

复杂目标散射特性 ——仿真思路与应用案例

讲师姓名 / 职务

ANSYS CHINA

^{GENCE} SYS F allestate 内容提要	
	RCS概述
2	面临挑战 - 电大尺寸、结构复杂度高、大规模计算
3	解决方案 - FEM+IE+PO、3D Components、HPC+DDM
4	案例分析 - 飞机的RCS仿真与隐身设计、FSS频选罩的隐身设计

Convis

- ・ RCS 定义——Radar Cross Section
- 数学上, RCS 定义为: $\sigma_{3D} = \lim_{r \to \infty} \left[4\pi r^2 \frac{|E^s|^2}{|E^r|^2} \right]$, E^s 、E'分别表示散射和入射电场
- 。物理上, RCS是目标有效反射面积的度量,或指定方向上散射功率对入射功率归一化的度量
- 。当发射机和接收机在同一位置时,称为**单站 RCS**(Monostatic RCS)
- 。当发射机和接收机有一定距离间隔时,称为**双站 RCS**(Bistatic RCS)
- 。 RCS 用面积单位表示(例如 , $\sigma=1\mathrm{m}^2$) ,通常也表示为为dBsm或 (σ/λ^2)

Component 组件库

半径λ

仅考虑结构项

考虑结构项和模式项的实际情况

涂覆前		Mesh Num	Mesh Mesh Num Time		内存占用			Total Time	CPU		
3	双站	å R	cs	38.9万	7m	4	4.4	1GE	З	17m	20
1	单站	ቴ R	cs	38.8万	7m	3	86.1	140	βB	2h39m	20
Task Illar Dari Holandon Gari Holandon Gari Holandon Gari Holandon Gari Holandon Mask TALIN Mask TALIN Mask TALIN Mask TALIN Mask TALIN Mask TALINA	Past True 10.00 (1 10.00 0) 10.00 0) 10.00 0) 10.00 10 10.00 10 10.00 10 10.00 10 10.00 10	00.08.04 00.08.04 00.08.04 00.08.04 00.08.04 00.08.04 00.08.05 00.05 00.08.05 00000000	E Managy E K E K E K E K E K E K E K E K E K E K	Next Sectors and S	60) AN	Task Gall - Constant - Gall - Vision Constant New TALU (Com West TALU) Com West TALU (Com West TALU) Com West Tableau West Statistics & Adgetion Train 1 Const. Audits Daniel Andrea Daniel Andrea Daniel Andrea Daniel Andrea	Panal Time 36 80 00 18 80 00 18 80 10 18 80 12 18 81 19 18 81 19 18 83 19 18 83 19 18 83 19 18 83 19	0000000 000000 000000 000000 000000 0000	Henoy IX I	Most tores, prove the "regin" regin" (Sector Sector, provide the Sector Sector, provide the Sector Sector, provide the Sector Sect	nellon / *
Adoptivo Pass 1 Januar - Partition Januar - Assation K	00.00.51	0-38.53	9K-M	Propancy 400492 Data 5014743yas 2040014444464.0 domaine Uning Militaus Pathone Computing Expent.	*	Danain 1 an Isal Matik Assentity Danain 2 an Isal K	10.32.24	C 51.8	776	Dek-109 Klyke, 309 Methods retriet de 750	S. netrikonikoth il X. Avenga Ordert. 2

一一发动机腔体的RCS计算

一一飞机头罩的RCS减缩设计

39 © 2016 ANSYS, Inc. August 16, 2016

9GHz	增益 /dB	Y向 副瓣 /dB	X向 副瓣 /dB	零深 /dB	瞄准 误差
天线	25.18	<-20	<-20	<-28	0
FSS罩+天线 ——0度偏转	23.24	<-11.5	<-18	<-28	+0.5
FSS罩+天线 ——10度偏转	23.06	<-10.7	<-16.2	Y向<-12.8 X向<-15.3	-1
FSS罩+天线 ——30度偏转	≹ 21.66 <-8.0 <-20.4		Y向<-5.5 X向<-17.8	-1.5	

ANSYS UGM 2016

感谢聆听

				ANSYS
41	© 2016 ANSYS, Inc.	August 16, 2016	ANSYS UGM 2016	

适合的算法:FEM+IE+PO

高性能计算:HPC+DDM+DSO

高效建模:3D component+Boundary