

CFD在环境工程领域的应用

• 杨敏/中科院生态环境研究中心 博士生

- The second water resource (China State Council, 2016):
- > 10.8 million m³/d wastewater were reclaimed in

Higher ratio of wastewater reuse can be

Country	Treated	Reclaimed	Reused	Reuse ratio
China	140	23	12	8.6%
America	132	40	14	10.6%
EU	116	-	2.78	2.4%
Israel	0.92	-	0.76	82.5%
Japan	40	-	0.52	1.3%

2015年全国及四大海区近岸海域水质状况

黄海、东海 南海

全国

0

渤海

China's Ministry of Environmental Protection, 2016. China environmental state bulletin of 2015

More restrict discharge standard is going to be issued (China State Council, 2016):
Discharge standard of pollutants for urban wastewater

附件 2	treatmer Pollutorto	special grade	First grade	First grade	Second grade	
(1)日 中华人民共和国国家标准	Fonutants	standard	Standard A	Standard B	standard	
G818918-20디그 代행 G8 18918-2002	COD _{Cr}	30	50	60	80	
	BOD ₅	6	10	20	30	
城镇污水处理厂污染物排放标准 Discharge standard of pollutants for urban wastewater treatment plant	Ammonia	1.5(3)/3(5)	5/8	8/15	15/20	
(征求意见稿)	TN	10/15	15	20	25	
	TP	0.3	0.5	1.0	1.0	
	SS	5	10	20	30	
	Color	15	30	30	40	
2000-00-00% ^而 2000-00-00% ^施 环 境 保 护 部	Oil	1.0	1.0	3.0	5.0	
国家质量监督检验检疫总局 _{支有}	Petroleum	0.5	1.0	3.0	5.0	
- 5 -	LAS	0.3	0.5	1.0	2.0	

□ Available treatment technologies (Ozgun, 2013; Zhang, 2016):

Membrane bioreactors

- Conventional activated sludge
- Emerging technologies: anammox, aerobic granular sludge, MBfR

- Small footprint
- Higher biomass concentration
- Highly-improved effluent

auality

- Weaknesses of MBR
- Higher operation cost
- Lower efficiency of nutrients removal

A case in Beijing Capacity of MBR > 800,000 m³/d by 2015,

Reclaimed water 39,700,000 m³/d by

2015.

A²/O-MBR in Qinghe reclaim water plant

What—MBR configuration modification

What— MBR configuration modification

What— MBR configuration modification

Pearson correlation analysis for liquid velocity in the riser and membrane shear s

	viscosity	TKE	VOF_r	V_w	Strain_rate	Shear_Stress	Ar	Ad	Ac	Ab	d_c	h_L	h_D	h_E	Ad_Ab	Ar_Ac	Ar_Ad
viscosity	1																
TKE	864**	1															
VOF_r	389	.562*	1														
V_w	.686**	706**	097	1													
Strain_rate	833**	.623**	.323	486*	1												
Shear_Stress	806**	.962**	.632**	672**	.500*	1											
Ar	853**	.957**	.503*	777***	.677***	.877**	1										
Ad	459	$.582^{*}$.350	233	.445	.551*	.557*	1									
Ac	640***	.685**	.244	737***	.421	.611***	.741**	045	1								
Ab	206	.143	.128	274	.301	.157	.165	.026	.227	1							
L/d_c	890***	.967**	.488*	785***	.701***	.889**	.996**	.543*	.747**	.161	1						
h_L	283	.181	314	521*	.393	.087	.294	.045	.404	.711***	.286	1					
h_D	093	.046	706**	371	.094	132	.188	.029	.258	166	.183	.485*	1				
h_E	093	.046	706**	371	.094	132	.188	.029	.258	166	.183	.485*	1.000^{**}	1			
Ad/Ab	263	.412	.212	035	.185	.371	.380	.848**	179	457	.370	365	.128	.128	1		
Ar/Ac	.263	199	.083	.414	065	166	231	.532*	819**	182	251	324	207	207	.572*	1	
Ar/Ad	.304	488*	185	.198	262	465	463	791**	075	126	434	225	144	144	605**	297	1

- The parameters which are considered to be significantly correlated to liquid velocity in the riser are Ad/Ab, Ar/Ad, Ar/Ac, L/d_c, h_L for Newtonian fluid.
- However, only A_r, A_c, L/d_c, h_L were found to be correlated to liquid velocity for Non-Newtonian.
- □ Further study is needed to address the discrepancy.

What—Operation optimization

Table 1 Operating conditions and corresponding ranges used for the design of experiments

Operating conditions	Operating range			
MLSS (g/L)	6.0-18.0			
Air flowrate (m ³ /h)	1.0-2.0			
Bubble diameter (mm)	1.0-5.0			

Table 3 Optimal operating conditions and response values for each one of the membrane scouring indices

Optimal targets		Shear stress (Pa)	NBV(m s ⁻¹ J ⁻¹)	Strain rate (s ⁻¹)	
Aeration intensity		2.00	1.00	2.00	
Bubble diameter		4.32	4.97	4.97	
MLSS		18000.00	3000.00	3000.00	
Response	Shear stress	3.14	0.55	0.78	
	NBV	3.21e ⁻⁸	1.24e ⁻⁷	7.79e ⁻⁸	
	Strain rate	118.17	152.50	191.37	
	DO(mg L ⁻¹)	2.00	2.63	3.55	

Table 4 Optimal operating conditions and response values considering the maximization of multiple responses

Propensity		Shear stress=NBV	Shear stress>NBV	NBV>Shear stress		
Optimal targets		Shear stress	Shear stress	Shear stress		
		NBV NBV		NBV		
Aeration intensity		1.28	2.00	1.00		
Bubble diameter		4.27	3.45	4.20		
MLSS		10274.18	18000.00	5945.36		
Response	Shear stress	1.69	3.05	1.03		
	NBV	6.11e ⁻⁸	3.46e ⁻⁸	9.70e ⁻⁸		
	Strain rate	125.93	118.14	134.75		
	DO	2.62	3.08	3.16		
Desirability		0.31	0.57	0.41		

What— MBR process innovation

Diagram of the Integrated airlift A/O-MBR

What—MBR process innovation

Fig. 3. Configuration of the airlift recirculation A/O-MBR

What—MBR process innovation

Work flow of CFD study for membrane bioreactor

Area-weighted average water velocity (left) and species concentration (right) at the cross section of reflow hole

What— MBR process innovation

Local flow profile of water velocity (left) and water streamline (right) in the AEC-MBR at SAR50

What—MBR process innovation

Hydrodynamics and spatial distribution of species and scalars

Yang, Bioresource technology, 2016

What—MBR process innovation

Parameters	SAR 25	SAR 50	SAR 75
Average DO in oxic unit (mg L ⁻¹)	0.97 ± 0.14^{b}	3.10±0.24	4.98±0.30
Average DO in anoxic unit (mg L ⁻¹)	0.004±0.04	0.02±0.13	0.08±0.22
Average ammonia in oxic unit (mg L ⁻¹)	0.11±0.16	0.08±0.13	0.05±0.10
Average ammonia in anoxic unit (mg L ⁻¹)	4.36±1.13	3.41±1.19	1.96±1.08
Average NO _X in oxic unit (mg L ⁻¹)	2.72±0.18	2.87±0.17	2.36±0.11
Average NO _X in anoxic unit (mg L ⁻¹)	0.10±0.14	0.16±0.21	0.52±0.28
Removal ratio of total nitrogen (%)	94.8	94.6	95.6
Recirculation ratio (%)	1036	1306	1531
Average shear stress (Pa)	0.9±0.6°	1.2±0.8	1.4 ± 0.8

Table 3 Performances of the AEC-MBR at different aeration intensities

What— MBR process innovation

Fig. S1 Shear stress-shear rate nonlinear curve fitting for activated sludge (MLSS = 7.5 g/L, T=20 $^{\circ}$ C) in the AEC-MBR Fig. 6 Effects of aeration intensity on membrane surface shear stress with maximum on m1b, minimum on m5a and average of all membrane surfaces

What— MBR process innovation

Shear stress on the membrane surface for (a) no dosing, b) Fe(II) added to primary anoxic zone, c) Fe(II) added to membrane zone.

Shear stress distribution on membrane surface along the membrane width $\frac{\text{Lit}}{20}$ (x) at different heights (z) for different dosing scenarios

Liu, Water Res., 2015

Fig. 14 - Comparison of membrane surface shear stress of pilot and full scale MBRs with Fe(II) dosed to membrane zone.

Plan view of full-scale A2/O-MBR and CFD modelling prospective

Species fraction distribution in a pilot-scale A^2/O -MBR

A full model for pilot- and full-scale MBR will be done for the simulation of both of the hydrodynamics and water qualities

adapt from Wang, 2010.

Different diffuser patterns' effect on flow field, adapt from Gresch, 2011.

(A)

Proportion of the volume fraction of solid phase

Contours of volume fraction of solid phase at different height: (A) top, (B) middle, and (C) bottom of the tank.

Distribution of scalar and species 0.25 above the bed

Measurement vs simulation

Lei, Water Res., 2014.

- Membrane bioreactors are available technology for wastewater treatment and reuse with the upgrade of discharge standard.
- Modification of bioreactors and operation can be handeled by the means of CFD.
- AEC-MBR was an example of MBR optimization via CFD approach in which the total nitogen removal can be higher than 90% with the higher membrane shear stress compared to others.
- Full-scale bioreactors modeling and simulation is just start, further work involved water quality prediction and operation modification are needed.

感谢聆听