

ECE等效电路模型提取与协同仿真

童辉 /高级应用工程师

ECE : Equivalent Circuit Extraction

- ■分布参数→集总参数(B,J,D→Flux,Current,Torque);
- ■高速度:电路模型;
- ■高精度:以场分析为基础,
 - "黑盒子"系统仿真分析模型。

传统方法

提取步骤:

- ■将电流、位置等参数化设置为可变参数,建议使用DSO;
- ■手动完成"最小周期"参数化扫描设置;
- ■手动完成"全周期"数据还原;

1

0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

-1

0

6 11 16 21

Tesla

■手动完成3相(ABC)到2相(I_mδ)坐标变换。

Rotor Position

26 31 36 41/46 51 56

新方法

提取步骤:

■不需设置"Optimetrics"设置 ■不需要使用 DSO ■ECE参数扫激励设置为外电路 ■ECE模型和Simplorer可实现动态链接

Naxwell Equivalent Circuit Model										
Link Description Options Information										
Name: MaxwellECEData										
Source Project										
File: D:\Users\n	magargl\Documents\Ansoft\Work\Prese Design InformationEdit Project									
Design Info Design Type:	© 2D O 3D									
Design:	Maxwell2DDesign1_ECE (Transient)									
Filter by:	C All (Transient(Fast)) C Magnetostatic C Bectrostatic									
	Extract Equivalent Circuit									
	OK Cancel									

新的ECE模型提取特点

- ■通过"Transient"求解器提起模型的静态参数
 - □用户可保留绕组配置,匝数
 - □ 用户可保留对称性设置
 - □能够提取直线/旋转模型的ECE模型

■R16支持的模型

- □ 旋转模型(ECEW,ECE3,ECER)
- □ 电感(ECEW)

R17**扩展到直线运动和变压器**

R17模型提取扩展到直线运动和变压器

- ECEW_Model: one winding model (R16)
- ECE3_Model: three-phase model (R16)
- ECER_Model: rotation model (R16)
- ECEL_Model: linear motion model (R17)
- ECET_Model: transformer model (R17)

■ ECE 模型格式

- Simplorer model in file .sml
- □ Look-up table output
- VHDL model

基于模型设计的有限元分析

- 工程需求: MIL, SIL, HIL (通过基于模型的设计扩展到系统)
- Maxwell功能: ECE (等效电路输出)

该功能在R17中将会拓展至变压器和作动器

ECE等效电路模型提取与协同仿真方法

- 1. IPM电机
- 2. SRM电机

IPM**电机:设置初始位置对其角**

- 1. 将电机D轴与A相绕组的轴线对齐
 - 保持其他瞬态参数设置不变,如绕组、模型深度、对称性等。

				A	(-r)		
M	otion Setup						×
1	Type Data Me	echanical					
	Initial Position:	52.5				deg	•
	Rotate Limit:						
	Negative:	0				deg	-
	Positive:	360				deg	-
		1	$\uparrow\uparrow\uparrow$		-		
Time =-1	•	0	15		30 (mm)		

IPM**电机:将激励设置为外电路**

2.将激励的连接方式修改为外电路

■ 这一步设置与电机实际需不需要设置外电路无关, ECE提取过程受外电路控制。

Winding		—
General Defaults		
Name:	PhaseA	
Parameters		
Туре:	External 💌	C Solid 🔍 Stranded
Initial Current	0	A
Resistance:	0	ohm 🚽
Inductance:	0	H
Voltage:	0	V
Number of para	allel branches: 1	
	Use Defaults	
		OK Cancel

IPM**电机:编辑外电路**

3.编辑外电路

- 删除从RMxprt自动生成的Maxwell外电路所有部件;
- 添加" <u>ground</u> "模块;
- 对三相电机添加 "ECE3" 模块进行电流扫描;
- 添加 "ECER" 模块尽心位置扫描。

IPM 电机:参数化扫描设置

4.ECE3参数设置

- 设置三相绕组名称,必须与Maxwell设置对应;
- 设置电流扫描区间 (1A,10), 10个点, 步长1A;
- Set "PhAngIntervals"为 2,软件内部将对DQ轴电流进行(+~-)的对称扫描,如下列所示:
- $\Box \ \mathsf{Id} = [-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] \\ \mathsf{Iq} = [-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]$

U9:ECE	3_1	Model Properties	: TRF_ECE - MaxCir1					
Parar	nete	er Values Genera	al Symbol Property Display	s				
6	V	alue C	Statistics					
		Name	Value	Unit	Evaluated Value			
		DeviceName	ECE3_Model1			Device name for ECE 3-phase model		
		Windings	PhaseA,PhaseB,PhaseC			Comma-separated phase winding list in sequence order		
		CurrentSweeps	(1A, 10)			Positive current amplitude sweeping list. Format "v1, v2, (dv1, n1		
		PhAngIntervals	2			(0, 1, 2) for DQ sweeps; 3 for 2-phase sweeps; (>=12) for current		
		Status	Active					
	•		m			Þ		
	,					Show Hidden		
						OK Cancel Apply		

IPM电机:参数化扫描设置

5.ECER参数设置

- 在所有"平衡"的案例中,需要对模型进行60度扫描;
- 设置 "RotAngMax" 等于60度电角度;
- 设置 "*RotAngIntervals*" 为合理的数字,如默认的12;
- 设置 "Poles" 等于模型的实际极数。

U10:E	J10:ECER_Model Properties: TRF_ECE - MaxCir1									
Para	Parameter Values General Symbol Property Displays									
C	• <u>v</u>	alue C	Statistics							
	_	News	Velue	11-3	Furtherited Velve					
	⊢	DeviceName	FCER Mo	Unit	Evaluated value	Device name for FCF Rotation model	_			
	F	RotAngMax	30	deg	30deg	Maximum rotating angle for sweeping in mechanical degrees	-			
	RotAngIntervals 12 12 Number of uniform sweeping intervals for rotating angle						_			
		SkewAng	0	deg	0deg	Skew angle of the stator or rotor core for 2D only, in mechanical degrees				
		Poles	4		4	Number of poles				
		Status	Active				_			
	Show Hidden									
						OK Cancel	Apply			

IPM**电机:**60°模型扫描

- ■自动将60°数据进行重构:
 - PhaseA重构: A,-B,C,-A,B,-C,A,-B,C,-A,B,-C
 - PhaseB重构: B,-C,A,-B,C,-A, B,-C,A,-B,C,-A
 - PhaseC重构: C,-A,B,-C,A,-B,C,-A,B,-C,A,-B

输入参数扫描

■对输入参数进行扫描以计算磁链和转矩

- DQ扫描总的变量数量:
- (2*CurrIntervals+1)^2*RotAngIntervals
- (2*10+1)^2*12 = <u>5292</u>
- 三相扫描总的变量数量:
- 21^3*12 = <u>111,132</u>

所以,采用DQ扫描可显著降低提取时间!

ECE模型与Simplorer进行集成

- 1. 保存Maxwell工程文件,打开或者关闭均可。
- 2. 进入Simplorer,进行如下操作:Simplorer Circuit > Subcircuit > Maxwell Component > Add Equivalent Circuit
 - 选择与ECE Solution 对应的Maxwell 工程;
 - 选择与ECE Solution 对应的Maxwell 设计;
 - 在弹出的对话框中选择 Show > Pin Description;
 - "Transient (Fast)"必须默认勾选,然后单击"Extract Equivalent Circuit",确定。

Maxwell Equivalent Circuit Model									
Link Description Options Information									
Name: MaxwellECEData2									
Selection									
Source Project									
File: \$PROJECT	DIR\ipm_1.mxwl								
Obtain [Design Information	Edit Project							
Design Info									
Design Type:	© 2D (3D							
Design:	2_Maxwell2DDesign	ECE (Transient)							
Filter by:	O AI 🖉	Transient(Fast)							
	C Magnetostatic C	Electrostatic							
	Extract Equivalent Ci	rcuit							
		OK Cancel							

Link Description	Options Information	
Show C Pin Name	Pin Description	
	🗌 Unload project after use	

ECE模型与Simplorer进行集成

3.搭建系统仿真分析模型

• 必须设置模型的相电阻 (ra0) 和端部漏感 (la0)。

Simplorer系统仿真分析设置

• RMxprt可以自动生成Simplorer仿真分析模型

ECE**电路模型** VS Maxwell 瞬态仿真分析模型

SRM 电机:如何进行ECE模型提取?

■4相!!!,每相N个采样点; ■1个旋转轴,M个采样点。

工作点扫描

调用DSO)。

SRM电机: ECE Model Setup

■ SRM电机各相绕组相对独立:

- 采样对象由多相简化到1相: N4→N1;
- B—D相数据可通过A相复制而来,然后添加固定机械角度延迟。

SRM**电机:对其磁链最小位置**

1.将A相与磁链最小位置对齐

- 严格说并无必要,但是大多数SRM电机电路以上述位置作为控制策略判断的标准;
- 保持其他瞬态参数设置不变,如绕组、模型深度、对称性等。

SRM**电机:将激励设置为外电路**

2.将激励设置为外电路

• 删除 B,C,D等不必要的相

Winding	
General Defau	lts
Name:	PhaseA
Parameter	s
Type:	External C Solid Stranded
Initial Cun	rent 0 A 💌
Resistance	xe: 0 ohm 🔽
Inductan	зе: 0 H 🔽
Voltage:	0 V 🔽
Number o	f parallel branches: 1
	Use Defaults
	OK Cancel

SRM**电机:编辑外电路**

3.编辑外电路

- 为A相添加ECEW模块,用于电流扫描;
- 添加ECER 模块用于位置扫描。

SRM电机: ECEW模块设置

4.ECEW模块设置

- 指定*WindingName*为PhaseA,,必须与Maxwell中的名称一致;
- 指定电流扫描区间(1A,20), 本案例中电流扫描不为负;
- ECEW没有 Sweep Types选项,所以 电流扫描将按照实际的设置进行扫描,具体例子如下所示:
 - la = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20)

U66:I	U66:ECEW_Model Properties: srm-1 - srm_EC_denser								
Parameter Values General Symbol Property Displays									
Value C Statistics									
		Name	Value	Unit	Evaluated Value		C		
		DeviceName	ECEW_M			Device name for ECE Winding model			
		WindingName	PhaseA			Name of the winding for which current is to be swept			
		CurrentSweeps	(1A, 20)			Current sweep list. Format: "v1, v2, (dv1, n1), v3, (dv2, n2), v4,"			
		Status	Active						
	1								
						Show Hidden			
						OK Cancel A	oply		

SRM**电机:** ECER**模块设置**

5.ECER模块设置

- 对于SRM电机,位置扫描必须至少为1对极;
- 本案例电机为6极,所以扫描的最小区间为60°;
- 设置RotAngIntervals为合理的值;
- 设置Poles为2倍的实际物理 Poles,本案例设置为12.
 - ECER模块假设仿真分析结果将按照一个极对数 (120deg)进行全模型重构,但是实际仿真分析的时候只扫描了1个极,所以模型的*duplication*需要设置为12.

J67:ECER_Model Properties: srm-1 - srm_EC_denser										
Parameter Values General Symbol Property Displays										
							_			
		Name	Value	Unit	Evaluated Value		C			
		DeviceName	ECER_Mo			Device name for ECE Rotation model				
		RotAngMax	60	deg	60deg	Maximum rotating angle for sweeping in mechanical degrees				
		RotAngIntervals	60		60	Number of uniform sweeping intervals for rotating angle				
		SkewAng	0	deg	0deg	Skew angle of the stator or rotor core for 2D only, in mechanical degrees				
		Poles	12		12	Number of poles				
		Status	Active							
	•			III						
						Show Hidden				
	-						_			
						OK Cancel 🛆	pply			

SRM**电机:电气对称**

6极电机

由于机械特对称,只需要进行60°机械角的扫描。

SRM**电机:电气对称性**

• 对于SRM电机:设置Poles = 2倍物理 Poles

12极/60°机械角重构与实际工况一致

ECE模型与Simplorer进行集成

- 1.设置方法与IPM电机设置方法完全一致。
 - Phase A 模型需要复制4次(PhaseA~PhaseD);
 - 确保添加绕组的相电阻和端部漏感(ra0, la0);
 - PhaseB,C,D 设置的时候可依次增加45 机械角度。

ECE电路模型 VS Maxwell 瞬态仿真分析模型

<u>Demo</u>

THANK YOU

ANSYS

感谢聆听