Resistance: 0.45 Ohm Metal Density: 0.462 Querypoint (2945.9150, 76.4530) Voltage at guery position: 0.05734324 V Current parallel to wire direction at query position: 0.0178 Half node scale: 0.9 EM mode: peak EM rule: polynomial based (length: NAX, widthLookUp; 0.126 u EM percentage: 178.32% (EM current limit: 0.00999375 A)

Max EM in this net is 188% , bigger than the threshold 100% **Bad M1 connection cause the EM violation**


Performance Summary

	STAGE	WALL TIME	MEMORY USAGE(GB)		
	GDS2DB	42mins	49		
Set	up Design + Extraction	2 hour 56 mins	73		
Pasistanca	Bump to Bump Check (All ARCs)		79		
Resistance Check	Clamp to Clamp Check (Diode to Clamp)	3hour 10 mins			
Current Density Check	Bump to Clamp Check(All ARCs)	2 hour 20 mins	103		

*this performance are got without any reduction in design or metal geometries.

PathFinder: Full chip ESD Integrity Sign-off

ESD Integrity Verification and Sign-off with PathFinder

17 © 2017 ANSYS, Inc. July 31, 2017

感谢聆听

